
On the Power of Fault Sensitivity Analysis and
Collision Side-Channel Attacks

in a Combined Setting

Amir Moradi1, Oliver Mischke1, Christof Paar1,
Yang Li2, Kazuo Ohta2, and Kazuo Sakiyama2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,mischke,cpaar}@crypto.rub.de

2 Department of Informatics, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

liyang@ice.uec.ac.jp, {ota,saki}@inf.uec.ac.jp

Abstract. At CHES 2010 two powerful new attacks were presented,
namely the Fault Sensitivity Analysis and the Correlation Collision At-
tack. This paper shows how these ideas can be combined to create even
stronger attacks. Two solutions are presented; both extract leakage infor-
mation by the fault sensitivity analysis method while each one applies a
slightly different collision attack to deduce the secret information without
the need of any hypothetical leakage model. Having a similar fault injec-
tion method, one attack utilizes the non-uniform distribution of faulty
ciphertext bytes while the other one exploits the data-dependent timing
characteristics of the target combination circuit. The results when at-
tacking several AES ASIC cores of the SASEBO LSI chips in different
process technologies are presented. Successfully breaking the cores pro-
tected against DPA attacks using either gate-level countermeasures or
logic styles indicates the strength of the attacks.

1 Introduction

Since the last decade designers of cryptographic devices have to deal with the
problem that embedded secret information, e.g., the used encryption key in a
symmetric cipher, is leaking through physical side channels. The side-channel
leakage can be the timing [11], the power consumption [12], the electro-magnetic
radiation [8,21] and so on. Also fault analysis attacks such as differential fault
analysis (DFA) was demonstrated to be effective against implementations of
block ciphers such as DES [5] and AES [20].

At CHES 2010 a new fault attack called Fault Sensitivity Analysis (FSA) [14]
was proposed. The authors used fault injections by means of clock glitches to
measure the calculation time of the S-boxes as side-channel leakage. This in-
formation, whose data dependency is caused by the underlying gates, is then
used to recover the secret information. Using this attack the secret key of an
AES ASIC implementation could be completely extracted, but it was stated
that masking might be a countermeasure against such a kind of attack since the

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 292–311, 2011.
c© International Association for Cryptologic Research 2011

On the Power of Fault Sensitivity Analysis 293

randomization of the S-box input makes it difficult to repeat fault injections and
to measure the timings of specific calculations.

Another contribution to CHES 2010 was a collision attack enhanced by cor-
relation [15]. Compared to classical power analysis attacks, its main feature is
that it does not rely on the knowledge of an underlying (hypothetical) power
model. Instead, it directly correlates power traces to each other and – by finding
colliding S-box computations – is able to recover the relation between key parts.
Using such an attack a complete break of a masked FPGA implementation of
AES has been demonstrated.

The combination and improvement of these two ideas is the main contribution
of this article. From [14] we will use the fault injection method and utilize the
fact that the timing characteristics of each S-box can be independently observed,
while the correlation-collision approach from [15] is used to find the relations
between key bytes without the need to have any knowledge how the observed
characteristics relate to the inputs. Two options to combine these two schemes
are presented:

– First we present an attack which exploits the finding that given a fixed clock
glitch period and a fixed unmasked S-box input byte the distribution of the
resulting faulty ciphertext byte will be data dependent. This is achieved by
setting the period of the clock glitch so that about 50% of the executions
lead to faulty values. Repeating this measurements for all possible differ-
ences between two targeted ciphertext bytes, one can identify the correct
key difference if the distributions of two faulty ciphertext bytes collide.

– In the second attack we take a closer look at the fault rate of each S-box in-
stance over a large range of clock glitch periods, thereby getting very detailed
information about the timing characteristics of the targets. Again using the
concept of the correlation collision attack, several collisions between these
timing sets can be detected at the same time. This allows us to fully recover
all relations between the key bytes, i.e., shrinking the key space to 28.

Similarly to [14], we have chosen the SASEBO-R [2] board as the evaluation plat-
form. The board can hold different ASICs, and we have analyzed the SASEBO
LSI2 [3], both in 130nm and 90nm technology, as well as the SASEBO LSI3 [4]
in 65nm technology. Each of the LSIs contain the same 14 different implementa-
tions of AES, therefore the only difference is the process technology, which has
a big influence on the timing characteristics. The implementations themselves
differ in the style of the S-box realization and in side-channel countermeasures.
Using the attacks presented in this paper we will provide detailed results show-
ing the successful key recovery for a large number of cores including the ones
applying gate-level DPA countermeasures and DPA-resistant logic styles.

In the later parts of this article the prerequisites, including a review of fault
sensitivity analysis and the correlation collision attack, are given in Section 2.
Our first proposed attack using collisions of faulty ciphertext distributions and
its results on two SASEBO LSI2 cores are presented in Section 3. The second
proposed attack, namely the collision timing attack, is expressed in Section 4,

294 A. Moradi et al.

which also contains the practical evaluation results on several of the 130nm,
90nm, and 65nm SASEBO LSI2 and LSI3 cores. Finally, Section 5 concludes
the paper.

2 Preliminaries

This section summarizes the underlying attacks, namely the fault sensitivity
analysis [14] and correlation collision attack [15], which are the basis to the
attacks presented here. We also address how these two methods can be combined
to develop more sophisticated attacks improving their efficiency and relaxing the
requirements. The experimental setup used in all the practical results shown in
this work are also introduced in this section.

2.1 Fault Sensitivity Analysis

A new type of fault attack called Fault Sensitivity Analysis (FSA) was proposed
in [14]. Unlike some of the previous fault attacks, e.g., DFA [5], the FSA attack
does not require the value of the faulty outputs in the key recovery process.
Instead, the attack works by increasing the fault intensity until a distinguish-
able characteristic can be observed, e.g., the first appearance of a faulty out-
put. The concept of the FSA attack was verified by attacking the unprotected
AES_PPRM1 core of the SASEBO LSI2 [3] using only 50 different plaintexts1.
By successfully revealing three key bytes of the AES_WDDL implementation
of the same ASIC using 1200 plaintexts it was also shown that the FSA attack
can bypass some known countermeasures against DFA attacks.

