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Abstract. In many fields, such as bioinformatics or multimedia, data
may be described using different sets of features (or views) which carry
either global or local information. Some learning tasks make use of these
several views in order to improve overall predictive power of classi-
fiers through fusion-based methods. Usually, these approaches rely on
a weighted combination of classifiers (or selected descriptions), where
classifiers are learned independently. One drawback of these methods is
that the classifier learned on one view does not communicate its failures
within the other views. This paper deals with a novel approach to inte-
grate multiview information. The proposed algorithm, named Mumbo, is
based on boosting. Within the boosting scheme, Mumbo maintains one
distribution of examples on each view, and at each round, it learns one
weak classifier on each view. Within a view, the distribution of exam-
ples evolves both with the ability of the dedicated classifier to deal with
examples of the corresponding features space, and with the ability of
classifiers in other views to process the same examples within their own
description spaces. Hence, the principle is to slightly remove the hard
examples from the learning space of one view, while their weights get
higher in the other views. This way, we expect that examples are urged
to be processed by the most appropriate views, when possible. At the
end of the iterative learning process, a final classifier is computed by a
weighted combination of selected weak classifiers.

This paper provides the Mumbo algorithm in a multiclass and mul-
tiview setting, based on recent theoretical advances in boosting. The
boosting properties of Mumbo are proved, as well as some results on
its generalization capabilities. Several experimental results are reported
which point out that complementary views may actually cooperate under
some assumptions.
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1 Introduction

In many application domains of machine learning, such as bioinformatics or
multimedia indexing, data may be described by several sources or views [1], [2].
When facing a classification or a regression task, the use of these views might be
of great interest, since each view is supposed to carry some information that the
other views would not embed. Fortunately, there exist many methods to select
the most informative sources, or set of features, that either best discriminate
data concepts or best describe one concept among others [3] [4].

Most of these selective methods are statistically founded, which means that
they tend to disregard localized – isolated – information although it could be
useful to compensate the lack of performance on some (group of) learning exam-
ples. Indeed, real-life data descriptions are often noisy. When the noise rate of a
set of feature descriptions reaches a threshold, which depends on the problem,
no learning algorithm has been proved, neither theoretically nor empirically, to
be able to overcome the noise disruption on the generalization capabilities of
classifiers. Yet, multiview learning approaches should enable some localized fail-
ures of classifiers trained on one view, to be compensated by – or subordinated
to – the abilities of classifiers on the other views.

Up to now, several approaches of multiview learning have been developed,
most of them in the semi-supervised setting. The first of them was the well-
known Co-Training algorithm [5], which was based on far too much restrictive
assumptions [6]. Other semi-supervised multiview algorithms have then been de-
veloped and theoretically founded, all of them promoting the agreement between
views [7] [8] [9], except for the semi-supervised boosting approach presented in
[10]. No compelling application on real-life problems has promoted these ap-
proaches yet, although many problems would actually need a multiview learning
process.

In addition, in the supervised setting, leveraging the performances of classi-
fiers learned on different views has mainly been performed through fusion-based
methods, either early or late fusion [11] [12]. Early fusion consists in grouping
(selected) descriptions of the different views into a large vector, and then to learn
a classifier on this resulting view. On the opposite, late fusion allows one clas-
sifier per view to be learned, while the final classifier is a combination of them.
Usually, late fusion performs better than early fusion. Yet, none of them leads
to good performances when the views are of unbalanced informative content, for
weaker views tend to reduce the final performances. An empirical comparison of
these methods applied on multimedia problems is presented in [13].

Whatever the fusion-based approach is, it relies on a weighted combination of
classifiers (or selected descriptions), where classifiers are learned independently.
One drawback of these methods is that the classifier learned on one view does not
communicate its failures to the other views. Besides, views must be independent
in order for the combined classifier to be most accurate.

Yet, we think it could be interesting that, when the classifier on a view fails
on a region of examples in the instance space, it could entrust the other views
with the classification of these examples. One of the major difficulties is then
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to delimit the concerned subareas of the instance space, without loss of gener-
alization capabilities. Instead of precisely locating these subareas, we propose
an algorithm based on boosting [14] [15] whose principle is to slightly remove
the hard examples from the learning space of one view, while their weights get
higher in the other views. This way, we expect that examples are processed by
the most appropriate views.

