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Abstract. We consider algorithms for generating Mixtures of Bagged
Markov Trees, for density estimation. In problems defined over many
variables and when few observations are available, those mixtures gen-
erally outperform a single Markov tree maximizing the data likelihood,
but are far more expensive to compute. In this paper, we describe new
algorithms for approximating such models, with the aim of speeding up
learning without sacrificing accuracy. More specifically, we propose to use
a filtering step obtained as a by-product from computing a first Markov
tree, so as to avoid considering poor candidate edges in the subsequently
generated trees. We compare these algorithms (on synthetic data sets)
to Mixtures of Bagged Markov Trees, as well as to a single Markov tree
derived by the classical Chow-Liu algorithm and to a recently proposed
randomized scheme used for building tree mixtures.
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1 Introduction

Estimation of multivariate probability densities from observational data is a
widely used strategy to tackle decision making problems under uncertainty. A
density model can be used to answer various queries about the underlying data
generation mechanism (also called performing inference), such as computing the
likelihood of observing a problem instance, or estimating the conditional proba-
bility density of a subset of variables given observed values of another subset.

The framework of probabilistic graphical models [18,28] provides well founded
approaches to model probability densities and to perform inference by combin-
ing graph theory, with statistics and algorithmics. The structure of a graphi-
cal model encodes relationships between variables while its parameters quantify
those interactions. Bayesian networks are a class of models that encode a joint
probability density over a set of variables by a product of conditional probability
densities (see Sect. 2). Both learning and inference are however NP-hard with
those models when the underlying graph is unconstrained [11,22].
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To cope with the problem size expansion faced today in many applications
due to the rapid increase in measurement resolution, many learning methods for
bayesian networks incorporate some constraints on their graphical structure, e.g.
[7,14,16,31]. In that regard, an interesting subset of those models is the class of
Markov trees, where each conditional probability distribution is conditioned on
a single variable (except the root) [28]: learning a Markov tree maximizing the
data likelihood by the Chow-Liu algorithm [10] has a computational complexity
essentially quadratic in the number of variables, while performing inference with
such models is of linear complexity. Another advantage of Markov trees is their
small number of parameters, which reduces the risk of overfitting when data
is scarce. However, for problems with very large numbers of variables and low
sample size this model class may already be too large, and it may be desirable
to impose additional regularization constraints on top of this method [23].

Bootstrap aggregation (bagging) [8,12] is a meta-algorithm that compensates
for a lack of data by applying a given algorithm on several bootstrap replicas
of the original data set and averaging the predictions of the resulting models. A
bootstrap replica is obtained by randomly drawing (with replacement) original
samples and copying them into the replica. Averaging the predictions from an
ensemble of models derived from an ensemble of bootstrap replicas leads to a
decrease in variance and hence a reduction in overfitting. This meta-algorithm,
originally developed in the context of supervised learning, has already been ap-
plied for learning probabilistic graphical models e.g. [13,15], often to get a more
robust structure but without consideration for inference on the said structure.

When one is willing to use bootstrapping to obtain a density model on which
inference is tractable, one interesting possibility is to use bagged mixtures of
Chow-Liu trees. Indeed, these have been shown to outperform single Chow-Liu
trees, specially on high-dimensional problems with small sample sizes [2]. How-
ever, the extra computational cost with respect to learning one single Chow-Liu
tree may prove problematic on very large problems. In this work we therefore
investigate means to reduce this complexity by approximating the original boot-
strap procedure. We propose to couple a first application of the Chow-Liu algo-
rithm to either subsampling the set of candidate edges, or to a statistical test to
detect irrelevant edges, in order to avoid considering all candidate edges in the
subsequent runs of the Chow-Liu algorithm on subsequent bootstrap replicas.
The second approach can be seen as applying a structural regularization to iden-
tify a skeleton comprising only potentially relevant edges, and then restricting
the search of optimal Markov trees on subsequent bootstrap replicas within that
smaller envelope instead of the complete set of all possible edges; it may hence
also be beneficial in terms of accuracy in very small sample size conditions.