The presented method of increasing the fault sensitivity in [14] is the short-
ening of the clock glitch, whereby the glitch period can be gradually decreased
until a faulty output occurs or the fault becomes stable. Since the critical path
of some gates, e.g., AND and OR gates, is data dependent, knowing the under-
lying model for this data dependency helps revealing the secret. For example,
the simulation results ascertained that the timing delay of a PPRM S-box cor-
relates to the Hamming weight (HW) of its input. For AES_WDDL, which in
theory should be immune against set-up time violation attacks, by profiling with
a known key it was shown that at least some bits correlate to the timing delay
which lead to the aforementioned recovery of three key bytes. Moreover, this
issue has been carefully studied later in [13].

In addition to the fact that FSA does not require faulty ciphertexts, another
difference to DFA attacks is that the fault does not need to be restricted to
a small sub-space. In contrary, by for example attacking the last round of the
AES_PPRM1 implementation, each faulty output byte can be independently
observed and therefore the same complete faulty output can be used to attack
all key bytes simultaneously. On the other hand, as stated in [14], while coun-
termeasures like masking are only of limited use against DFA attacks, they may
1 The fault sensitivity leakage for each plaintext has been recovered using around 200

faulty executions.

On the Power of Fault Sensitivity Analysis 295

have a great impact on FSA attacks since the critical path is affected by the
random mask bits. Indeed, this is an issue which we demonstrate in this pa-
per to be incorrect by providing the result of successful attacks on the masked
implementations.

2.2 Correlation Collision Attack

The correlation collision attack was introduced in [15]. Its major advantage com-
pared to classical power analysis attacks is that it neither relies on a hypothetical
power model nor requires a profiling phase. Enhancing linear collision attacks [6]
by the methods of correlation-based DPAs, it is able to overcome side-channel
countermeasures as long as a minimal first order leakage remains.

A linear collision occurs if two instances of combinational circuits or one in-
stance at two different points in time process(es) the same value, i.e., for AES
two 8-bit outputs and thereby the inputs of the S-boxes must be the same. It is
therefore possible to recover the key relation between the attacked bytes since
rearranging of Sbox(i1 ⊕ k1) = Sbox(i2 ⊕ k2) leads to Δ = i1 ⊕ i2 = k1 ⊕ k2,
where both i1 and i2 are known.

The correlation collision attack on AES works similarly, but starts by com-
puting sets of mean traces for each possible input byte in case the attack is
performed on the first round. To do this for two input bytes, namely i1 and i2,
all traces are sorted based on the corresponding input byte value, and traces
with the same value are averaged, thereby creating 256 different mean traces
M1(i1) and M2(i2) for each of the two input bytes. Computing the variances for
each set of mean traces will reveal the point in time where the corresponding
bytes are processed by the S-box, which is necessary to align the mean traces
for the attack.

If the power consumption of two S-box computations are highly similar, com-
paring pairs of mean sets also shows a high similarity between certain mean
traces. Therefore, when attacking the input bytes i1 and i2 and Δ = k1 ⊕ k2,
then M1(i1) ≈ M2(i2 = i1 ⊕ Δ). The correct Δ can be found by computing the
correlation between the two sets of mean traces for each of the 256 candidates of
Δ. This yields a very high correlation coefficient since no hypothetical model is
applied but instead the averaged real power consumptions are used and only a
low number of points contributes to the estimation of the correlation coefficient.

2.3 Combinations

In order to avoid the need of a hypothetical model matching the fault sen-
sitivity leakages, the two above attacks can be combined in several different
ways. Two options for such a combination are expressed in this article. It should
be noted that each of these two options has been independently developed by
each group of the authors, and both have been submitted in parallel to CHES
2011. These two works have been merged as requested by the program com-
mittee. The first option, which is developed by the team of the University of

296 A. Moradi et al.

Electro-Communications (Japan), is expressed in Section 3. It extracts the dis-
tribution of the faulty ciphertext bytes and tries to find the collision within
the distributions to recover the linear difference between the corresponding key
bytes. The feasibility of this attack is practically confirmed by breaking two
masked AES cores. The second option is developed by the team of the Ruhr
University of Bochum (Germany) and is illustrated in Section 4. It extracts the
precise timing characteristics of combinational circuits, e.g., S-boxes, and applies
the correlation collision attack on timings to detect the colliding cases which re-
veal, similar to the first option, the linear difference between the corresponding
key bytes. The shown practical results of this attack on several different AES
cores in different process technologies highlight the strength of this attack.

2.4 Experimental Setup

All the practical results shown in this work are based on the AES implementa-
tions of three ASIC chips built for the SASEBO-R board, namely the SASEBO
LSI2 (130nm), LSI2 (90nm), and LSI3 (65nm). Each chip contains the same 14
different AES cores including unprotected, DPA protected, and fault attack pro-
tected ones. The similar approach for fault injection as in [14] is used to inject
the faults or extract the timing characteristics of the target circuit. An addi-
tional external clock, generated by an programmable digital function generator,
is fed into the SASEBO-R control FPGA where it is multiplied using a Digital
Clock Management (DCM) unit. This fast clock signal is then used together
with some logic to shape the glitchy clock signal. An internal circuit controls the
clock signal of the LSI to infer the glitchy clock at the preferred instance of time
synchronized to the AES computation of the target core.

We have first tried to generate the glitchy clock inside the control FPGA
without using an external function generator, but the width of the glitchy clock
could only be adjusted in large steps (e.g., of around 170ps [7]), which were not
small enough to reach the desired results. Therefore, we had to use a function
generator to externally provide the precise clock frequencies. As it is represented
in the following, we change the width of the glitchy clock in steps of 25ps to 5ps.
Also, the multiplication of the clock frequency is necessary because of the limi-
tation (maximum frequency of 15 MHz) of the function generator we have used,
while the frequencies necessary to inject a fault in the combinational circuit are
up to the range of 300MHz. Also, the DCMs inside the Virtex-II control FPGA
of the SASEBO-R can, when fed with a low frequency input signal, only gener-
ate output frequency up to 210 MHz. Since some of the cores, especially of the
65nm LSI3, require a higher frequency for fault injection, for these cores it was
necessary to daisy chain two DCMs, one for generating a high frequency signal
out of the function generator output and another one to reach the maximum
supported output frequency which can only be generated by the DCM using a
high frequency input [26].