In order to implement this principle, we designed Mumbo as a boosting-like
algorithm which works from different views on data. Each view is associated
with a weak learner, and one distribution per view is maintained (section 2).
The distributions are updated at each iteration in such a way that views com-
municate the ones to the others their capability of processing learning examples.
Hence, not only the distribution update in one view takes into account the per-
formances of that view in classifying the learning examples, but it also embeds
the performances of the other views on these examples. The properties of Mumbo
are discussed and proved in section 3: both empirical and generalization errors
are bounded. In order to warrant the boosting properties, and the generaliza-
tion error bound, we define a global distribution of examples that reflects the
overall behaviour of the algorithm within a given hypothesis space. In section
4, we present experimental results of Mumbo on synthetic data, which confirm
that Mumbo is a boosting algorithm, better than other basic fusion approaches.
Before concluding, we discuss this approach with other methods, and give some
clues to improve Mumbo (section 5).

2 The Mumbo Algorithm

2.1 Principles and Assumptions

Mumbo is a multiview boosting algorithm: each example of the learning sample
S is represented by several independent sets of features. Each one of these rep-
resentations is called a view. Eventually, these views are used to train models,
which are then used to classify other examples. Even though these models are
learned on different representations of the same examples, they are by no means
equal performance wise. Classifiers learned on some views perform better than
those learned on other views, due to the noise in the data and/or views, or the
lack of information, etc., which may be different from one representation space
to another. In other words, we may define the strength of a view as the possibil-
ity to learn a good classifier on that view. At the same time, the weakness of a
view may reflect the impossibility of learning a good classifier from the instance
space defined by this view.

More formally, let S be a sample of n tagged examples chosen according to
some distribution D over X ×Y , where X is some instance space and Y is some
class space. Let V be a view, H be the space of all the hypothesis that we can
learn on V and h be the best classifier that we can learn on this space. Finally,
let ρ be the error of random guessing over S and σV ≤ ρ be the lower bound of
the error of h on S. We define the notion of weak and strong view as follows : V
is called a strong view if σV is near 0 and V is called a weak view if γV = ρ−σV

is near 0.
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Mumbo has been designed in order to learn a classifier in a multiview setting,
where views are supposed to be of different strengths. More specifically, we sup-
pose that among the views, there exists one strong major view V , and several
weaker minor views v1, · · · , vz.

In our setting, γV is supposed to be greater than γv1 , · · · , γvz .
For example, in speech recognition, three usual views for describing a speech

(or dialog) to be classified, are known to be of unequal strength [16]. The major
view is the lexical analysis of a speech (syntactic trees, for example); other minor
views may be the prosodic information, and syntactic information. Although
the major view allows to learn rather good classifiers, researchers in speech
recognition still use minor views for learning in order to compensate the failures
of the major view in case of noise disruptions [17].

As pointed out in the introduction, the basic principle of Mumbo is to encour-
age each view v to focus on the examples that are hard to process in other views,
and easy to process in v. Hence, it assumes that if one representation space does
not embed information on one (set of) examples, part of that information can
be provided by other representation spaces.

2.2 Framework and Notations

In this paper, we present Mumbo within the framework defined by [15], where
basically γ denotes the edge of a classifier with regards to random. We use the
following typings:

– matrices are denoted by bold capital letters like C; element of row i and
column j in matrix C is denoted C(i, j), and C(i) is the row i of C.

– M · M’ denotes the Frobenius inner product of two matrices.
– the indicator function is denoted by �[·], and the cartesian product is denoted

by X1 × X2.

Let S = {(x1, y1), ..., (xn, yn)} be the learning sample, where xi ∈ X , and yi ∈ Y
is the class of the example xi. The set of classes is Y = {1, ..., k}. The set of
features X is made up of different subsets: X = X1 × ... × Xm. Each subset
represents a view, as in [18]. Then, the representation of example xi within view
m is written xi,m

1.
In this paper we use the definition of weak classifier as defined in [15], that

is a classifier whose performance on a cost matrix is better than that of some
edge-over-random γ baseline.

Definition 1 (edge-over-random baseline and cost matrix, by Mukher-
jee et al. [15]). The edge-over-random baseline B ∈ Beor

γ ⊆ �
n×k, where Beor

γ is
the space of edge-over-random baselines, is γ more likely to predict the correct la-
bel rather than an incorrect one on every example i: ∀l �= yi, B(i, yi) ≥ B(i, l)+γ,
with equality holding for some l.

