Towards a Mechanism for Incentivating Privacy

Piero A. Bonatti, Marco Faella, Clemente Galdi, and Luigi Sauro

Universita di Napoli “Federico 11"

Abstract. The economic value of rich user profiles is an incentive for providers
to collect more personal (and sensitive) information than the minimum amount
needed for deploying services effectively and securely. With a game-theoretic
approach, we show that provider competition can reduce such information re-
quests. The key is a suitable mechanism, roughly reminiscent of a Vickrey auc-
tion subject to integrity constraints. We show that our mechanism induces rational
providers to ask exactly for the user information strictly necessary to deliver their
service effectively and securely. In this framework, maximal attribute disclosures
become more difficult to achieve.

1 Introduction

Web sites frequently ask their users for personal, sensitive information before granting
access to their full functionalities. For example, some of the most popular web sites and
services for e-commerce and social networking collect user name, birth date, gender,
detailed address, credit card information, and—in some cases—even sex preferences,
and political and religious views. Some of these fields can be easily aggregated to form
quasi identifiers [[J419116], that is, combinations of attributes such that the probability
of their matching a single person is high. (i.e., the values of such attributes uniquely
identify an individual with high probability). Releasing fake data is generally not an
appropriate or sufficient privacy-preserving measure, as the correctness of some fields
may be essential for correct functionality (e.g. credit card information for a purchase
and home address for parcel delivery). The ongoing deployment of digital IDs and other
cryptographically verifiable documents will further exacerbate this problem.

The above information requests are not parsimonious, in general. Rich user pro-
files have a significant economic value that constitutes an incentive for increasing the
amount of user information collected (and for its disclosure to third parties). Therefore,
providers are encouraged to ask for more information than the minimum required to
deploy a given service effectively and securely.

Competition may contrast this trend. Indeed, a significant number of users have ex-
pressed concern over privacy during online interactions (e.g. user complaints have al-
ready influenced Facebook’s privacy policy and services), and analysts say that privacy
may become a factor of competition [S17L9].

In this paper we take these analyses seriously and move the first steps towards mech-
anisms that may increase privacy by exploiting competition between providers. More
precisely, such mechanisms should encourage providers to be truthful, that is, to ask
nothing more than the minimum information sets necessary for correct and secure

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 472]488] 2011.
© Springer-Verlag Berlin Heidelberg 2011



Towards a Mechanism for Incentivating Privacy 473

service deployment. Moreover, such approaches should supply users with all of the al-
ternative ways of fulfilling the provider’s policy, so that users can choose the alternative
that they prefer from a privacy viewpoint.

Setting up a widely applicable mechanism of this kind is, of course, a very complex
task. Open questions include at least the following: How should users and providers
interact? (E.g. direct interaction vs. mediation by trusted third parties; single interac-
tions vs. prolonged negotiations.) What is the interplay of information disclosure and
nonfunctional service properties such as cost and quality of service? In particular, can
providers compensate for more invasive information requests with such nonfunctional
properties? Can the truthful mechanisms developed by economists be adapted to the
scenarios described so far?

A complete answer to all of these questions lies beyond the scope of this paper (and
any single paper of standard size). As a first step, here we focus on the last of the above
questions, which concerns an essential prerequisite for the mechanisms of our interest
and, more generally, for all the transactions where “payments” consist in user informa-
tion disclosures. In these application scenarios, the payment means is naturally discrete
and partially ordered, either in quantitative terms (e.g., according to set inclusion), or
in qualitative terms (e.g., based on sensitivity). On the contrary, all standard mecha-
nisms developed in microeconomics are based on totally ordered payment domains,
e.g., money. Therefore, reconstructing such mechanisms in order to fulfill the require-
ments of our scenarios is a problem of general interest—and requires nontrivial changes
in the underlying mathematics, as discussed below.

The mechanism studied in this paper is analogous to an auction: The user is the
auctioneer; the providers “buy” the user’s preference and “pay” for it by reducing the
amount of (economically valuable) user information requested. The auction mechanism
should be fruthful, that is, information requested by rational selfish providers should
match what is actually needed to deploy the service correctly and securely.

Perhaps, the most famous truthful auction mechanism is the second-price auction
introduced by Vickrey [20]. It is a “one-shot” mechanism (bidders submit their offers
in parallel, then the auctioneer evaluates them); the best offer “wins”, and the price
payed is the second best offer. As we anticipated, some of the main technical differences
between Vickrey’s mechanism and ours concern the range of bids and utility functions,
that here is discrete and partially ordered rather than continuous and totally ordered. Of
course, in a partial ordering it is not immediately clear how to generalize the notion of
second price.

Even if a user may use a same service multiple times, a one-shot mechanism without
memory of previous decisions may be appropriate in many cases. In particular, consider
any transaction with no monetary costs, that is, where the only “cost” for the user consist
of the personal information released. Usually, after such information has been disclosed
and the user’s profile created, subsequent service usage requires no further disclosures,
so (from a privacy perspective) after the first information release the service can be used
for free. Consequently, there is no need for further auctions until services change.

The paper is organized as follows: SectionP2lintroduces the formal framework and de-
scribes its formal properties. Related work is discussed in Section [Bl Section M



474 P.A. Bonatti et al.

concludes the paper with a final discussion of the results and some interesting direc-
tions for further work. Proofs can be found in the appendix.

2 Formal Framework

The formal framework is relative to an arbitrary but fixed (implicit) service of interest to
the user. The set of agents A is identified with an initial segment of the natural numbers:
A =1{0,1,2, ,N}. The user is represented by 0 and the providers by 1 < i < N. We
assume that the services deployed by the providers are all equivalent from the user’s
perspective. The set of information items that can be requested and released before ser-

vice access is C = {c¢;, ,c;}. By analogy with trust negotiation frameworks [2/21122]],
information items will be sometimes called credentials. The powerset of C is denoted
by Z(C) .

Credential sets may have different sensitivity. The sensitivity order is modelled with
a strict partial order <. When a credential set r, is more sensitive than a credential set ry,
we write r; < rp. Let rj < rp iff either r; < rp or r; = r,. We assume that r; C r, implies
r1 < rp (intuitively, by enlarging information sets, their sensitivity can only increase).