On the Power of Fault Sensitivity Analysis 297

K10

C

R2

I R1
Masked S-boxR1, R2 Q

Fig. 1. A combinational circuit in the fi-
nal round of a masked AES

0 64 128 192 255
0

4

8

12

Faulty ciphertext byteN
um

be
r

of
 o

cc
ur

en
ce

Fig. 2. A faulty ciphertext byte distribu-
tion

3 Option 1: Colliding Faulty Ciphertext Distributions

For the implementation with masking countermeasures, attackers cannot keep
the device repeating the same calculation due to the randomization of the inter-
nal calculations in each trial. Thus, the fault sensitivity is difficult to be measured
for a specific calculation, e.g., an S-box calculation with a fixed unmasked input
and masks.

As shown in [15], the statistical observation of the side-channel leakage of a
masked implementation may recover some sensitive information, e.g., the un-
masked inputs, when there is still a first order leakage. We note that when faults
are injected, the faulty ciphertexts can be used as an information source in the
context of attacking the masked implementation. This section shows that the
faulty ciphertext distribution is data dependent and can be used to detect the
collision between unmasked intermediate values. This attack has been verified by
successfully attacking two AES implementations masked using the Masked-AND
gates and a form of threshold implementation.

3.1 Model and Attack Concept

As shown in Fig. 1, we make a simple model of a combinational circuit in the
final AES encryption round of a masked implementation. A masked intermediate
result I ⊕ R1 goes through the substitution in a masked S-box calculation, the
addition with the final round key K10 and the unmasking procedure (XOR with
R2) to become a ciphertext byte C. In Fig. 1, Q denotes the output of the
masked S-box. Hereafter, we use Q′ and C′ to denote the faulty masked S-box
output and the faulty ciphertext byte, respectively. The attack procedure can
be divided in two steps consisting of i) classifying the random numbers, and ii)
detecting the colliding unmasked S-box inputs.

Classifying the Random Numbers. A general security requirement for a
masking countermeasure is the uniform distribution of the used random numbers,
while we use a variation of fault sensitivity to classify the used random numbers.

Given a plaintext, the value of I in Fig. 1 is fixed. For all the possible random
numbers, the calculations in the S-box circuit are different, and more importantly
the critical delay timings are different. Attackers can focus on a specific S-box

298 A. Moradi et al.

calculation and trigger the setup-time violation in the final AES round. The fault
injection intensity can be adjusted by modifying the period of the clock glitch.

In our attack, the clock glitch is set to a level where about 50% of the execu-
tions generate a faulty output. In this case, the executions are divided into two
groups according to whether or not the output is faulty. Furthermore, these two
groups of executions are corresponding to two groups of random numbers whose
corresponding intermediate values, as we see later, are not uniformly distributed.

Detecting the Colliding Unmasked S-box Inputs. After using the fault
sensitivity as a leakage to classify the random intermediate values which are
non-uniformly distributed, the next step is to find another information source
to effectively identify the sensitive intermediate value. According to Fig. 1, since
both K10 and R2 are the inputs of the XOR gates, these part of the circuit can
be seen as a set of fixed (per clock cycle) Buffers and Inverters. According to the
architecture of our experimental setup, the round key K10 and R2 get available
at the start of the corresponding clock cycle (last encryption round). Therefore,
the computation of the masked S-box (Q), which is definitely longer than two
following XORs, is interrupted by the clock glitch. So, we can assume that the
faulty ciphertext C′ is calculated as

C′ = Q′ ⊕ K10 ⊕ R2. (1)

If we suppose that the faulty S-box output Q′ has a fixed non-uniform distri-
bution when I is fixed and the fault injection intensity is fixed at 50% success
rate, those values of R2 which are corresponding to the 50% faulty executions
should follow a fixed non-uniform distribution. On the other hand, the values of
Q′ and R2 are not independent of each other. As a result, we expect that the
value of Q′ ⊕ R2 follows a fixed non-uniform distribution corresponding to the
value of the fixed I. At last, the distribution of C′ is permuted based on the value
of K10. An example of the distribution of C′ is shown in Fig. 2.

The main idea of the attack is to check the similarity between two faulty
ciphertext distributions, e.g., of two ciphertext bytes, each of which corresponds
to a masked S-box followed by a fixed key addition, i.e., in the last round of
the AES encryption. According to the linear collision in AES [6], the difference
between key bytes equals to the difference between the corresponding fault-free
ciphertext bytes when such a collision occurs.

3.2 Attack Scheme

The attack target is the linear difference ΔK between two bytes of K10, i.e.,
ΔK = Ki

10 ⊕ Kj
10, where i, j = 1, 2, · · · , 16. After guessing the value of ΔK as

ΔKg, the attacker provides one plaintext so that the corresponding ciphertext
satisfies Ci ⊕ Cj = ΔKg. Therefore, if the current key difference guess is cor-
rect, the unmasked input I of the corresponding masked S-boxes collide. Such
a case can be detected by examining the similarity of the distributions of the
corresponding faulty ciphertext bytes. The distributions of the faulty ciphertext
byte for the targeted S-boxes can be collected using Algorithm 1.

On the Power of Fault Sensitivity Analysis 299

Algorithm 1. Collecting the distribution of the faulty ciphertext byte
1: Inputs: A plaintext P , number of executions N , position of the target: j
2: Outputs: The count of all the faulty ciphertext byte: Cnt(i), i = 0, 1, 2 . . . 255.
3: Set the plaintext as P , Cnt(i)← 0 for i = 0, 1, 2 . . . 255
4: Obtain the fault-free ciphertext byte Cj by running the fault-free encryption on P
5: for i = 1 to N do
6: Obtain the j-th byte of the output C′j by running the faulty encryption on P
7: if C′j �= Cj then
8: Cnt(C′j) ← Cnt(C′j) + 1
9: end if

10: end for

Algorithm 2. Attack algorithm (colliding faulty ciphertext distributions)
1: Inputs: Position of the target key bytes: i and j
2: Output: Most probable key difference ΔK = Ki ⊕Kj

3: for ΔK = 0 to 255 do
4: Select randomly plaintext P so that ciphertext bytes Ci ⊕ Cj = ΔK
5: Obtain faulty ciphertext distributions Cnti and Cntj using Algorithm 1
6: Set Cnt′j as the rearranged form of Cntj based on ΔK
7: Cor(ΔK) = ρ(Cnti, Cnt′j)
8: end for
9: return arg max

ΔK
Cor(ΔK)

Given two distributions of the faulty ciphertext bytes Cnti and Cntj , one can
use the current ΔKg = Ci ⊕ Cj to rearrange Cntj as

Cnt′j(i ⊕ ΔKg) = Cntj(i), i = 0, 1, 2 . . .255,

and check the similarity using the correlation coefficient as ρ(Cnti, Cnt′j), where
ρ denotes the calculation of the Pearson product-moment correlation coefficient.
Repeating this procedure for all possible key differences, the ΔKg correspond-
ing to the largest correlation coefficient is expected to be the correct key differ-
ence. For clarification we have provided a pseudo code of the attack shown by
Algorithm 2.