In Sect. 2 we cover the concept of bayesian networks, bayesian learning and
mixtures of Markov trees in more details. We then describe the baseline algo-
rithms for Markov tree based density models upon which we propose improve-
ments (Sect. 3), before detailing our new algorithms (Sect. 4). The experiments
performed to compare them in terms of accuracy, convergence speed and com-
puting times are presented and discussed in Sect. 5.
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2 Graphical Probability Density Model Learning

A bayesian network [28] is a probabilistic graphical model that encodes a joint
probability density over a finite set X of n variables {X1, X2, ..., Xn}. Those
variables correspond to the nodes of a Directed Acyclic Graph (DAG) G that en-
codes conditional independence relationships between variables and allows their
algorithmic verification. The graphical structure actually defines a factorization
of the joint density as a product of conditional densities of each variable Xi

conditionally to the set of its parents PaG(Xi) in the graph:

P (X ) =
n∏

i=1

P (Xi|PaG(Xi)) . (1)

In the case of discrete variables, learning the parameters defining those condi-
tional densities from data is relatively straightforward, but structure learning
is not. There are three main structure learning approaches: a score-based, a
constraint-based and a bayesian one [18].

In the score-based approach [5], a numerical criterion (maximum likelihood,
BIC, AIC...) is defined over the set of DAGs, and learning can be defined as
selecting, among all DAGs, the one that maximizes this score with respect to the
data set. However, the number of possible DAGs (as well as the number of their
equivalence classes) grows superexponentially with the number of variables n
[29]. Since existing unconstrained score optimization algorithms are not scalable,
simplifications must in practice be used. These may be achieved by reducing the
number of candidate structures, either by restricting the resolution of the search
space [6] or by limiting its range (e.g. by constraining the number of candidate
parents or the global structures searched [14]).

The constraint-based approach [1] consists in extracting from the observa-
tional data a set of conditional independence relationships (statements Si⊥Sj |Sk,
where Si,Sj ,Sk are disjoint subsets of variables), and searching for a structure
that best matches those constraints. Algorithms typically consider the assess-
ment of a polynomial number of independence relationships, and achieve this by
limiting the cardinalities of the subsets of variables inspected.

The bayesian averaging approach [24] considers the set of all possible struc-
tures rather than identifying a single best one, and averages predictions from
those structures in accordance with the goal of the learning procedure. Taking
into account all possible structures is rarely possible, and approximations must
thus be employed. One of these strategies is the bootstrap aggregation approach
that we are considering in this article (see Sect. 2.1).

But the cost of inference must also be considered. Its complexity grows with
the tree-width of the DAG [22], which is the minimum size, minus one, of the
largest connected subgraph in a moralized and triangularized version of the DAG
(obtained by first joining all non-adjacent parents of any variable, and then
by chordalizing all cycles). Although many heuristic approaches to inference
have been developed, many learning methods target low tree-width structures
[7,14,16,31] and thus also limit inference complexity.
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Markov trees, a subclass of bayesian networks, allow for scalable learning and
inference; it consists of all bayesian networks where each variable has a single
parent. The Chow-Liu algorithm (Sect. 3.1) produces a Markov tree maximizing
the likelihood of a data set, and its complexity is essentially quadratic in the
number of variables. The tree-width of a Markov tree is always one, and inference
is thus linear in the number of variables. Both properties make Markov trees
extremely interesting for high-dimensional density modeling.

2.1 Bagging in the Context of Learning Bayesian Networks

Bagging is a model averaging method where a given learning algorithm is ran-
domized by applying it on m different bootstrap replica data sets, therefore
resulting in m different models. A bootstrap replica D′ of size p′ is obtained
from an original data set D of p observations by uniformly and independently
drawing p′ natural numbers ri ∈ [1, p], and by compiling D′ by

D′[i] = D[ri] ∀i ∈ [1, p′] , (2)

where D[j] (resp. D′[k]) refers to jth (resp. kth) observation of D (resp. D′),
and where typically (as in this paper) p = p′.