Several concepts, including policies, will be based on thresholds over #2(C), that is,
sets of sets of credentials 8 € 2(C) such that 8 # (0 and for all distinct r, ¥’ € 6, r L r'.
O denotes the set of all thresholds over Z(C).

The user’s policy is a threshold pol, € @. Intuitively, pol, represents the maximal sets
of information items that the user is willing to disclose to access the service. Formally,
arequest r C C is admissible iff Ar" € pol, : r C r’; we denote with adm(pol,)) the set
of admissible requests.

Example 1. Suppose pol, = {{login, passw}, {card num, exp date}} This policy means
that the user is willing to disclose either her login-password pair or her credit card num-
ber and expiration date. A request for the credit card number alone is admissible, too, as
{card num} is a subset of the second element of pol, and hence {card num} € adm(pol,).
On the contrary, {login, card num} is not admissible, because it is not contained in any
element of pol,,. O

Symmetrically, each provider i has a policy pol; € @ that encodes the minimal (alter-
native) sets of information items that suffice to deliver the service securely and effec-
tively. Formally, a credential set » C C fulfills pol; (and grants access to the service) iff
ar’ € pol; : r 2 r'; in the following ful(pol,) is the set of all » C C that fulfill pol;. The
policy profile is the vector pol = {(pol,, ,poly).

A provider i may decide to ask users for more information than what is prescribed
by pol;; the actual information request is called a strategy and corresponds to what is
traditionally called policy in standard access control frameworks (because it determines
which conditions must be fulfilled to access the service). Formally, a strategy profile for
pol is any vector req = (req;, ,reqy) such that (i) req; € 0, and (ii) req; C ful(pol;) .

Each strategy reg; is the information request that provider i submits to the user. Each
credential set r € req; is an alternative way of fulfilling i’s request, that is, the user must
release a set of credentials ' € ful(reg;) in order to access the service deployed by i.
The requests of provider i are required (by the second condition above) to fulfill the



Towards a Mechanism for Incentivating Privacy 475

minimal requirements imposed by pol;. Therefore the user’s response r’ is guaranteed
to satisfy pol;, too. Note that req; might omit some ways of accessing the service. That
is, for some r € pol; there may be no v’ € req; such that #* 2 r. In this way, a provider
may force the user to disclose credentials that are of greater interest for the provider.

Example 2. With reference to Example [I a provider that can technically support
both account-based and pay-per-use access would have the policy: pol,
= {{login, passw}, {card num, exp date}} The two members of pol; represent the two
minimal information sets that need to be collected in order to grant the service.
The request of provider 1 may in general be different. For instance, if req, =
{{card num, exp date, birth date}}, the provider is trying to (i) force the user to dis-
close her credit card information rather than her account information, and (ii) obtain
the user’s birth date, which is not strictly necessary to service delivery. Note that the
only element of req, is a superset of the second element of pol,, therefore the re-
quest fulfills pol,. However, it is not admissible w.r.t. pol,. Now suppose that req;, =
{{login, passw}, {card num, exp date, birth date}} In this case, due to the additional al-
ternative {login, passw}, req, is admissible for pol; and fulfills pol,. The user can release
the set {login, passw} and access the service. |

A strategy req; is truthful iff req; = pol;, that is, the provider’s requests match the actual
minimal requirements for secure and effective service delivery.

Finally, each agent i is associated to a preference relation <;. We assume that < is
< (that is, the user’s goal is minimizing the sensitivity of disclosed information), while
for all providers i, <; can be either < or C. In the former case, i’s goal is maximizing
the sensitivity of the information acquired from usersﬂ while in the latter case i’s goal

is maximizing the amount of such information. Let < be the vector (<o, , <y).

Now a (full) profile is a triple m = (pol, req, 2) where pol is a policy profile and req
a strategy profile for pol. The set of all full profiles will be denoted by /7.

2.1 Selection and Response Mechanism

We need preliminary definitions. The set of optimal admissible requests in a profile &
is:
N
opt(;r) = min < [U req; N adm(poly)

J=1

s

where min<(X) denotes the set of minimal elements of X according to <, that is,
min<(X)={re X |VreX,r £r}.

The user prefers those providers that make minimal information requests. Formally,
let the provider i be a candidate winner in 7 iff opt(r) N req; # @ The set of candidate
winners is denoted by cw(r).

!The rationale is that information value is often correlated with sensitivity. For simplicity, in
this first paper we assume a shared (objective) measure of sensitivity — e.g. based on statistics
about the identification power of attribute aggregates, cf. quasi-identifiers [[7] — so that < may
be regarded as common knowledge. Generalizations are discussed in Sec. dl



476 P.A. Bonatti et al.

Each candidate winner i is associated to a set of possible responses, res(r, i). Possible
responses are credential sets that must satisfy both the user’s policy and the provider’s
request, that is, for all r € res(nm, i), r € adm(poly) N ful(req;) . Different specific def-
initions of res(r, i) yield different properties in terms of robustness (i.e., lack of un-
necessary transaction failures) and amount of information released. Before discussing
the alternatives, let us fix the decision making process (provider selection and response
selection), consisting of two steps:

1. choose a provider i € cw(r)
2. choose a response r € res(, i).

If res(m, i) = 0, then the transaction fails. To simplify the discussion, let us assume that
the above choices are made at random with uniform probability (different distributions
can be adopted, though).

So far, the framework is similar to an auction with some extra constraints posed
by policies. In Vickrey’s auctions, truthfulness is achieved by setting the price to the
second best offer. In this framework, a direct counterpart of this idea consists in defining
res(m, i) as the set of best requests made by all the providers j # i. In order to formalize
this idea we need a few more auxiliary definitions. First, let opt ;(7) denote the best
admissible requests of the providers j # i

i
opt (7)) = min <( U req; N adm(pol)

1<j<N

Then, let reso(r, i) be the set of all the best admissible requests of the providers j # i
that satisfy i’s request, that is: reso(r, i) = opt ;(m) N ful(req;)

By setting res(m, i) = reso(r, i) one obtains a mechanism that easily leads to failures,
because the requests of the winners might not fulfill each other.