3.3 Practical Results

Results on AES_MAO. The first attack target is the AES core protected
against power analysis attacks using the masked-AND gates [24] in 130nm tech-
nology. In our experiments, the total number of executions to obtain the faulty
ciphertext byte distribution is set to N = 400.2 In order to cover all possi-
ble key byte differences, we collected the distributions for 256 plaintexts which
2 We should mention that N is the total number of executions including faulty and

fault-free ones.

300 A. Moradi et al.

0 64 192 255

0

0.3

0.6

Δ K
g

C
or

re
la

tio
n

Fig. 3. Correlation vs. Key byte difference
for AES_MAO (130nm)

1 100 200 300 400

0

0.3

0.6

Number of executions (× 256)

C
or

re
la

tio
n

Fig. 4. Correlation evolution vs. Number
of executions for AES_MAO (130nm)

correspond to 256 differences between the first two ciphertext bytes. Running
the attack algorithm, which is given by Algorithm 2, led to the results shown
in Fig. 3 where the correct key byte difference can be clearly identified. Fur-
thermore, Fig. 4 shows that 150 × 256 executions of AES_MAO is sufficient to
identify the correct key byte difference. The successful attack experiments have
been also confirmed recovering the difference between other key bytes.

Results on AES_TI. The next target is the AES core in 130nm technol-
ogy realized using the threshold implementation scheme which is a high-order
masking countermeasure based on secret sharing [18]. Even in the presence of
signal glitches, its resistance against power analysis attacks has been theoret-
ically proven [19]. We should emphasize that the threshold implementation is
an algorithmic-level countermeasure which needs to fulfill certain properties in-
cluding correctness, non-completeness, and uniformity. In contrary to [17], our
targeted AES_TI core has been made without considering the later two prop-
erties. This core has been realized by modifying a plain AES core at the gate
level. The non-linear gates are provided by only 2-input AND gates, every sig-
nal is represented by four shares, and finally the AND gates are replaced with
the 4-shared threshold implementation of a 2-input AND gate which is available
in [18]. This can be verified by examining the source code of this core available
at [1].

The attack procedure is the same as the one applied to the AES_MAO core
even with the same number of executions, i.e., 400, to obtain the distribution of
the faulty ciphertext bytes. The attack result on the key byte difference between
the first two key bytes is shown in Fig. 5. The peak corresponding to the correct
key byte difference can be clearly identified. Figure 6 also shows that at around
200 × 256 executions are required to identify the correct key byte difference.

3.4 Observations

Relaxing Fault Requirements. One important observation from experiments
is that the setting of the fault injection success rate is not as strict as we expected.
In our experiments, we could collect the distributions of faulty ciphertext bytes
simultaneously for parallel S-boxes. Due to the difference between the inherent
delay of parallel S-boxes, the fault injection success rates were different from
40% to 60%. Surprisingly, the key difference can still be clearly recovered. In

On the Power of Fault Sensitivity Analysis 301

0 64 192 255

0

0.2

0.4

Δ K
g

C
or

re
la

tio
n

Fig. 5. Correlation vs. Key byte difference
for AES_TI (130nm)

1 100 200 300 400

0

0.2

0.4

Number of executions (× 256)

C
or

re
la

tio
n

Fig. 6. Correlation evolution vs. Number
of executions for AES_TI (130nm)

other words, we found that the distribution of the faulty ciphertext byte is not
very sensitive to the fault injection intensity.

As a result, compared to the one-byte fault injection in the DFA attacks or
the accurate intensity management in the FSA attack, our proposed attack has
the fewest requirements about the fault injection.

Reducing the Number of Executions. In our experiments, we have collected
the distributions for 256 ciphertexts to identify a linear difference between two
key bytes. The attack efficiency regarding to the number of executions of AES can
be easily improved by specifically selecting ciphertexts (plaintexts). For example,
one can collect 16 distributions for the first fault-free ciphertext byte as 0x00,
0x01 . . . 0x0F and 16 distributions for the second fault-free ciphertext byte as
0x00, 0x10 . . . 0xF0, respectively. The combinations of these two groups of 16
distributions already cover all the possible linear key differences. Therefore, with
a delicate selection of the ciphertexts (plaintexts), collecting the distributions for
the 16 selected ciphertexts are enough to identify a key byte difference.

4 Option 2: Colliding Timing Characteristics

This section expresses the second combination of fault sensitivity analysis and
correlation collision attack where the timing characteristics of combinational
circuits like S-boxes are analyzed. In the following the fundamental concepts
which are essential for the attack are explained, and later practical results of the
attack breaking a couple of ASIC AES cores are presented.

4.1 How to Measure the Timing

As explained in [14], when the input of a combinational circuit changes, its
output stops toggling after a certain time (so-called Δt). The maximum value
of Δt for different inputs is known as the longest critical path of the circuit,
and defines the maximum frequency of the clock signal which triggers the flip-
flops providing the input and storing the output of the considered combinational
circuit. Timing characteristics of a circuit are therefore defined as a set of Δt
(
{
Δt1, Δt2, . . . , Δtn

}
), where Δti is the minimum Δt for the given input i.

Let us suppose that the target combinational circuit is a part of a bigger cir-
cuit, e.g., a co-processor, which provides some I/O signals for communication.

302 A. Moradi et al.

If the output of the target combinational circuit is stored into registers which
are triggered by a clock signal that can be controlled from the outside, as shown
in [14], one can steadily shorten the time interval between the input transition
and the output storage (known as setup time) till an incorrect value is stored
into the registers while input i is given to the combinational circuit. The mini-
mum time interval when the considered register stores the correct value can be
concluded to Δti. Note that this procedure is similar to the scheme explained
in Section 3. However, measuring Δt in this case does not deal with the faulty
outputs; once a faulty output is detected, Δti can be concluded.