The result of the bagging algorithm is an average between the m models
learnt from the m bootstrap replicas that typically exhibits a lower variance
than a model learned directly from the original data set. This approach has
been quite popular and effective in the context of supervised learning [8].

Bagging has been proposed for Gaussian density modeling [27], and for struc-
ture learning of graphical models, e.g. by considering the frequency of occurrence
of interesting graphical features among the structures derived from bootstrap
replicas [15], and also to improve score-based structure learning by incorporat-
ing the bootstrap procedure in the computation of the score [13]. Recently, it
was proposed for generating ensembles of bagged Chow-Liu trees [2]; this latter
approach is denoted in the rest of this paper by Bagged Mixture of Chow-Liu
Trees; it is discussed more in detail in the next section.

2.2 Mixtures of Markov Trees

A mixture of Markov trees over a set of n variables X is a convex combination
of a set T̂ = {T1, . . . , Tm} of m elementary Markov tree densities, i.e.

PT̂ (X ) =
m∑

i=1

μiPTi(X ) , (3)

where {μi}m
i=1 are the weights of the mixture (μi ∈ [0, 1] and

∑m
i=1 μi = 1). The

complexity of inference in this model is thus equal to m times the complexity of
inference with a single tree, which is linear in the number n of variables.

Several learning algorithms of mixtures of Markov trees have already been
proposed; they can be categorized into two groups: the maximum likelihood and
the randomization approaches.
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In the former approach, the mixture of trees is primarily used as a mean to
exploit the good algorithmic properties of trees while improving their modeling
capabilities. These methods include using the EM algorithm to partition the
data between a given number of terms [25], or using clever reweighting schemes
on the whole data set to fit modes of the density [21].

The second approach can be viewed as an attempt to approximate true
bayesian learning in the space of Markov tree structures. In these methods,
a set of tree models are generated using a more or less strongly randomized pro-
cedure, that can range from completely random structures based on Prüfer lists
to bagged Mixtures of trees. The weights associated to these trees can be either
uniform or proportional to the score of the structure based on the data set. A
comparison of theses approaches can be found in [3]. The present work adopts
this strategy and some of those methods are further described in Sect. 3.

An approach at the intersection of those two categories has been proposed in
[17], where a MCMC exploration scheme is defined on the space of mixtures of
trees using a Dirichlet process and a suitable prior on tree structures [26].

3 Baseline Markov Tree Based Learning Algorithms

In this section, we describe the three baseline methods of density estimation with
Markov trees reused in this paper, and we state their computational complexity.

3.1 The Chow-Liu Algorithm for Learning a Markov Tree

The algorithm for learning a Markov tree structure TCL(D) maximizing the
likelihood of a training set D was introduced by Chow and Liu [10]. It solves the
optimization problem

TCL(D) = argmax
T

∑

(Xi,Xj)∈E(T )

ID(Xi; Xj) , (4)

where E(T ) is the set of edges in T , constrained to be a tree, and where ID(Xi, Xj)
is the maximum likelihood estimate of the mutual information among variables
Xi and Xj computed from the dataset D (composed of p observations).

Algorithm 1 has two steps: first ID(Xi, Xj) (∀i = 1 . . . n, ∀j = i + 1 . . . n) are
computed to fill an n × n symmetrical matrix (MI), then used to compute a
maximum weight spanning tree (MWST, e.g. by [19] as here, or by [9]).

Algorithm 1 (Chow-Liu (CL) tree)

1. MI = [0]n×n

2. Repeat for i1 = 1, · · · , n:
Repeat for i2 = i1 + 1, · · · , n:

MI [i1, i2] = MI [i2, i1] = ID(Xi1 ; Xi2 )

3. TCL = MWST(MI)

4. Return TCL.

Step 2 requires O(n2p) computations, while computing a MWST has a complex-
ity of E log(E) with E the number of candidate edges. Here E = n(n− 1)/2, so
that, for fixed sample size p, the complexity is O(n2 log(n2)) ≡ O(n2 log(n)).
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3.2 Bagging of Chow-Liu Markov Trees

Bagging of the Chow-Liu algorithm is described by Algorithm 2.