The edge-over-random cost matrix C puts the least cost on the correct label,
i.e. the rows of the cost matrix come from the set

{
c ∈ �

k : ∀l, c(yi) ≤ c(l)
}
.

1 When possible, we simplify xi,m to xi in the scope of view m.
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Definition 2 (edge-over-random baseline in the Mumbo setting). The
edge-over-random baseline used in this paper is a cost matrix Uγ defined as
follows: Uγ(i, l) = (1 − γ)/k + γ if l = yi and Uγ(i, l) = (1 − γ)/k if l �= yi.

The 1ht,m matrix is the prediction matrix defined as 1ht,m(i, l) = 1 if ht,m(i)
= l and 1ht,m(i, l) = 0 if ht,m(i) �= l.

Definition 3 (edge-condition, by Mukherjee et al. [15]). Let C ⊆ �
n×k

and matrix B ∈ Beor
γ , an eor-baseline; we say that a weak classifier h satisfies

the edge condition if C · 1h ≤ C · B
In the case of binary classification, the ith row of the baseline Uγ is (1

2 (1 −
γ), 1

2 (1 + γ)) if the label of example i is +1, and (1
2 (1 + γ), 1

2 (1 − γ)) if the
label of example i is −1. A given classifier h satisfies the edge condition if∑

i

C(i, h(i)) ≤ ∑

i

{
(1
2 − γ

2 )C(i, yi) + (1
2 + γ

2 )C(i, yi)
}

and [15] shows that this

condition is equivalent to the usual weak learning condition for binary classifi-
cation.

2.3 The Core of Mumbo

Mumbo (algorithm 1) is an attempt to promote the collaboration between major
and minor views, in order to enhance the performances of classifiers usually
learned only on the major view. It is a boosting algorithm theoretically founded
on the framework presented in [15].

Y is not limited to {−1, +1}, since we are in the multiclass setting, based on
the theoretical approach of [15], whose one of the main ideas is to replace the
weights of the examples with a cost matrix. We use the same idea here: C is a
cost matrix so that C(i, l) is the cost of assigning the label l to the example i.
Since we deal with more than one view, we use one cost matrix Cj per view j,
and a global cost matrix CG. Thus m + 1 cost matrices are maintained.

Mumbo runs for T rounds: at each round t, a weak learner is trained on each
view v, which returns m weak classifiers ht,m. These weak classifiers must satisfy
the weak learning condition given in definition 3. For each ht,j , we compute a
parameter αt,j that measures its importance depending on the edge of the ht,j

on the cost matrix Ct,j (c.f. algorithm 1).
As stated before, one of the main ideas of Mumbo is to have some sort of col-

laboration between the different views. This idea is implemented in two different
parts of this algorithm: first during the update of the m cost matrices, and second
when choosing the classifier ht selected at round t in the final combination.

The update of each cost matrix depends on all the classifiers. The ith line,
corresponding to the example xi in the matrix of the view j, is updated only
if the classifier learned on this view classifies correctly xi OR if all the m − 1
other weak classifiers misclassify it. Intuitively this means that a view gives up
on the hardest examples and lets the other views handle them. In the scenario
of one major and several minor views, this allows the minor views to focus on
the hardest examples of the major view.
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Algorithm 1. Mumbo: MUltiModal BOosting
Given

– S = {(x1, y1), ..., (xn, yn)} where xi ∈ X1 × X2 × ... × Xm, yi ∈ {1, ..., k}
– m weak learning algorithms WL

– T the number of iterations
– a baseline B (edge-over-random prior baseline)

Initialize (∀i ∈ {1, · · · , n}, ∀j ∈ {1, · · · , m}, ∀l ∈ {1, · · · , k}):
f0,j(i, l) = 0

C0,G(i, l) = C0,j(i, l) =

{
1 if yi �= l

−(k − 1) if yi = l
where C0,G is the global cost matrix

for t = 1 to T do

Train WL using Ct−1,1, ...,Ct−1,m

for j = 1 to m do

Get ht,j satisfying the edge condition on B, and compute edge δt,j on Ct−1,j ,

and αt,j = 1
2

ln
1+δt,j

1−δt,j

end for

Update cost matrices (for each view j = 1 · · ·m):