Example 3. Suppose that the user’s policy permits the simultaneous disclosure
of her credit card number (card num), its security code (sec code), user
name (name), and birth date (birth date), ie., poly = {{card num,sec code,
name, birth date}}. Let the requests of providers 1 and 2 be req, = {{card num, name,
sec code}} and req, = {{card num, name, birth date}}, respectively. If req, and req, are
not comparable with respect to <, then both requests are <-minimal and admissible, so
the set of candidate winners is cw(r) = {1, 2}. However, the request of provider 1 does
not fulfill the request of provider 2 and viceversa. Then resy(r, 1) = reso(r,2) = @ and
the transaction fails no matter which of the two providers is chosen. O

This problem can be mitigated by adding to the pool of replies the largest admissible
requests, that is, the members of pol,. Let

res)(m,i) = min <(opt () U poly) N ful(req;),
resy(m, i) = (opt () U poly) N ful(req;)

The first definition (res; ) still leads to a failures; for instance, in Example[3] it is equiva-
lent to resy because min<(opt ;(7r) Upoly) = opt ;(n), fori = 1,2. The second definition



Towards a Mechanism for Incentivating Privacy 477

(res) does not lead to any failure in Example B} however, the user has to disclose
all releasable credentials (card num, sec code, name, birth date). In general, res,(x, i)
contains (at least) all the elements of pol that cover some request of i, therefore some
maximal disclosable set of credentials can always be released with probability greater
than 0. Then we move over to a more parsimonious definition (in terms of maximal
disclosures). The idea consists in “interpolating” intermediate requests between the op-
timal requests of all j # i. Such interpolation constitutes a “vault” above reg;, from
which possible responses can be selected. Formally, let

vault(rr,i) = max c{r C C | r € adm(poly) NNV € opt () ' 471}
In Example 3l assuming for simplicity that < equals C, the vaults are

vault(n, 1) = vault(r,2) =
{ {card num, name, sec code}, {sec code,name, birth date},

{card num, sec code, birth date}, {card num,name, birth date} }

They contain the providers’ requests, as well as elements that do not fulfill them. There-
fore responses should consist of the vault elements that cover some optimal request
of i:

res(m, i) = vault(n, i) N ful(opt(n) N req;)

Compare this definition with the standard second price approach: There, the winner
pays the minimum price that is not worse (i.e., smaller) than any other offer; analo-
gously, in our framework, the winner gets a maximal response that is not worse (i.e.,
more sensitive) than any other offer, and satisfies both the user’s policy and the winner’s
request.

We are going to study in depth the framework based on this definition. Before starting
its formal analysis, note that in the case of Example 3] res(n, i) = req; (i = 1,2), that
is, the selected provider receives nothing more than what it asked for (as opposed to
what happens with res,). In general, however, the user may have to release more than
what the winning provider asks for. In general, this is the price to pay for truthfulness.
At the end of this section we will characterize a wide class of scenarios in which no
unnecessary information is disclosed.

The first formal property of the definition based on vaults concerns its robustness:
Unlike resy and resy, it introduces no unnecessary failures. In other words, whenever
some request is admissible (equivalently, cw(rr) # @), all candidate winners can be given
a response:

Theorem 1. [f there exist a provider j and a request r € req; such that r € adm(poly),
then for all i € cw(n), res(m, i) # 0.

It is easy to verify that a similar property holds for res,. So the second formal property
of interest concerns a comparison of the two robust strategies res and res, with respect
to the amount of credentials potentially released. It can be shown that res is generally
more parsimonious than res,:

Theorem 2. For all r € res(n, i) there exists ' € res,(m, i) such thatr C r'.



478 P.A. Bonatti et al.

Next we investigate the effectiveness of the provider selection mechanism in reducing
the amount of information disclosed in the worst case. A first question related to this
issue is: Under which circumstances can a maximal releasable set of credentials (i.e., a
member of pol) be disclosed?

Theorem 3. Let r € pol, r € res(n, i) if and only if there exists x € (opt(r) Nreq;) such
that x C r and for all the other providers j # i and for all v’ € req, it holds r' £ r.

Note thatif 7 C r, then 7’ « r implies ¥ = r. Then Theorem[3|says that r can be released
to i if either there is no competition within the option r (i.e., the other providers’ requests
are not compatible with r), or the competitors ask exactly for . Consequently, it appears
that competition makes maximal disclosures more difficult to achieve systematically, at
least in the absence of detailed information about the user’s policy.

Another interesting, related problem is characterizing the circumstances under which
the user may have to release all disclosable credentials at once (as it may happen in the
formal trust negotiation frameworks studied in the literature).

Corollary 1. Assume that i makes an admissible request (req; N adm(poly) # ). Then
Urepoi, ' can be disclosed to provider i iff the following conditions hold: (i) pol, = {r},
and (i) r € req; for all providers j # i such that req; N adm(pol,) # 0.

According to the first condition in the above corollary, if [po/y| > 1, then it is impossible
to release (J,epo, - The reason is clear: whenever [poly| > 1, the user’s policy encodes
some integrity constraints that forbid the disclosure of arbitrary unions of disclosable
credentials. For example, if poly, = {{birthday}, {address}} then both birth date and
address can be separately disclosed, but their union is considered too sensitive to be
released. Now suppose that |pol,| = 1. Condition 2 says that either i has no competitors
(no other provider j makes any admissible request), or i’s competitors all ask for r
(which is unlikely in practice unless pol,, is public). This shows how competition helps
in reducing complete credential disclosures.