Algorithm 2 (Generating a mixture of bagged Chow-Liu trees)

1. T̂ = {}
2. Repeat for j = 1, · · · , m:

(a) D′= bootstrap(D)

(b) T̂ = T̂ ∪ {Chow-Liu(D′)}
3. Return T̂ , μ = {1/m, · · · , 1/m}.

The complexity of Algorithm 2 is m times the complexity of the Chow-Liu
algorithm, or O(mn2 log(n)), for fixed sample size p.

Notice that it was shown in [30] that learning the parameters of each tree in
T̂ on D rather than on the replica D′ used to generate its structure improves
accuracy, and we will therefore use D to estimate the parameters of all Markov
trees generated by all the algorithms studied in this paper, according to [30].

3.3 Inertial Search Heuristic

This algorithm [4] improves the computational complexity of the Bagging method
by limiting to a specified number K the number of variable pairs and mutual in-
formations computed and considered for each MWST construction. Constructing
T̂ is done here by a sequential procedure: for optimizing the first tree, a random
subset of K edges is considered, and then for each subsequent tree Ti, the con-
sidered subset is initialized by the edges of the previous tree, S = E(Ti−1), and
completed with an additional random subset of K − |E(Ti−1)| edges.

Algorithm 3 (Inertial search of mixtures of Markov trees (ISH))

1. T̂ = {}, S = {}
2. Repeat for j = 1, · · · , m:

(a) D′= bootstrap(D)

(b) MI = [0]n×n

(c) Repeat for k = 1, · · · , |S|:
i. (i1, i2) = GetIndices(S [k])

ii. MI [i1, i2] = MI [i2, i1] = ID′(Xi1 ; Xi2)

(d) Repeat for k = |E| + 1, · · · , K
i. (i1, i2) = drawNewRandomEdge

ii. MI [i1, i2] = MI [i2, i1] = ID′(Xi1 ; Xi2)

(e) T= MWST(MI)

(f) S = E(T )

(g) T̂ = T̂ ∪ {T}
3. Return T̂ , μ = {1/m, · · · , 1/m}.

The parameter K controls the computational complexity of the method, which
is O(mK log K). We use K = Cn ln n as in [4] (with C = 1 in most of our
simulations) leading to a complexity approximately of O(mn log(n)).
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4 Proposed Algorithms

In this section we propose our alternative algorithms. They all start by comput-
ing a Chow-Liu tree on the original data set D and they then use the results of
this computation for accelerating the generation of subsequent ensemble terms.

4.1 Improving the Inertial Search Heuristic by Warm Start

While Algorithm 3 is of log-linear complexity in n and gradually improves as
new trees are added to the model, it consists essentially in an exploration of
the matrix MI of mutual informations. Notice that without bagging (i.e. by
using D′ = D at all iterations), this algorithm would eventually converge to the
Chow-Liu tree, since Tarjan’s red rule [32] implies that the lightest edge of any
cycle is not part of the MWST. However, the number of iterations needed to
fully explore the matrix essentially increases with n, since

lim
n→∞

Edges considered at each iteration
Total edges

=
O(n log n)
O(n2)

= 0 , (5)

and hence the algorithm will take longer and longer to converge as n increases
(see also our experimental results in the next section).

We hence modified this method, by changing the first iteration so as to start
with a more optimal set of edges (E(TCL) computed by the Chow-Liu algorithm
based on a complete matrix of mutual informations; see Algorithm 4).

Algorithm 4 (Warm start inertial research procedure (Warm start ISH))

1. T̂ = {Chow-Liu(D)}, S = E(Chow-Liu(D))

2. Repeat for j = 2, · · · , m:
· · · (identical to points (a) to (g) of Algorithm 3)

3. Return T̂ , μ = {1/m, · · · , 1/m}.

The complexity of this method is O(n2 log(n) + mK log(K)) where K is the
number of edges considered at each iteration after the first one. As in Algorithm
3, we set K = Cn ln n. In practice the gain in convergence speed strongly com-
pensates for the increased complexity needed for computing the first term (see
our results in the next section).