It should be noted that, because of the environmental noise, it might be
required to repeat the same procedure and shorten the clock glitch period until
the probability of detecting faulty output gets higher than a threshold. Also,
if the target combinational circuit is not a single-bit function and it is possible
to detect which output bit is faulty, one can measure Δti for each output bit
independently.

Therefore, we define the adversary model and define his capabilities in order to
be able to measure Δti of the target combinational circuit for the given input i:

– The adversary has access to and can control the clock signal which trig-
gers the registers providing the input and saving the output of the target
combinational circuit.

– He knows in which clock cycle the target combinational circuit processes the
desired data, e.g., known or guessed input or output.

– He can control the target device in a way that the same input value i is
repeatedly processed by the target combinational circuit during shortening
the time interval of the clock glitch.

– He is equipped with appropriate instruments to shorten the duration of the
clock glitch with suitable accuracy.

4.2 Definitions

Bitwise Capture: BitCapi
b,Δt is the result of a Bernoulli trial whether the

output of the target combinational circuit at bit b is faulty while processing
the input i and when Δt is the time interval of the clock glitch. Correspond-
ingly, pi

b,Δt is defined as the probability of “success” in independently repeated
BitCapi

b,Δt trials.

Capture: Capi
Δt =

∨

b

BitCapi
b,Δt. In other words, Capi

Δt is the same as the

above defined trial regardless of a certain output bit, and is meaningful when
differentiating between different faulty output bits is not possible, e.g., if a circuit
is equipped with a fault detection scheme and prevents the propagation of faulty
results. pi

Δt is also the probability of “success” in independently repeated Capi
Δt

trials.

Time: To represent the timing characteristics of the target combinational cir-
cuit, we define T i

b = Δt; pi
b,Δt ≈ pTH as the time required to compute the

corresponding output bit b when input i is given, where pTH is a threshold for

On the Power of Fault Sensitivity Analysis 303

the probability and is defined based on physical characteristics of the target
circuit and is also based on the maximum probability achieved by shortening
Δt. Accordingly, the time required to complete the computation of all bits when
processing input i is defined as T i = Δt; pi

Δt ≈ pTH .

Remark: Depending on the target device, its architecture, and the role of the
target combinational circuit inside the target device, it might not be possible to
know the input i processed. However, if the output of the target combinational
circuit is accessible, one can make all the above defined terms based on the
fault-free output o, i.e., BitCapo

b,Δt, po
b,Δt, Capo

Δt, po
Δt, T o

b , and T o.

4.3 Attack Scheme

For simplicity let us suppose that the target combinational circuit is an S-box
of the first round of an AES encryption, i.e., Sbox(i ⊕ k), where i is the corre-
sponding input plaintext byte and k the target key byte.

If (bitwise) timing characteristics of an S-box, i.e., T i (T i
b), show a diversity

of Δt depending on input i, one can perform an attack and recover the secret
knowing how the secret k contributes in T i (T i

b). In other words, if the timing
characteristics of an S-box itself regardless of k and prior key addition (⊕) are
known as an extra information or are obtained by profiling using a circuit similar
to the target, one can make a hypothetical leakage function and examine its
similarity to T i (T i

b) for each key guess. A similar approach has been presented
in [14], where the timing characteristics of an AES S-box implementation were
profiled and an attack similar to a correlation power analysis using a HW model
was successfully performed. In fact, a set of Capo

Δt for a specific Δt is used in [14]
to mount the attack at the last round of the AES encryption.

One may also try using information theoretic tools, e.g., mutual information
analysis [9], to relax the leakage model. However, it is necessary to use a suit-
able leakage model that cannot be selected without extra knowledge about the
(timing) characteristics of the target combinational function [25], or several dif-
ferent models must be examined to find a suitable one. It is noteworthy that the
leakages (Capi

Δt) consist of only two values (“fail” and “success”). This causes
probability distributions (used in e.g., mutual information analysis) to be rep-
resented by only two bins in a histogram, and using other schemes to estimate
the probability distributions, e.g., kernel density estimation, in this case leads to
increasing the noise. Here, when using histograms, mutual information will also
be identical to the variance of means.

In contrast to a correlation attack or mutual information analysis using a
leakage model, we apply a correlation collision attack [15] to avoid the necessity
of considering any such model. Here the correlation collision attack compares
the timing characteristics T i (T i

b) of two S-box instances running on two input
sets, each of which is previously XORed by a secret key byte. Suppose that T 1i

and T 2i (or their corresponding bitwise versions) are the timing characteristics
of the S-box when processing Sbox(i⊕k1) and Sbox(i⊕k2) respectively. As stated

304 A. Moradi et al.

Algorithm 3. Correlation Timing Attack (the last round of the AES encryption)
Input: T1o :

(
Δto=0, Δto=1, . . . , Δto=255

)
; o = Sbox(i)⊕ k1

Input: T2o :
(
Δto=0, Δto=1, . . . , Δto=255

)
; o = Sbox(i)⊕ k2

1: for 0 ≤ Δ ≤ 255 do
2: Cor(Δ) = Correlation(T1o, T2o⊕Δ)
3: end for
4: return arg max

Δ
Cor(Δ)

in [15], the aim of a correlation collision attack is to find the linear difference
between k1 and k2, i.e., Δ = k1 ⊕ k2.

This can be extended when attacking the last round of the AES encryption,
thanks to the absence of the MixColumns in the last round. For example, suppose
that T 1o and T 2o are the timing characteristics of the S-box followed by the
key addition when calculating o = Sbox(i) ⊕ k1 and o = Sbox(i) ⊕ k2. Then,
the correlation collision attack can – exactly as in the previous case – recover
Δ = k1⊕k2 comparing T 1o and T 2o for all possible guesses of Δ. For clarification
of the attack scheme see Algorithm 3.