Example 4. Suppose that a user is willing to execute payments either by using her
credit card or by bank transfer. In the first case she permits the simultaneous dis-
closure of her credit card number (card num) and its security code (sec code). For
the latter payment form, she is willing to provide the unique ID (id) associated to
the bank transfer and her own bank account information (acc info). Formally pol, =
{{card num, sec code}, {id, acc info}}. The user can select among three providers for
executing a given payment whose requests are, respectively: req; = {{card num}},
req, = {{card num},{id}}, req; = {{card num,sec code}}. In such context, there is
clear competition among all servers since everyone allows credit card payments. Server
1 and 2 only require card num while server 3 requires both card num and sec code.
So, in a parsimonious selection, the user would prefer server 1 or 2. For the second
payment method there is no competition at all. Indeed only server 2 allows bank trans-
fers and requires the unique transaction identifier in order to accept the payment. Let
7 be a profile describing such a scenario. The set of optimal admissible requests is
opt(r) = min ¢( Uj}/:l req; N adm(poly)) = {{card num},{id}}. Then the set of candi-
date winners is cw(mr) = {1,2}. Let us focus on server 1. The set of optimal admissible
requests made by all providers except 1 is opt (1) = {{card num},{id}}. Then the



Towards a Mechanism for Incentivating Privacy 479

vault for provider 1—i.e., the maximal subsets of credentials that are admissible for
the client and do not cover optimal requests made by other servers—is vault(r, 1) =
{{card num}, {sec code}, {id}, {acc info}}. Note that the vault contains no elements of
poly, because provider 1 competes with provider 2 (whose request {card num} ex-
punges {card num, sec code} from the vault). Finally, the set of possible responses for
server 1 are the members of vault(n, 1) that satisfy the server’s requests, i.e., res(m, 1) =
{{card num}}. Similarly, for provider 2 we have opt ,(n) = {{card num}}, vault(rm,2) =
{{card num}, {sec code}, {id, acc info}}, and res(n,2) = {{card num}, {id, acc info}}.
Thus, when different servers compete within a specific element of pol,, (here,
{card num, sec code}), such element is not entirely disclosed to any server. On the other
hand, if exactly one server makes a request compatible with some element in r € pol,
i.e., if there is no competition within r (r = {id, acc info} in the example), then r is fully
disclosed with nonzero probability. O

2.2 Rational Strategies

We are left to characterize the strategies adopted by ideally rational providers. We con-
sider two kinds of providers: Providers of the first kind are mainly interested in at-
tracting new customers, i.e. their primary goal is maximizing the probability of being
selected (or probability of winning) pw(x, i), where pw(r,i) = 1/|cw(n)| if i € cw(n),
and pw(r,i) = 0 otherwise. As a secondary goal, these providers prefer those strate-
gies that better meet their preference <;. Providers of the second kind invert the above
priorities. A new player in a given application domain is likely to be a player of the
first kind. Similarly, providers whose main income is based on advertisement are likely
to be providers of the first kind. On the contrary, when the utility of service usage is
dominated by the value of user profiles, providers should be expected to be agents of
the second kind.

In order to formalize the perfect strategies for these providers we need some auxiliary
notions. First, one needs to compare different responses w.r.t. provider preferences. For
this purpose, <; should be extended from credential sets to sets of credential sets (i.e.,
the range of res).

Definition 1. Forall p,p’ ¢ P(C), letp <I p’ iff

1. forallr € p, there exists ' € p’ such thatr <; ¥, and
2. forallY ep’ andrep, v 4 r.

In other words p’ is preferable to p if for all possible responses in p there exists an
equally preferred or better response in p’ (according to i’s preferences) and none of the
responses in p’ is less preferable than any response in p.

Next, we need a handy way of replacing the strategy of an agent: For all strategy
profiles req and all providers 1 <i < N, let

reqi < req’]l = (req,, ,req; ;,req’,req..1, ,reqy),

and for all profiles 7 € 17, let

n[i « req’] = (pol, req[i « req’], 2)



480 P.A. Bonatti et al.

Finally, let pol € @ be an arbitrary but fixed policy. The set of profiles where pol; = pol
is denoted by 171’;0[. A strategy for pol is any req € O such that for all r € req, r € ful(pol).
Now the optimal strategies for the two kinds of agents can be formalized.

Definition 2. A strategy req for pol is a dominant attraction strategy for i with respect
to pol iff forall € IT! or

1. pw(m, i) < pw(nli « reql,i), and
2. ifpw(m, i) = pw(nli « req), i) then res(n, i) X} res(n[i < req],i).

Definition 3. A strategy req for pol is a dominant investigation strategy for i with re-
spect to pol iff for all m € IT'

pol’

1. res(m,i) <7 res(n[i « reql, i), and
2. ifres(nili « reql,i) = res(m,i) then pw(r,i) < pw(nli « req],i).

A few explanations are in order here. The universal quantification over H]io ;» whose only
invariant is pol; = pol, means that strategy req is optimal w.r.t. all the other possible
strategies reg; that might be adopted by i, and this holds in all possible contexts (i.e., no
matter what the policies and strategies of the other agents are). Our mechanism yields
the desired result: the truthful strategy req = pol is the best strategy a provider can
adopt, under both priorities.

Theorem 4. For all pol € O and all providers i, the unique dominant attraction strategy
for iw.rt. polis pol itself.

Theorem 5. For all pol € O and all providers i, the unique dominant investigation
strategy for i w.r.t. pol is pol itself.

In game-theoretic terms, the previous two theorems prove that being truthful is a domi-
nant strategy equilibrium (DSE) [13]], i.e., no matter what the other agents’ policies and
strategies are, being truthful is always the best response. Every DSE is in particular a
Nash equilibrium.

One may wonder whether gaining information on the behavior of the other agents
could allow a provider to increase either its winning probability or the amount of
credentials received from the client. The answer is negative, regardless of the extra
information available to the provider. Indeed, any gained information corresponds to
restricting the set of possible profiles ]7 i , in the definition of dominant attraction (resp.,
investigation) strategy (Definition 2] andB], respectively). Clearly, by applying any such
restriction, the set of dominant attraction (resp., investigation) strategies may only in-
crease. However, since any pair of dominant strategies dominate each other, it is straight-
forward to see from Definition[2]and 3] that all dominant strategies give rise to the same
probability of winning and the same response from the client.

The presence of rational (and hence truthful) providers may induce minimal disclo-
sures in a framework that, in general, releases to providers more information than what
they ask for. For simplicity, we analyze this issue in scenarios where all providers have
the same policy. In practice, this assumption is naturally satisfied when provider poli-
cies are determined by the same technological constraints—for example, all providers
supporting VISA credit card payments must provide VISA’s servers with the same
information for credit card validation (as in Example[6]below).