Ct,j(i, l) =

⎧
⎪⎨

⎪⎩

exp(ft,j(i, l) − ft,j(i, yi)) if l �= yi

−
k∑

p=1;p �=yi

exp(ft,j(i, p) − ft,j(i, yi)) if l = yi

where ft,j(i, l) =
t∑

z=1
�[hz,j(i) = l]αz,jdz,j(i)

and dz,j(i) =

{
1 if hz,j(i) = yi or � ∃q ∈ {1, ...,m}, hz,q(i) = yi

0 else

Choose ht = argmax
ht,j

(edge ht,j on Ct,G) and δt = {edge of ht on Ct,G}

Compute αt = 1
2

ln 1+δt
1−δt

Update Ct,G :

Ct,G(i, l) =

⎧
⎪⎨

⎪⎩

exp(ft,G(i, l) − ft,G(i, yi)) if l �= yi

−
k∑

j �=yi

exp(ft,G(i, j) − ft,G(i, yi)) if l = yi

where ft,G(i, l) =
t∑

z=1
�[hz,m(i) = l]αz,m

end for

Output final hypothesis : H(x) = argmax
l∈1,...,k

fT (x, l), where fT (i, l) =
T∑

t=1
�[ht(i) = l]αt,m

In the last part of each round t, Mumbo chooses the classifier ht among the
m that minimizes the error on the global cost matrix. The confidence αt is
computed for ht, based on its edge on the global cost matrix. Finally, the global
cost matrix is updated, in a similar way that in the adaptive case of the OS
algorithm [15].

The final hypothesis H is a weighted vote of the T selected weak classifiers
ht, and αt is the weight assigned to ht.
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3 Properties of Mumbo

In this section, we present two properties of the Mumbo algorithm that together
ensure it is a boosting algorithm. We first show that the update rules for the
cost matrix of each view, as presented in the previous section, actually reduce
the training error on this view. We then prove that the criterion for choosing the
unique ht at each step t, and eventually the update rule, allows Mumbo to be
a safe boosting algorithm: the training error decreases with rounds. The most
important property, a bound on the generalization error of Mumbo, is proved.

3.1 Bounding the Training Error on Each View

One property of Mumbo is that we can bound the empirical error made by the
final classifiers of one view, when views are considered independently. We give a
formal proof of this property, then we define a way of computing αt,m in each
round t for each view m in order to prove the decreasing of the empirical error
of the final combination of weak classifiers.

Theorem 1 is an adaptation to Mumbo of the lemma presented in the supple-
ment of [15].

Theorem 1 (bounding the empirical error in view m). For a given view
m, suppose the cost matrix Ct,m is chosen as in the algorithm 1, and the returned
classifier ht,m satisfies the edge condition for the baseline Uγm and cost matrix
Ct,m, i.e. Ct,m · 1ht,m ≤ Ct,m ·Uγm .

Then choosing a weight αt,m > 0 for ht,m makes the error εt,m =
n∑

i=1

∑

l �=yi

exp(ft,m(i, l) − ft,m(i, yi)), at most a factor

τt,m = 1 − 1
2

(exp(αt,m) − exp(−αt,m))δt,m +
1
2

(exp(αt,m) + exp(−αt,m) − 2)

of the loss before choosing (αt,m), where δt,m is the edge of ht,m, δt,m = Ct,m ·
Uγm −Ct,m · 1ht,m .

Proof
Let S+ be the set of the examples correctly classified by ht,m, S− the set of the
examples misclassified by all the m classifiers returned by WL, and S−+ the set
of the examples misclassified by ht,m and correctly classified by at least one of
the other ht,j, j �= m.

In order to simplify the reading of the proof, we introduce the quantities:
Lt,m(i) =

∑

l �=yi

exp(ft,m(i, l) − ft,m(i, yi)), and ζt,m(i, l) = ft,m(i, l)−ft,m(i, yi).

Using the edge condition we have :

Ct,m · 1ht,m ≤ Ct,m ·Uδt,m (1)



216 S. Koço and C. Capponi

The left and right sides of equation 1 can be rewritten as:

Ct,m · 1ht,m = −
∑

i∈S+

Lt−1,m(i) +
∑

i∈S−
exp(ζt−1,m(i, ht,m(xi))) +

∑

i∈S−+

exp(ζt−1,m(i, ht,m(xi)))

Ct,m · Uδt,m =
∑N

i=1

(
−Lt−1,m(i)(

1−δt,m
k + δt,m) + Lt−1,m(i)(

1−δt,m
k )