4.4 Practical Results

In all cores of the LSIs 16 instances of the S-box are implemented to perform
the complete SubBytes operation in each clock cycle. According to [3,4], all
cores – except the one supporting a counter mode and the fault-protected one –
realize a round based architecture, i.e., S-boxes and MixColumns are performed
consecutively in each clock cycle except for the last round where MixColumns is
absent. Therefore, extracting the timing characteristics of the S-boxes in the first
9 rounds is not easily possible. So, one needs to inject and play with the width
of the clock glitches in the last round, when the target cores only compute the
SubBytes operation followed by the final key addition and the result is stored
in registers (similar scheme as used in [14]). In addition, one can see from the
design architecture of the cores (see Fig. 5.1 of [3] and Fig. 13.1 of [4]) that the
round key of the last round is already computed in the previous round and is
stored into a register. The glitchy clock at the last round, hence, does not affect
the key scheduling computations.

In the following the results of the attacks on the different cores and different
LSIs are presented. Because of the high number of broken cores, only a subset
of the performed attacks are presented in detail, giving additional information
about the differences to the not mentioned cores as required.

Attacking the Unprotected Cores. We start by showing the results of the
attack on the first AES core of the 130nm chip, namely AES_Comp, whose
S-boxes have been made using a composite field approach. As stated before,
16 separate S-box instances have been implemented which are active at the
same time. Therefore, it is not possible to compare the timing characteristics
of one S-box instance when processing e.g., two values with different key bytes,

On the Power of Fault Sensitivity Analysis 305

6300 5100

0.1

0.7

Δt [ps]

P
ro

ba
bi

lit
y

6300 5100

0.1

0.7

Δt [ps]
P

ro
ba

bi
lit

y

Fig. 7. First 10 po
b=0,Δt curves for S-box

instances no. (left) 0 and (right) 4 of
AES_Comp (130nm)

0 255
5000

6400

Output value

Δt
 [p

s]

0 255
5000

6400

Output value

Δt
 [p

s]

Fig. 8. Bitwise timing characteristics T o
b=0

of S-box instances no. (left) 0 and (right)
4 of AES_Comp (130nm).

that would be an ideal case for a collision timing attack. In contrast, the timing
characteristics of different S-box instances must be compared, which may slightly
vary because of different placement and routing even when being based on the
same netlist.

Since changing the glitchy clock width in our setup requires reseting the
DCM(s), we have collected BitCapo

b,Δt for a specific Δt while random plain-
texts are given to the core. This was repeated shortening Δt by steps of 10ps
and finally exploiting the bitwise timing characteristics T o

b . Figure 7 shows po
b,Δt

of the LSB (i.e., b = 0) for some output byte values of two S-box instances3
extracted from their corresponding bitwise captures (10 000 captures for each
Δt). Also, Fig. 8 presents the bitwise timing characteristics T o

b=0 of these two
S-box instances obtained by defining pTH = 0.1 (as can be seen in Fig. 7). The
diversity of Δt for these two S-boxes shows the dependency between the tim-
ing characteristics and the output values. Performing the attack Algorithm 3 on
T o

b=0 of S-box instance number 0 and all other instances led to recovering all 15
independent relations between the 16 bytes of the last round key; part of the
result is shown in Fig. 9. The attack works the same considering other output
bits to derive T o

b as well as on other LSI chips.
Carefully study of the timing characteristics shown in Fig. 8 revealed that

Δt is much smaller than the other cases when the S-box input is zero, that is
a known issue since the zero-input power model has been defined [10] to mount
CPA attacks on AES S-box leakages. In fact, it is not needed to mount the
collision timing attack in this case, and the key bytes can be recovered observing
T o

b=0 of each S-box instance separately. However, as it is shown later this property
does not hold for the other cores realized by different S-boxes, and mounting our
proposed attack is essential to reveal the secrets.

In order to perform the attack on the cores AES_PPRM1, AES_PPRM3,
AES_Comp_ENC_top, and AES_PKG the same procedures as explained above
have been repeated. As a reference for the timing characteristics and the number
of captures collected to mount the attack on different cores in different LSIs, we
have provided a list shown in Table 1. Attacking the AES_TBL core, where

3 S-box instance numbers start from 0 and are corresponding to ciphertext byte in-
dexes.

306 A. Moradi et al.

0 255
−0.3

0.9
k: 2
Corr: 0.8966

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9
k: 14
Corr: 0.8967

Δk
C

or
re

la
tio

n
0 255

−0.3

0.9
k: 108
Corr: 0.8891

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9 k: 240
Corr: 0.9355

Δk

C
or

re
la

tio
n

Fig. 9. Result of the attack on the last round of AES_Comp (130nm) recovering Δk
between key bytes (from left to right) (0,1), (0,2), (0,3), and (0,4)

0 255

4300

4500

Output value

Δt
 [p

s]

0 255

4300

4500

Output value

Δt
 [p

s]

Fig. 10. Bitwise timing characteristics
T o

b=0 of S-box instances no. (left) 5 and
(right) 6 of AES_MAO (65nm)

0 255
−0.2

0.6 k: 222
Corr: 0.5751

Δk

C
or

re
la

tio
n

0 255
−0.2

0.6
k: 131
Corr: 0.3995

Δk

C
or

re
la

tio
n

Fig. 11. Result of the attack on the last
round of AES_MAO (65nm) recovering Δk
between key bytes (left) (5,6), (right) (5,7)

S-boxes have been realized by look-up tables (case statements), is different to
the aforementioned cores. We illustrate this case when explaining how to mount
the attack on the WDDL and MDPL cores.

Attacking the DPA-Protected Cores. Most of the DPA-protected cores
can be attacked in the same way as the unprotected ones. In Fig. 10 one can
see that even when using the masked AND-gates of the AES_MAO (65nm)
core, the timing characteristics for different outputs still differ. Consequently,
it is possible to extract the relation between the key bytes, which is depicted
in Fig. 11. Interestingly the randomness provided by the masked gates does not
have much impact on the timing characteristics, as shown in Fig. 11, where the
results after obtaining 10 000 captures (the same technique as used to attack the
unprotected cores) while shortening Δt with steps of 25ps are presented.