Alternatively, both methods could be viewed as a stochastic walk in the space
of Markov tree structures that at convergence will attain the set of good struc-
tures. Algorithm 3 however starts very far from this set while the variant we
propose in Algorithm 4 starts from a more sensible initial guess.

4.2 Pruned Mixtures of Bagged Chow-Liu Trees

The Chow-Liu method (Algorithm 1), and its bagging (Algorithm 2) compute
connected Markov tree structures of maximum likelihood over the data sets they
get as input. But in high-dimensional problems (with p � n), maximizing the
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data likelihood over all possible tree structures may already lead by itself to
overfitting. We therefore consider a structural regularization of the Chow-Liu
method, by modifying its optimization criterion of eqn. (4), so as to penalize
model complexity in terms of its number of edges |T |,

T λ
CL(D) = argmax

T

∑

(Xi,Xj)∈E(T )

ID(Xi; Xj) − λ|T | , (6)

where T is now allowed to be a forest (at most one path between any two nodes).
The optimal solution to this problem can be obtained by modifying the greedy

Chow-Liu algorithm, to return the ‘forest model’ as soon as the next edge to be
included provides an information quantity ID(Xi; Xj) smaller than λ. Further-
more, as for supervised decision tree growing [33], we notice that penalizing in
this way the tree complexity is tantamount to using a hypothesis test for check-
ing independence of the next pair of variables to be included; such a test may be
formulated by comparing the quantity 2p(ln 2)ID(Xi; Xj) (χ-square distributed
under independence, with a degree of freedom of 1 for binary variables) to a criti-
cal value depending on a postulated p-value, say α = 0.05 or smaller. This means
that an arc relating to a pair of variables (Xi, Xj) such that 2p(ln 2)ID(Xi; Xj)
computed from the dataset is smaller than the χ-square statistic threshold com-
puted for α will never be included in the forest by our modified algorithm.

To take advantage of the first iteration of the algorithm, we use the com-
putations performed for building a first tree of the mixture by the Chow-Liu
algorithm to identify those pairs of variables whose mutual information is above
the threshold, and we then consider only the set S of those latter pairs of vari-
ables for building trees composing the rest of the mixture (see Algorithm 5).

Algorithm 5 (Pre-pruned (bagged) Chow-Liu trees (PMBCL))

1. S = {}, MI = [0]n×n

2. Repeat for i1, i2 > i1, i1, i2 ∈ 1, · · · , n
if ID(Xi; Xj) > λ(α)
(a) MI [i1, i2] = MI [i2, i1] = ID(Xi1 ; Xi2 )

(b) S = S ∪ (i1, i2)

3. T̂ = MWST(MI)

4. Repeat for j = 2, · · · , m:
(a) D′= bootstrap(D)

(b) Repeat for k = 1, · · · , |S|:
i. (i1, i2) = GetIndices(S [k])

ii. MI [i1, i2] = MI [i2, i1] = ID′(Xi1 ; Xi2)

(c) T̂ = T̂ ∪ MWST(MI)

5. Return T̂ , μ = {1/m, · · · , 1/m}.

The complexity of Algorithm 5 is O(n2+mK(α) log(K(α)), i.e. similar to that of
Algorithm 4 (where K = n ln n); its first term is also independent of the mixture
size m and its second term now depends on the effect of the chosen value of α on
the number of candidate edges K(α) ≡ |S| retained in the skeleton (the smaller
α, the smaller K(α), in a dataset size dependent fashion).
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5 Experiments

Here we empirically compare our algorithms of Sect. 4 to the baseline methods
of Sect. 3. To this end, we use simulated target densities that are represented by
synthetic bayesian networks over binary variables. Each structure is randomly
drawn by considering variables sequentially, by uniformly drawing the number of
parents for each Xi in [0, max(5, i− 1)] and by randomly selecting these parents
in {X1, ..., Xi−1}. Parameters of the networks are drawn from uniform Dirichlet
distributions [30]. We present results with n = 200 or n = 1000 variables, and
we performed our analysis based on data sets of p = 200, 600, 1000 observations,
i.e. small samples given the number of variables. All results are averaged over 5
target densities and 6 learning sets for each density.