)
= −δt,m

∑

i

Lt−1,m(i)

So, using the edge condition 1 we obtain:

−
∑

i∈S+

Lt−1,m(i)+
∑

i∈S−
exp(ζt−1,m(i, ht,m(xi)))+

∑

i∈S−+

exp(ζt−1,m(i, ht,m(xi))) ≤ −δt,m

∑

i∈S

Lt−1,m(i)

hence:
∑

i∈S+

Lt−1,m(i) −
∑

i∈S−∪S−+

exp(ζt−1,m(i, ht,m(xi))) ≥ δt,m

∑

i∈S

Lt−1,m(i) (2)

In order to compute the drop in loss after choosing ht,m with weight αt,m, let
us consider three cases:

1. For i ∈ S+:
We have ft,m(i, l) − ft,m(i, yi) = ft−1,m(i, l) − (ft−1,m(i, yi) + αt,m), then:

Δ+ =
∑

i∈S+

− Lt,m(i)− ∑

i∈S+

− Lt−1,m(i) =
∑

i∈S+

− exp(−αt,m)Lt−1,m(i)− ∑

i∈S+

− Lt−1,m(i)

= (1− exp(−αt,m))
∑

i∈S+

Lt−1,m(i)

2. For i ∈ S−:

Δ− =
∑

i∈S−
exp(ft,m(i, ht,m(i))− ft,m(i, yi))−

∑

i∈S−
exp(ft,m(i− 1, ht,m(i))− ft−1,m(i, yi))

=
∑

i∈S−
exp(ft−1,m(i, ht,m(i)) + αt,m − ft−1,m(i, yi))−

∑

i∈S−
exp(ft−1,m(i, ht,m(i))− ft−1,m(i, yi))

= (exp(αt,m)− 1)
∑

i∈S−
exp(ft−1,m(i, ht,m(i))− ft−1,m(i, yi))

= (exp(αt,m)− 1)
∑

i∈S−
exp(ζt−1,m(i, ht,m(xi)))

3. For i ∈ S−+:

Δ−+ =
∑

i∈S−
exp(ft,m(i, ht,m(i))− ft,m(i, yi))−

∑

i∈S−
exp(ft−1,m(i, ht,m(i))− ft−1,m(i, yi))

=
∑

i∈S−
exp(ζt,m(i, ht,m(xi)))−

∑

i∈S−
exp(ζt−1,m(i, ht,m(xi)))

= 0 since the value of ft,m does not change for these examples
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So, the drop in loss Δ = Δ+ − Δ− − Δ−+ is:

= (1 − exp(−αt,m))
∑

i∈S+

Lt−1,m(i) − (exp(αt,m) − 1)
∑

i∈S−
exp(ζt−1,m(i, ht,m(i)))

=
(

exp(αt,m)−exp(−αt,m)
2

)
(
∑

i∈S+

Lt−1,m(i) − ∑

i∈S−
exp(ζt−1,m(i, ht,m(i)))

)

−
(

exp(αt,m)+exp(−αt,m)−2
2

)
(
∑

i∈S+

Lt−1,m(i) +
∑

i∈S−
exp(ζt−1,m(i, ht,m(i)))

)

≥
(

exp(αt,m)−exp(−αt,m)
2

)
(
∑

i∈S+

Lt−1,m(i) − ∑

i∈S−∪S−+

exp(ζt−1,m(i, ht,m(i)))

)

−
(

exp(αt,m)+exp(−αt,m)−2
2

)
(
∑

i∈S+

Lt−1,m(i)+
∑

i∈S−∪S−+

exp(ζt−1,m(i, ht,m(i)))

)

Using the result we obtained in equation 2 and the fact that
exp(ζt−1,m(i, ht,m(i))) ≤ Lt−1,m(i), we can give a lower bound of the loss drop:

Δ ≥
(

exp(αt,m)−exp(−αt,m)

2

)
δt,m

∑

i

Lt−1,m(i)

−
(

exp(αt,m)+exp(−αt,m)−2

2

)
(
∑

i∈S+

Lt−1,m(i) +
∑

i∈S−∪S−+

Lt−1,m(i)

)

≥
(

exp(αt,m)−exp(−αt,m)

2

)
δt,m

∑

i

Lt−1,m(i) −
(

exp(αt,m)+exp(−αt,m)−2

2

)∑

i

Lt−1,m(i)

≥
(

exp(αt,m)−exp(−αt,m)