Attacking the other DPA-protected cores is the same except on those realiz-
ing WDDL and MDPL logic styles. The result of the attack on the AES_WO
core, which is implemented using an Pseudo-RSL [22] logic style, is shown in
Fig. 12 and Fig. 13. Although we have used 10 000 captures for each Δt in steps
of 10ps to attack the AES_WO core, attacking the AES_PR core (which is an-
other realization of Pseudo-RSL) and the AES_TI (which has been discussed in
Section 3.3) required considerably more captures. As stated in Table 1 we have
used 1 000 000 captures for each of these cores to successfully mount the attack.
To the best of our knowledge it is due to the amount of randomness provided

On the Power of Fault Sensitivity Analysis 307

0 255
5400

5900

Output value

Δt
 [p

s]

0 255
5400

5900

Output value
Δt

 [p
s]

Fig. 12. Bitwise timing characteristics
T o

b=1 of S-box instances no. (left) 7 and
(right) 8 of AES_WO (90nm)

0 255
−0.3

0.9 k: 228
Corr: 0.8217

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9 k: 16
Corr: 0.8218

Δk

C
or

re
la

tio
n

Fig. 13. Result of the attack on the last
round of AES_WO (90nm) recovering Δk
between key bytes (left) (7,8), (right) (7,9)

0 255

5700

5780

Output value

Δt
 [p

s]

0 255

5700

5790

Output value

Δt
 [p

s]

Fig. 14. Timing characteristics T o of S-
box instances no. (left) 2 and (right) 3 of
AES_MDPL (65nm)

0 255
−0.3

0.9
k: 98
Corr: 0.8506

Δk

C
or

re
la

tio
n

0 255
−0.3

0.9
k: 87
Corr: 0.8463

Δk

C
or

re
la

tio
n

Fig. 15. Result of the attack on the last
round of AES_MDPL (65nm) recovering Δk
between key bytes (left) (2,3), (right) (2,6)

by the DPA countermeasures. For instance, third-order masking is used in the
AES_TI core compared to first-order masking in AES_MAO.

The AES_WDDL and AES_MDPL cores require an slightly adjusted ap-
proach, since they need two clock cycles per round because of the used master-
slave flip-flops, i.e., four flip-flops to store a single bit value. Also, an injected
fault by a clock glitch at the evaluation phase can only lead to a bit flip from
1 to 0, not vice versa, because of the pre-discharge phase of both WDDL and
MDPL styles. This issue has been also addressed in [13] where a successful at-
tack is performed on an AES_WDDL core. Interestingly, we have seen – for
reasons unknown to us – the same behavior when attacking the AES_TBL core.
Therefore, bitwise timing characteristics T o

b does not provide any information for
those output values o in which bit b is zero. Our solution is to avoid using bit-
wise characteristics, and apply the attack on timing characteristics T o, e.g., those
shown in Fig. 14, which are of the AES_MDPL (65nm) core. Two attack results
are also shown in Fig. 15. It should be noted that, to attack the AES_MDPL
and AES_WDDL cores, we only used 10 000 captures for each Δt with steps of
5ps. On the other hand, a successful attack on the AES_TBL required around
1 000 000 captures, which might be because of marginal differences between the
critical paths of the circuit realizing the look-up table.

We should emphasize that this attack has been successfully performed on all
AES cores including one equipped by a fault attack countermeasure [23]. Because

308 A. Moradi et al.

of the page restriction the details of the attack on the other cores are left for the
extended version which can be found in [16].

Difficulties. In the following some of the difficulties that we experienced during
our practical investigations are explained in detail.

– As stated in [3] and [4], each core has its own clock tree which had a strong
impact on glitchy clocks. The capacitive and resistive features of the clock
line of the LSIs, which is supplied by the control FPGA, changed the glitchy
clock shape and modified the situation whether the registers are triggered
two times, or if one of the positive edges is filtered by the clock tree elements.
Therefore, we had to put different capacitors and resistors in the SASEBO-R
board to change the rising and falling slopes of the clock signal to reach the
desired situation.

– Since the temperature has an effect on the critical path and the speed of the
ASICs, some values are given in Table 4.7 of [3], we not only kept the room
temperature constant during capturing, but also kept the board and the LSIs
in different temperatures while playing with capacitances and resistances to
solve the problem mentioned above.

– Since DCM outputs have an increased jitter when they are used to multiply
the clock inputs, the glitchy clock width also had significant jitter that made
the capturing process noisy. The situation got worse when we had to cascade
two DCMs for some cores, especially in 65nm technology, to reach the desired
Δt. In this case, the second DCM often could not get locked because of the
high jitter of the first DCM. So, we had to provide another circuit controlled
by the PC to automatically reset the control FPGA (in fact the DCMs) until
the DCMs get locked and provide the requested high frequencies.

– Since we have required high amounts of captures, e.g., 1 000 000, for different
Δt values to successfully mount the attacks, we have developed a special
design for the control FPGA to speed up the capturing process. Our control
FPGA communicates with the target LSI, makes the glitchy clock on the
desired clock cycle, and finally after performing a couple of capturing process
sends the result back to the PC. In this way we could efficiently increase the
speed of the capturing up to couple of thousands per second.

– According to [3] and [4], the clock signal of the interface circuit of the LSIs is
separated from the core clocks. So, the glitchy clock does not appear on the
interface circuit which makes the attacks easier. It might be a challenging
case when the interface circuit sees the glitches, and the control flow of the
target core gets infected.

5 Conclusions

We have presented two collision attacks which utilize certain kinds of side-
channel leakage which is made possible by the fault injection method of [14]. One
is a major improvement of the attack idea of [14] since by applying techniques
of correlation-based DPAs to find collisions it does not require any knowledge

On the Power of Fault Sensitivity Analysis 309

about the characteristics of the target combinational circuit. The other one ex-
ploits a newly observed leakage which is the fact that given a fixed fault intensity
the distribution of the resulting faulty ciphertext bytes is not completely random
but data dependent.

It is indicated in [14] that while masking does not prevent DFA attacks, it may
actually provide security against FSA-based attacks because of the randomized
inputs of the combinational functions. However, by breaking all DPA-protected
cores of the mentioned ASICs we have shown that randomizing countermeasures
itself cannot prevent data-dependent timing of the combinational circuit, and
they therefore remain vulnerable to the attacks introduced here.

Using the attack exploiting the faulty ciphertext byte distributions two DPA
protected cores could be broken. Furthermore, using the attack focusing on the
timing of the combinational circuits all SASEBO LSI2 and LSI3 cores could be
broken, including the one applying an algorithmic fault detection scheme. In
short, the results shown in this work imply the need for a special unit in the –
especially side-channel protected – designs in order to detect the clock glitches
to thwart such kind of attacks.