We focussed the analysis on the merit of the estimation of the probability
distribution. We assessed the quality of each generated mixture by the Kullback-
Leibler divergence [20], an asymmetric measure of similarity of a given density
PT̂ to a target density P , defined by

DKL(P || PT̂ ) =
∑

X∈X
P (X) log2

(
P (X)
PT̂ (X)

)
. (7)

But for computational reasons (considering all 2n possible configurations of X
is not feasible) this score was approximated by a Monte-Carlo procedure:

D̂KL(P || PT̂ ) =
1
N

N∑

X∼P

log2

(
P (X)
PT̂ (X)

)
, (8)

where we used one test set of 50000 independent observations to estimate all the
models inferred for a given target density.

For a given data set, we applied all algorithms and compared their results to
the target density. Except for the Chow-Liu algorithm that produces a single tree,
all mixture models are evaluated for growing numbers of terms (m=1,10,20...)
up to 500 for 200 variables, in order to assess the convergence of the different
methods (especially Algorithm 3), and up to 200 trees for 1000 variables to
investigate the impact of the number of variables.

Parameters of all trees are learned from the full training sets (i.e. not from the
bootstrap replicas that are used only to generate the structures), by maximizing
the posterior likelihood of the data set based on uniform Dirichlet priors [30].

5.1 Results in Terms of Accuracies

Let us start by an evaluation of the relative accuracy performances of the dif-
ferent algorithms in the case of 1000 variables and 200 observations. Figure 1
displays the Kullback-Leibler divergence (vertical axis) with respect to the target
density for the single CL tree (Algorithm 1) and for the other methods as a func-
tion of the mixture size m (horizontal axis). The PMBCL method (Algorithm
5) is tested here with 4 values of its parameter α: 1E−1, 5E−2, 5E−3, 5E−4.
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Fig. 1. A comparison between all methods presented in this paper shows the superiority
of model averaging methods (with n = 1000 and p = 200). Horizontal axis: ensemble
size m; vertical axis KL divergence to the target density estimated by Monte-Carlo
and averaged over 5 target densities and 6 training sets.

Looking first at m = 1 (initial values of all curves), we observe that all but
two methods start at the same point as the CL tree: ISH (Algorithm 3) is sig-
nificantly worse, while the strongly regularized PMBCL tree at α = 5E−4 is
significantly better1. For larger values of m, all the considered mixtures mono-
tonically improve, some more quickly than others, and for sufficiently high values
of m they all are quite superior to a single CL tree. For PMBCL, the smaller α,
the lesser the improvement rate; actually, for α = 5E−4, its improvement rate
is so small that it is quickly overtaken by the Mixture of Bagged CL Trees (at
m = 30) and later on by PMBCL with α = 5E−2 (at m = 60). On the other
hand, Warm Start ISH and PMBCL for α sufficiently large display comparable
performances and the same convergence rate than Bagged CL Trees.

These results confirm the superiority of the model averaging approach, and
they also suggest the interest of trying to limit the complexities of the individual
trees in PMBCL and to correctly initialize the inertial approach, given their
computational complexity advantage with respect to raw bagging (see below).

In order to allow a better understanding of the influence of α on the behavior
of PMBCL, Table 1 lists the number of edges in the skeleton S and in the first
tree T1 for different values of α. It comes as no surprise that those numbers
are decreasing with α. Note how the number of edges in T1 is almost at the
maximum (n − 1 = 999) for α ∈ {1E−1, 5E−2, 5E−3}, whose curves start at
the same performance as the CL tree, while the smallest α (5E−4) leads to a
much smaller tree. These numbers also show that the skeleton in that last case
has only a few edges more than the first tree. This is in accordance with the
very small improvement in the performance of the method when the mixture

1 Standard deviations of KL divergences, not reported for the sake of legibility, are
about 20 times smaller than the average differences that we comment.
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Table 1. Impact of the parameter α on the number of edges in PMBCL, averaged on
5 densities times 6 data sets for n = 1000 variables and p = 200 samples

Numbers (% of the total) for α =
1E−1 5E−2 5E−3 5E−4

Edges in T1 998 997.9 993.2 626.8
Edges in S 52278(10.5%) 26821(5.36%) 3311(0.66%) 683 (0.13%)

is expanded and its fast convergence: the skeleton is so small that only a few
different trees can be built with those edges, and the mixture quickly has them.