Towards a Mechanism for Incentivating Privacy 481

Theorem 6. If all providers have the same policy and there are two truthful providers
i and j, then res(m, i) = res(n, j) = req; N adm(pol,) € pol,.

In informal terms, the above theorem ensures that under the uniform policy hypothe-
sis, rational servers are given only elements of their policy, that is, some of the minimal
possible credential sets that grant access to the service. Consider the following scenario,
for example. It is inspired by real flight reservation portals. Kayak and Momondo ask
for no information; tickets are purchased directly from airline companies. On the con-
trary, eDreams asks for a rich user profile that is then used to make a request to airline
companies. Note that eDream user profiles comprise attributes that are not mandatory
for airline companies. The following is a formalization of this scenario:

Example 5. Assume that pol, = pol, = pol; = {0}, req, = req, = {0}, and req; =
{{name, address, phone num, email}}. Note that providers 1 and 2 are truthful and
provider 3 is not. Clearly, only providers 1 and 2 are candidate winners. The response is
{0}, that is, the user releases no information. Note that the same result is obtained when
poly # {0} (e.g., pol; = reqy); thus, in future work, it may be interesting to relax the
hypothesis of Theorem O

Moreover, if all policies are the same and there is at least one rational (truthful) server,
then the other servers cannot receive more information than what the policy requires.

Theorem 7. If all providers have the same policy and provider i is truthful, then for all
J # i, res(m, j) € pol,.

Example 6. Consider an e-commerce application with the same credentials as in Ex-
ample Bl Assume that all vendors use the same underlying financial institution that
requests the credit card number and either the owner’s name or the credit card security
code, so the providers all share the same policy pol; = {{card num, name}, {card num,
sec code}}. Suppose that server i is truthful, while j has strategy req; = {{card num,
name, birth date}, {card num, sec code}}, i.e., in addition to the credit card number
and owner’s name, j requests also her birth date. The policy of the client is pol, =
{{card num,name, sec code, birth date}}, i.e., all credentials are simultaneously
releasable. Now j is a candidate winner (as it makes the request {card num, sec code}).
However, even if j is selected to deliver the service, in accordance with Theorem [7] it
will not receive the user’s birth date, even if it is releasable by the client. Indeed, we
have opt j(JT) = {{card num, name}, {card num, sec code}}. This means that vault(r, j)
consists of {card num,name, {card num, sec code}, {card num, birth date} and {name,
sec code, birth date}. Finally, we have that res(r, j) = {{card num, sec code}}. O

3 Related Work

To the best of our knowledge, the approach introduced in the above sections has no
analogue in the literature. Standard access control frameworks place no constraints on
policies and set up no mechanisms for reducing the extension and sensitivity of user
profiles. In the trust negotiation area, privacy is mainly pursued by having



482 P.A. Bonatti et al.

disclosed information match as precisely as possible the provider’s request, see for
example [18l14/10]. Another work aims at preventing providers from inferring which
types of credentials are owned by the user when a transaction fails [21]. A major dif-
ference between our approach and theirs is that those works do not attempt to influence
the providers’ requests. There, providers’ policies do not represent minimal functional
and security requirements (unlike our pol;s); they should rather be considered as part
of the specification of req;. Not only can trust negotiation policies ask for unnecessary
information; some interoperable negotiation strategies may further inflate requests by
forcing the user agent to disclose all releasable credentials in the attempt to keep the
negotiation alive [22]2]]. Therefore, the issue of minimizing the difference between reg;
and pol; is not tackled (and there is no precise counterpart of pol;).

In [8]], privacy is tackled in the context of auctions (including second-price auctions).
Their purpose is the opposite of ours, namely, minimizing the amount of information
that bidders have to disclose in order to let the auctioneer compute the optimal out-
comes. Payments are fully traditional: continuous and totally ordered. Similarly, another
economically inspired model [[L1] proposes both an estimate of the value of private in-
formation and a fair compensation for such information release that may induce users
to release richer and correct information about their personal preferences.

Concerning the many auction models introduced in the past, the main technical dif-
ference is that utility functions and bids always range over a totally ordered domain such
as the set of real numbers. Then truthfulness can be obtained with a straightforward im-
plementation of the second-price idea, without resorting to more complex notions such
as vaults.

4 Discussion and Perspectives

4.1 Current Achievements

We provided a first formal evidence that the potential competition between equivalent
applications may enhance privacy and reduce the amount of personal information re-
quested and collected by application providers. As a starting point, we focussed on
scenarios where the competing services are equivalent with respect to functionalities
and quality, and the only cost for the user consists of the personal information re-
leased. Flight reservation applications provide concrete examples of such scenarios,
cf. Example[3] and the preceding paragraph. We argued that one-shot mechanisms (like
second-price auctions) are appropriate for such scenarios; indeed, after using the service
a first time, subsequent usage is “free” from the point of view of information disclosure;
therefore, re-using the same service is always an optimal choice for the user until either
demand or offer change.

We proved that a suitable one-shot mechanism regulating provider selection and in-
formation disclosure induces truthful behavior in selfish rational providers, resulting in
minimal information requests and in a wider range of choices for the user. It is im-
portant to note that essentially these results still hold even if agents know each other’s
policies and strategies.



Towards a Mechanism for Incentivating Privacy 483

When functional and security requirements are the same for all providers (e.g., be-
cause such requirements are determined by exogenous technological constraints), two
rational (and hence truthful) providers suffice to minimize the amount of user informa-
tion disclosed to any provider—and interestingly, if only one provider is rational, then
it is the only provider that may receive a non-minimal response. In some cases, the hy-
pothesis that all policies are the same can be relaxed, as shown in Example[3l Another
set of results shows that extracting all releasable credentials (or any maximal disclos-
able set of credentials) from a user is a difficult task, whose systematic achievement, in
practice, requires some knowledge of the user’s policy.

Competition may be exploited to address a weakness of automated disclosure tech-
niques, such as OpenID profile sharing and automated trust negotiation. These ap-
proaches require a policy to decide when a user profile can be automatically transferred
to a new web service, or when an information request is reasonable in a given context.
Formalizing a policy that decides on behalf of the user whether a provider is collecting
a reasonable set of user attributes is a very difficult task. A mechanism inducing a spon-
taneous moderation of provider requests may turn out to be less expensive and/or more
reliable.