Acknowledgment. The authors would like to thank Akashi Satoh and the
Research Center for Information Security (RCIS) of Japan for the prompt and
kind help in obtaining SASEBOs and cryptographic LSIs. The authors of the
Ruhr University of Bochum (Germany) have been supported in part by the Euro-
pean Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II. The authors of the University of Electro-Communications (Japan)
have been supported by the Strategic International Cooperative Program (Joint
Research Type), Japan Science and Technology Agency.

References

1. Cryptographic Circuits with Logic Level Countermeasures against DPA. Informa-
tion and Physical Security Research Group, YOKOHAMA National University,
http://ipsr.ynu.ac.jp/circuit/

2. Side-channel Attack Standard Evaluation Board (SASEBO-R). Further infor-
mation are available via, http://staff.aist.go.jp/akashi.satoh/SASEBO/en/
board/sasebo-r.html

3. ISO/IEC 18033-3 Standard Cryptographic LSI – with Side Channel Attack Coun-
termeasures – Specification, ver 1.0 (2009), http://staff.aist.go.jp/akashi.
satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf

4. Standard Cryptographic LSI Specification – Countermeasures against Side
Channel Attacks (65nm) – Specification, ver 0.9 (2010), http://staff.aist.
go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_
English.pdf

5. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

6. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

http://ipsr.ynu.ac.jp/circuit/
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-r.html
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-r.html
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf
http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf

310 A. Moradi et al.

7. Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy-clock
generator and its application to safe-error attack. In: COSADE 2011, pp. 175–182
(2011)

8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

10. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

11. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Li, Y., Ohta, K., Sakiyama, K.: Revisit Fault Sensitivity Analysis on WDDL-AES.
In: HOST 2010, pp. 148–153. IEEE Computer Society, Los Alamitos (2010)

14. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
Sensitivity Analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010); The extended version is avail-
able on ePrint Archive, Report 2010/297, http://eprint.iacr.org/

16. Moradi, A., Mischke, O., Paar, C.: Collision Timing Attack when Breaking 42 AES
ASIC Cores. Cryptology ePrint Archive, Report 2011/162 (2011), http://eprint.
iacr.org/

17. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

18. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

20. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

21. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

22. Saeki, M., Suzuki, D., Shimizu, K., Satoh, A.: A Design Methodology for a DPA-
Resistant Cryptographic LSI with RSL Techniques. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 189–204. Springer, Heidelberg (2009)

23. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent Er-
ror Detection Scheme for AES Hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

On the Power of Fault Sensitivity Analysis 311

24. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. Cryptology ePrint Archive, Report 2003/236 (2003), http://
eprint.iacr.org/

25. Veyrat-Charvillon, N., Standaert, F.-X.: Generic Side-Channel Distinguishers:
Improvements and Limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 354–372. Springer, Heidelberg (2011); The extended version is avail-
able on ePrint Archive, Report 2011/149, http://eprint.iacr.org/

26. XILINX. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Technical re-
port version 4. 2 (2007), http://www.xilinx.com/support/documentation/user_
guides/ug012.pdf

Appendix

Table 1. Specification of AES cores of the three targeted LSIs including the Δt ranges
and the number of captures used to mount the attacks

IP core Description
LSI2 130nm LSI2 90nm LSI3 65nm

Δt range No. of Δt range No. of Δt range No. of
[ps] Captures [ps] Captures [ps] Captures

AES_Comp
composite field 6450 5320 3650
S-box Δ : 10 10 000 Δ : 10 10 000 Δ : 10 10 000

5000 5130 3370

AES_TBL
table look-up 5475 3960 3570
S-box by Δ : 25 1 000 000 Δ : 20 1 000 000 Δ : 10 1 000 000
case statement 4900 3550 3420

AES_PPRM1
S-box by 11350 6135 5325
1-stage Δ : 25 10 000 Δ : 20 10 000 Δ : 25 10 000
AND-XOR 7775 5555 5000

AES_PPRM3
S-box by 6425 5230 3650
3-stage Δ : 25 10 000 Δ : 10 10 000 Δ : 10 10 000
AND-XOR 5150 5130 3420

AES_Comp
ENC_top

composite field 6325 5200 3700
S-box, only Δ : 25 10 000 Δ : 10 10 000 Δ : 10 10 000
encryption 5100 5130 3410

AES_PKG
composite field 6325 5360 3850
S-box, precomp. Δ : 25 10 000 Δ : 10 10 000 Δ : 10 10 000
roundkeys 5100 5130 3370

AES_MAO
DPA count. 8475 5900 4500
by Masked Δ : 25 10 000 Δ : 5 10 000 Δ : 25 10 000
And Operation 6250 5850 4300

AES_MDPL
DPA count. 12825 9350 5800
by MDPL Δ : 25 10 000 Δ : 25 10 000 Δ : 5 10 000
logic style 10850 8050 5260

AES_TI
DPA count. 10860 5900 6340
by Threshold Δ : 20 1 000 000 Δ : 5 1 000 000 Δ : 20 1 000 000
Implementation 9800 5850 5940

AES_WDDL
DPA count. 6750 5250 3835
by WDDL Δ : 10 10 000 Δ : 5 50 000 Δ : 5 10 000
logic style 5730 5150 3675

AES_PR
DPA count. 31685 14400 6650
by pseudo RSL Δ : 10 1 000 000 Δ : 20 1 000 000 Δ : 25 1 000 000
logic style 31055 13840 6150

AES_WO
DPA count. 7575 5910 3900
by pseudo RSL Δ : 25 10 000 Δ : 10 10 000 Δ : 25 10 000
(evaluation) 6475 5430 3600

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.xilinx.com/support/documentation/user_guides/ug012.pdf
http://www.xilinx.com/support/documentation/user_guides/ug012.pdf

	On the Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting
	Introduction
	Preliminaries
	Fault Sensitivity Analysis
	Correlation Collision Attack
	Combinations
	Experimental Setup

	Option 1: Colliding Faulty Ciphertext Distributions
	Model and Attack Concept
	Attack Scheme
	Practical Results
	Observations

	Option 2: Colliding Timing Characteristics
	How to Measure the Timing
	Definitions
	Attack Scheme
	Practical Results

	Conclusions