On the other hand, when the skeleton is larger, tree structures learned on
bagged replica have more freedom, which allows the consideration of more can-
didate structures and leads to a more effective variance reduction.

Effect of the Learning Set Size p. To further analyze the relative behavior
of the different methods, we increased the size p of learning samples to 600 and
1000. Results, reported in Figs 2(c,e), show that the most noticeable change is
that the different methods now start from different initial points: the CL tree
becomes initially better than a tree learned on a bagged replica. The advantage
of the first PMBCL tree with the smallest value α is decreasing. We deem that
both observations are a consequence of the improved precision of the mutual
information estimate derived from a larger data set.

Now that the estimations of the “good” edges are better, reducing α seems to
have an opposite effect on the improvement rate of PMBCL. Notice that, while
at m = 100, the lowest α still seems better on average, confidence intervals (not
displayed) suggest that the different methods cannot really be distinguished.

The Warm Start ISH is now doing far worse than the Mixture of Bagged CL
Trees. We conjecture that the larger sample size leads to less variation in the
mutual informations computed from bootstrap replicas, leading to slower moves
in the space of tree structures for this method.

Effect of the Problem Dimensionality n. Modifying the number of vari-
ables has mostly an effect on the ISH methods, since it impacts the relative
number of edges considered at each iteration, and thus the exploration speed
of the MI matrix. Smaller numbers of variables therefore should accelerate the
convergence of this method. Figures 2(a,b,d), provide a global picture of the rel-
ative performances of the considered methods, with n = 200 and over a longer
horizon m = 500 of averaging. These simulations show that both inertial meth-
ods converge to the same point. Therefore, and despite a better improvement
rate at the beginning, sampling structures far from the optimal one (in the orig-
inal ISH method) does not improve the mixture. Based on this observation, one
might actually be tempted to remove the first terms of that mixture, hoping for
an improved convergence speed. We however believe that considering all edges
in the first step of the method (the Warm Start variant) is more productive,
since the method is directly initialized in the neighborhood of good structures.
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(a) 200 variables, 200 samples.
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(b) 200 variables, 600 samples.
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(c) 1000 variables, 600 samples.
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(d) 200 variables, 1000 samples.
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(e) 1000 variables, 1000 samples.

Fig. 2. Overview of accuracy performances of the different algorithms described in this
paper, with n = 200 or n = 1000 variables (left vs right), and for increasing sample
sizes p (200, 600 and 1000, from top to bottom). Vertical axis: KL divergence to the
target density estimated by Monte Carlo on 50,000 test observations, averaged over 5
target densities and 6 learning sets for each one. Horizontal axis: number m of mixture
terms used by the different methods (except for the CL tree method, using a single
tree).
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Fig. 3. Modifying the number of edges considered at each step only affects ISH when
all edges are not considered in the first iteration (shown here for n = 1000, p = 1000)

Inertial Search Heuristics. Modifying the number of edges considered at each
iteration in both variants of ISH, as depicted in Fig. 3, shows that the exploration
of the MI matrix affects the convergence of the base method. Indeed, doubling
(C = 2) or dividing by two (C = 0.5) the number of edges explored has a huge
impact on its convergence, while it hardly affects the Warm Start version.

5.2 Computing Times

Our experiments were performed on a grid running ClusterVisionOS and com-
posed of pairs of Intel L5420 2.50 Ghz processors with either 16 or 32 GB of
RAM. Due to the environment, run time for a method can vary a lot, and we
therefore decided to report relative minimum running time for every method.
Those results are displayed in Table 2 and 3 for respectively 200 and 1000 vari-
ables / 500 and 100 trees. Results for PMBCL are reported for α = 0.005.