Concerning trust negotiation, it is known that interoperable negotiation strategies are
vulnerable to attacks that force a peer to release progressively all disclosable informa-
tion (cf. [2212]). It seems that the current one-shot mechanism can address this problem:
First, the user agent negotiates with all the providers’ agents using a method that does
not actually disclose credentials until the end of the negotiation (as in the protocol
introduced in [21]]). At the end of the negotiations, before really sending credentials,
the user can choose among the successful negotiations those with minimal information
disclosure, and compute the response with our mechanism, thereby inducing rational
providers to reduce information requests.

4.2 Possible Variations to the Current Framework

Several aspects of the framework can be modified without affecting our results. For ex-
ample, it is not hard to see that different probability distribution can be used in choosing
winner and response. As an example of possible applications, skewed distributions over
candidate winners may address additional user preferences over providers. Similarly,
the preference relations <* employed to compare responses and define dominant strate-
gies can be modified in various ways, in order to model providers with different risk
attitudes. For instance, an optimistic (resp. pessimistic) provider may consider only the
<;-maximal (resp. <;-minimal) elements of res(r, i) (the current definition considers all
of res(r, i)). Our results hold for all such agents.

4.3 Generalizing Preferences

The current theoretical framework should be extended and complemented along several
directions. In general, providers compete also on properties such as cost and quality
of service. They can easily be modelled by extending credential sets to richer sets,
including items that represent the additional quantities of interest. This affects some of
the assumptions we adopt in this paper.



484 P.A. Bonatti et al.

For example, in the extended framework, preference relations rank aggregates of
credentials, money, and quality of service, thereby reflecting a tradeoff between privacy-
related costs and other costs and benefits; consequently, user preferences have a more
“personal” nature and it would not be reasonable to make the simplifying assumption
that < is based on an objective, shared sensitivity measure. As a consequence, provider
preferences could not be restricted to € and <, and the effects of this generalization
should be formally analyzed. In this context, users may publish their preference relation
to get personalized offers; it should be verified whether a rational user should be truthful,
and whether preference disclosure may constitute a privacy violation in itself.

As preference specifications become more sophisticated, the need may arise for
usability-enhancing techniques. For instance, a coarse-grained preference relation in
a pure information disclosure scenario (where service re-use has no additional “costs”)
may induce the user to always select the same provider (lock-in effect). The articulated
approach to monitoring, refining, and learning preferences introduced in [15]] for access
control policies can perhaps be adapted to our framework.

4.4 Repeated Auctions

Another consequence of modelling features such as money and quality is that each call
to a same service may have additional costs; then it makes sense to repeat the service
selection process and abandon the one-shot approach. We conjecture that, in general,
a sequence of independent selections may lead to globally suboptimal disclosures (as
any greedy strategy). A formal analysis of iterative selections is an important step in
our agenda, that may start from the literature on repeated (or sequential) procurement
auctions, e.g. [12{1]. It is also interesting to evaluate “globalized” selections over bun-
dles of services as an attempt to optimize information disclosure for a set of commonly
used services. It is known that this optimization problem is tractable in some cases [4].

4.5 Deployment

Last but not least, the need is felt for an articulated analysis of deployment solutions;
for example, providers may want to make sure that the service selection mechanism is
carried out correctly, i.e. users are not cheating and actually disclose an element of the
vault. Some application contexts may admit trusted intermediary services. Portals simi-
lar to Kayak, Momondo etc. are interesting candidates to fill in this role, that may create
new business opportunities and models. In the absence of trusted third parties (i.e., the
user is the auctioneer), auctions can be implemented using Secure Multiparty Compu-
tation. The instantiation of general MPC constructions can be inefficient; it is, however,
possible to design less complex specialized MPC protocols implementing the described
variation of second price auctions, cf. [3l]. Alternatively, one can resort to ad hoc pro-
tocols where credential requests are eventually revealed to all providers (commitments
and blind signature [6] may be employed for this purpose).

Acknowledgments. The authors would like to thank Alessandro Bonatti for helpful
preliminary discussions, and Adam J. Lee and the anonymous referees for their detailed
and stimulating feedback.



Towards a Mechanism for Incentivating Privacy 485

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bae, J., Beigman, E., Berry, R.A., Honig, M.L., Vohra, R.V.: Sequential bandwidth and power

auctions for distributed spectrum sharing. IEEE Journal on Selected Areas in Communica-

tions 26(7), 1193-1203 (2008)

Baselice, S., Bonatti, P., Faella, M.: On interoperable trust negotiation strategies. In: IEEE

POLICY 2007, pp. 39-50. IEEE Computer Society, Los Alamitos (2007)

Bogetoft, P., Damgard, ., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.: A practical imple-

mentation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G.,

Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142-147. Springer, Heidelberg (2006)

Bonatti, P.A., Festa, P.: On optimal service selection. In: Ellis, A., Hagino, T. (eds.) Proc. of

the 14th Int. Conf. on World Wide Web, WWW 2005, pp. 530-538. ACM, New York (2005)

Broache, A.: Competition is good for search privacy, report says. CNET News (August

8, 2007), http://news cnet com/Competition is good for search privacy,
report says/2100 1029 3 6201468 html

Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology - Crypto

1982, pp. 199-203. Springer, Heidelberg (1983)

Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census records.

Journal of Official Statistics 2(3), 329-336 (1986)

Feigenbaum, J., Jaggard, A.D., Schapira, M.: Approximate privacy: foundations and quan-

tification (extended abstract). In: Parkes, D.C., Dellarocas, C., Tennenholtz, M. (eds.) ACM

Conference on Electronic Commerce, pp. 167-178. ACM, New York (2010)

Gray, E.: FTC to boost competition in privacy protection. Global Competition Review

(September 23, 2010)

He, Y., Zhu, M., Zheng, C.: An efficient and minimum sensitivity cost negotiation strategy

in automated trust negotiation. In: Int. Conf. Comp. Sci. and Soft. Eng.,, vol. 3, pp. 182-185

(2008)

Kleinberg, J., Papadimitriou, C.H., Raghavan, P.: On the value of private information. In:

TARK 2001: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and

Knowledge, pp. 249-257. Morgan Kaufmann, San Francisco (2001)

Luton, R., McAfee, P.R.: Sequential procurement auctions. Journal of Public Eco-

nomics 31(2), 181-195 (1986)

Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

Paci, F.,, Bauer, D., Bertino, E., Blough, D.M., Squicciarini, A.C.: Minimal credential disclo-

sure in trust negotiations. In: Bertino, E., Takahashi, K. (eds.) Digital Identity Management,

pp. 89-96. ACM, New York (2008)

Sadeh, N.M., Hong, J.I., Cranor, L.F., Fette, 1., Kelley, P.G., Prabaker, M.K., Rao, J.: Under-

standing and capturing people’s privacy policies in a mobile social networking application.

Personal and Ubiquitous Computing 13(6), 401-412 (2009)

Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on

Knowledge and Data Engineering 13(6), 1010-1027 (2001)

Schwartz, A., Cooper, A.: Search privacy practices: A work in progress. Center for Democ-

racy and Technology report (August 2007)

Squicciarini, A.C., Bertino, E., Ferrari, E., Paci, F., Thuraisingham, B.M.: PP-trust-X: A

system for privacy preserving trust negotiations. ACM Trans. Inf. Syst. Secur. 10(3) (2007)

Sweeney, L.: Guaranteeing anonymity when sharing medical data, the Datafly system. Jour-

nal of the American Medical Informatics Association (1997)

Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance 16, 8-37 (1961)


http://news.cnet.com/Competition-is-good-for-search-privacy,-report-says/2100-1029_3-6201468.html
http://news.cnet.com/Competition-is-good-for-search-privacy,-report-says/2100-1029_3-6201468.html

486 P.A. Bonatti et al.

21. Winsborough, W.H., Li, N.: Protecting sensitive attributes in automated trust negotiation. In:
WPES, pp. 41-51. ACM, New York (2002)

22. Yu, T., Winslett, M., Seamons, K.E.: Supporting structured credentials and sensitive poli-
cies through interoperable strategies for automated trust negotiation. ACM Trans. Inf. Syst.
Secur. 6(1), 1-42 (2003)

Proofs

Theorem 2l For all r € res(n, i) there exists ¥’ € resy(n, i) such that r C r'.

Proof. Assume r € res(n,i). By definition r € vault(n,i) and r € ful(opt(n) N req;);
therefore, r € adm(pol,) and r € ful(req;). From r € adm(poly), it follows that there
exists ' € pol, such that r C #'. Then from r € ful(req;), derive r’ € ful(reg;), and
hence 1’ € poly N ful(reg;). The theorem follows immediately from the definition of
res,(m, i), O

Theorem[Bl Let r € poly, r € res(n, i) if and only if there exists x € (opi(r) N req;) such
that x C r and for all the other providers j # i and for all v’ € req, it holds r’ £ r.

Proof. (If) Note that since for all 7 € req;, with j # i, ¥’ £ r, a fortiori for all ¥’ €
opt ;(n), ¥ +« r. Then, the thesis follows by applying the definition of vault(n, i) and
res(m, i).

(Only if) By definition, if r € res(n, i), then r € vault(n, i) and there exists a request
x such that x C r and x € (op#(m) N req;). Assume now that for some provider j # i
and some request r’ € req;, r’ < r. On one hand, there exists in opt ;() a request
such that ¥/ < v’ and hence r” < r. On the other hand, since r € vault(n,i), for all

r’ € opt (), r’" % r (absurdum). m|

Corollary ([l Assume that i makes an admissible request (req; N adm(poly) # 0). Then
U repoi, ' can be disclosed to provider i iff the following conditions hold: (i) pol, = {r},
and (ii) r € req; for all providers j # i such that req; N adm(pol,) # 0.

Proof. Since the client releases exactly one element in pol, the only way in which the
client could release [U,ey, 7 is that pol, contains exactly one set r. Then, the proof
follows easily from Theorem 3 O

In the following results, we need two auxiliary relations: for all 6,6 € O let 026’ iff
V' €@ dr € 8 : r C r'. Note that for all providers i, it holds pol;Creq;. Similarly, let
0@ iff V' e @ Areb:r<r.

Lemma 1. For all r € req; N opt(n) there exists r' C r such that v’ € pol; N opt(n[i <
pol;]).

Proof. Let r € req; N opt(n). Since pol,Creq;, there exists 1’ € pol; s.t. ¥’ C r; moreover
r € opt(r) implies r € adm(pol,) and then ' € adm(pol,). Assume per adsurdum
that there exists r”” € opt(n[i < pol;]) s.t. ¥’ < r’. Clearly, " cannot belong to pol;
because pol; is by definition a threshold; therefore there exists a provider j # i such that
e req; N adm(poly)), but in this case, as req; is the same in both 7 and n[i « pol;],
we would have " < r and hence r ¢ opt(r) against the hypothesis. Therefore, r' €
opt(n[i < pol;]). O



Towards a Mechanism for Incentivating Privacy 487

Corollary 2. For all & € IT and providers i, we have opt(r[i < pol;])2opt(r).
Corollary 3. Forall € Il, if i € cw(n) then i € cw(n[i < pol;]).
Lemma 2. Forall w € I1, if i € ew(r) then ew(n[i < pol;]) € cw(n).

Proof. 1t suffices to show that for all servers j # i, j € cw(n[i < pol;]) implies j €
cw(n). Let r be in req; N opt(n[i < pol;]). By definition, r € adm(poly). Furthermore,
because of opt minimality, for all ¥’ € opt(n[i < pol;]), we have r’ £ r. Since opt(r[i «
pol,D)=Zopt(rr) (Corollary2)), for all ” € opt(r), " « r. Therefore, r € req jﬂopt(ﬂ'). O

Lemma 3. For all & € IT and providers i, it holds that res(m, i) C res(n[i < pol;],i).