Those numbers show that the proposed methods (lower part of the table) are
roughly an order of magnitude faster than the standard bagging method, and
this relative speed-up is stronger in the higher dimensional case. Also, as we saw
from the accuracy results, these methods converge as quickly as bagging.

If one is considering parallelizing those methods at a high level, namely by
computing trees individually on different cores, Bagged mixtures of CL Trees
and PMBCL are the best candidates, since the trees in these methods are inde-
pendent (independent conditionally on the first tree in the case of PMBCL). In
the two ISH methods, each tree depends on the previous one, and parallelizing
is hence more difficult. But, at a lower level, all algorithms could take advantage
of the parallelization of the computation of a MWST.

Overall, the PMBCL method appears as the most appealing method; it always
combines fast convergence (as fast as bagging) when the number of terms of the
mixture is increased and, from the computational point of view, it is also the most
efficient one among those that we investigated, about 20-30 times faster than
bagging in realistic conditions; furthermore it is easy to parallelize. Neverteless,
the inertial heuristic with warm start is competitive as well.
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Table 2. Serial minimum computing times (given for n = 200 variables)

Method Complexity running time (500 trees - except CL)
200 samples 600 samples 1000 samples

Chow-Liu n2 log(n) 1 3.07 5.3

Bagged CL Trees mn2 log(n) 532 1531 2674
ISH mn log(n) 45 186 432

PMBCL n2 + mK(α) log(K(α)) 21 82 191
Warm Start ISH n2 log(n) + mn log(n) 45 192 406

Table 3. Serial minimum computing times (given for n = 1000 variables)

Method Complexity running time (100 trees - except CL)
200 samples 600 samples 1000 samples

Chow-Liu n2 log(n) 37 98 174

Bagged CL Trees mn2 log(n) 5037 11662 19431
ISH mn log(n) 181 800 1433

PMBCL n2 + mK(α) log(K(α)) 139 612 1005
Warm Start ISH n2 log(n) + mn log(n) 218 766 1359

Note that convergence speed may vary between methods, and some might
require fewer iterations before performance (almost) stabilizes.

6 Conclusion

In this paper we have studied variance reduction oriented model averaging tech-
niques for density estimation, using probabilistic graphical models and more
precisely mixtures of Markov trees. Those models are particularly suited for
problems defined on very high dimensional spaces due to their scalability.

The contributions of this paper are the proposal of algorithms for learning
mixtures of Markov trees designed to approach the quality of approximation of
mixtures of bagged Chow-Liu trees at a lower computational cost, and the study
of their main properties. The bottleneck of the baseline bagging method is the
quadratic number of edges considered for building the structure of each Markov
tree of the ensemble. This is problematic since it may lead to restricting the total
number of trees in the mixture, while on the other hand larger numbers of trees
would yield more accurate models. The main idea behind our proposals is to use
the information obtained from the computation of a first tree of the mixture so
as to simplify the computation of the subsequent trees of the mixture.

We have demonstrated on synthetic datasets the interest of Markov trees av-
eraging over regularizing a single Chow-Liu tree. For example, when enough
Bagged Chow-Liu trees are averaged, they outperform that single model. Like-
wise, we have shown that our approximation schemes match the accuracy of
bagging better than existing alternatives. Among the proposed methods, the
most robust and computationally efficient one (PMBCL) defines a set of candi-
date edges by selecting all edges computed at the first iteration that are better
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than a constant complexity “edge penalty”, and subsequently only considers
those edges for building remaining ensemble terms. The approximation schemes
that we have proposed were in our experiments one order of magnitude faster
than Mixtures of Bagged Chow-Liu Trees.

Other variants of our methods could be investigated in the future. For exam-
ple, it might be interesting to perform a looser selection of edges at the first iter-
ation, and to include additional regularization when learning subsequent terms,
or vice versa. This might further ease the calibration of the tradeoff between
computational complexity gains and variance reduction potential.
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