Proof. r € res(m, i) implies that r € vault(rr,i) and there exists ' € opt(r) N req; s.t.
r" C r. Note that vault(rr, i) does not depend on the request of i, therefore vault(r, i) =
vault(n[i « pol,],i). Moreover, due to Lemmal Il there exists ¥’ s.t. ¥ C ¥ and ¥’ €
opt(nli < pol;])Npol;. Therefore, r € vault(n[i < pol.], i)Nful(opt(n[i « pol;])Npol,),
i.e. r € res(n[i « pol;],i). O

Lemma 4. For all n € IT and providers i it holds that res(n, i) <; res(n[i < pol], i).

Proof. If res(m, i) # res(n[i « pol;],i), we need to show that both conditions in Def-
inition[I] are met. By Lemma[3] res(r, i) C res(z[i « pol],i). Condition 1 follows by
reflexivity of relation <;e {<,C}. Indeed, for every r € res(r,i), there exists ¥’ = r €
res(nli < pol;],i) such that r <; 7.

As for condition 2, we observe that res(n[i < pol;], i) is a set of maximal elements
w.r.t. <. This means that every pair of elements in res(n[i < pol;], i) are incomparable
w.r.t. <, and hence w.r.t. C. In particular, for every ' € res(n[i < pol;],i) and r €
res(m, i) C res(r[i < pol;], i), it holds that ¥’ 4 r and hence v’ ¢ r. O

Lemma 5. If opt(r) N req; # 0, then res(n, i) # 0.

Proof. LetV = {r € C | r € adm(poly) ANV € opt ;(m) 1" £ r}, so that vault(r,i) =
maxc V. Let r € opt(r) N req;, we prove that V # (. Since r € opt(r), we have r €
adm(poly). Let ¥’ € opt (r); if by contradiction ' < r, we would have r ¢ opt(rm).
Hence, r € V and vault(r, i) # 0. O

Theorem[dl For all pol € O and all providers i, the unique dominant attraction strategy
for iw.rt. polis pol itself.

Proof. First we prove that pol; = pol is a dominant attraction strategy (membership),
then that for all strategies req; # pol; there exists a full profile n € H[iol such that
pw(rli « req;],i) < pw(m, i), therefore req; is not a dominant attraction strategy (unique-
ness).

(Membership). Let m be a full profile. By the (contrapositive of) Corollary 3] and
Lemmal[2] it is straighforward to see that pw(r, i) < pw(n[i « pol,],i). From Lemma
Bl res(m,i) <; res(z[i < pol;],i) always holds, therefore in particular when pw(r, i) =
pw(nli « pol;],i).



488 P.A. Bonatti et al.

(Uniqueness). Consider req; # pol;, for some r € req; and 1’ € pol;, ¥’ C r. Choose
me ”iol such that (i) pol, = {r'}; (ii) for two providers i # j, the requests of i and j in
m are {r'}; (iii) for all the other providers k # i, j, it holds r’ ¢ req,. Clearly, as r’ C r,
r ¢ adm(pol,) and since req; is a threshold, for the other r”’(# r) € req;, '’ & adm(pol,)).
This implies that opt(n[i < req;]) N req; = 0 and hence pw(n[i « req;],i) = 0. On the
contrary, due to (iii), {r'} = opt(;r) and hence pw(r, i) > 0. |

Theorem B For all pol € © and all providers i, the unique dominant investigation
strategy for i w.r.t. pol is pol itself.

Proof. (Membership) By analogy with Theorem ] membership is a straightforward
consequence of Corollary[3land Lemmal[4] and B

(Uniqueness). Assume a request req; for the server i such that req; # pol; and choose
a full profile  as in Theorem @l Since opt(n[i « req;]) N req; = 0, then res(n[i «
req;],i) = 0, whereas from i € cw(rr) and Lemmal3l res(rr, i) # 0. Therefore, res(n[i «
req;], 1) <; res(m, i). O

Lemma 6. For all & € IT and providers i, we have opt () C vault(r, i).

Proof. LetV = {r C C | r € adm(poly) ANVr' € opt ;(m) ¥ # r}. It holds vault(n, i) =
maxc V. Let r € opt ;(mr). By definition of opt ;(), we have r € adm(pol,) and ' £ r
forall ¥ € opt (m). Hence,r e V.

It remains to prove that r is a maximal element of V. By contradiction, assume that
r’ € Vis such that r € 7/, which implies r < 7. Since r € opt ;(r), this leads to the
contradiction that r’ ¢ V, and we obtain the thesis. O

Theorem|[6l If all providers have the same policy and there are two truthful providers i
and j, then res(r, i) = res(n, j) = req; N adm(poly) C pol,.

Proof. First, notice that opt(n) = opt (1) = req;Nadm(poly) = req;Nadm(pol,). Then,

res(m, i) = vault(rr, i) N ful(opt(r) N req;)
= vault(rt, i) N ful(req; N adm(polyy))
= vault(r, i) N ful(opt (7))

Now, if an element r of vault(n, i) is included in an element r" of opt ;(n), it must be
r = ¥, because ¥’ € vault(n,i) (by Lemmal@) and vault(n, i) is a threshold. Therefore,
we have vault(r, i) N ful(opt ;(m)) = opt ;(r), and the thesis. |

Theorem [l If all providers have the same policy and provider i is truthful, then for all
J # i it holds res(n, j) € pol;.

Proof. Let j # i. Since server i is truthful, it holds opt ;(m) = opt(r) = pol;Nadm(pol,).
By definition, for all € res(r, j) there exists r’ € req;Nopt(rr) such that r’ C r. We prove
that in this case it also holds ¥ = r. Assume by contradiction that 7’ is strictly contained
in r. We have that » € vault(n, j) and hence ' ¢ vault(n, j), because vault(r,i) is a
threshold. By Lemmal6l from ' € opt(n) = opt j(m) it follows 1’ € vauli(r, j), which
is a contradiction. Hence, r € opt(r) C pol; = pol;, and the thesis. O



	Towards a Mechanism for Incentivating Privacy
	Introduction
	Formal Framework
	Selection and Response Mechanism
	Rational Strategies

	Related Work
	Discussion and Perspectives
	Current Achievements
	Possible Variations to the Current Framework
	Generalizing Preferences
	Repeated Auctions
	Deployment

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