2
δt,m − exp(αt,m)+exp(−αt,m)−2

2

)∑

i

Lt−1,m(i)

Hence the loss 1−Δ at round t is at most a factor 1− 1
2 (exp(αt,m)−exp(−αt,m))δt,m

+ 1
2 (exp(αt,m) + exp(−αt,m) − 2) of the loss in round t − 1. �

We proved that, in each view, the training error (cost) decreases. Based on
theorem 1, and tuning αt,m to 1

2 ln 1+δt,m

1−δt,m
, we get the following bound on the

empirical error of the classifier Hm obtained by the weighted combination of
weak classifiers learned in view m after T iterations:

εT,m ≤ (k − 1)
T∏

t=1

√
1 − δt,m ≤ (k − 1) exp

{

−1
2

T∑

t=1

δ2
t,m

}

(3)

This result shows that Mumbo is a boosting algorithm even when the selected
weak classifier always comes from the same view m for all steps. This might occur
when the major view is far better than minor views for all training examples.

3.2 Bounding the Whole Empirical Error

At each step t of the algorithm 1, one classifier is selected among m weak classi-
fiers, if m is the number of views, that is, the space of weak hypothesis H in this
case is {ht,1, · · · , ht,m}. This space is a particular case of the space of hypothesis
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used by the OS algorithm, thus we obtain the same bound on the empirical error
as the OS algorithm, that is :

εT ≤ (k − 1)
T∏

t=1

√
1 − δt,m ≤ (k − 1) exp

{

−1
2

T∑

t=1

δ2
t,m

}

(4)

In practice, one may observe that the edges of the classifiers at step t are all
negative. In such a case, since each weak classifier of view v is trained on a
subset of the learning samples randomly drawn from the current distribution of
v, iterating the learning step until γv is positive allows the algorithm to fulfill
the conditions.

3.3 Results in Generalization

We show here that the generalization error of the final hypothesis learned by
Mumbo after T iterations can be bound, and this bound converges towards 0
with the number of iterations.

The generalization error of a classifier is defined as the probability to mis-
classify any new example. For multiclass algorithms such as AdaBoost.MR, [19]
shows that the generalization error of the final hypothesis can be bound and
that it is related to the margins of the learning examples. We thus first recall
the definitions of the bound on the generalization error, then we extend existing
results to Mumbo.

Generalization Error for Multiclass Problems. The final hypothesis of
Mumbo is a multi class classifier, thus its output space can be defined as Y =
{1, 2, ..., k}. In this section, the weak classifiers h ∈ H are defined as mappings
from X×Y to {0, 1}, where X is some description space. The label y is predicted
as a potential label for xi if h(x, y) = 1. Note that these classifiers are equivalent
to �[ht(x) = l], the weak classifiers described in the algorithm.

Let C denote the convex hull of H, that is :

C =

{

f : (x, y) →
∑

h∈H
αhh(x, y)|αh ≥ 0 and

∑

h

αh = 1

}

For a given example x and a label y, a classifier f in C predicts y as the class of
x if argmax

l∈Y
f(x, l) = y. The margin of an example is then defined as :

margin(f, x, y) = f(x, y) − max
l �=y

f(x, l)

The function f misclassifies an example x if the margin given by f on the couple
(x, y) is negative or zero.

Using the previous definitions, Schapire et al. give a proof of theorem 2 [19]:

Theorem 2 (Schapire et al., [19]). Let D be a distribution over X × Y , and
let S be a sample of n examples chosen independently at random according to
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D. Assume that the base-classifier2 space H is finite, and let δ > 0. Then with
probability at least 1 − δ over the random choice of the training set S, every
function f ∈ C satisfies the following bound for all θ > 0 :

PD[margin(f, x, y) ≤ 0] ≤ PS [margin(f, x, y) ≤ θ]+O

(
1√
n
+

(
log(nk) log(|H|)

θ2
+ log(1/δ)

)1/2
)

More generally, for finite or infinite H with VC-dimension d, the following bound
holds as well, assuming that n ≤ d ≤ 1 :

PD[margin(f, x, y) ≤ 0] ≤ PS [margin(f, x, y) ≤ θ]+O

(
1√
n
+

(
d log2(nk/d)

θ2
+ log(1/δ)

)1/2
)

In theorem 2, the term PD[margin(f, x, y) ≤ 0] is the generalization error of the
function f . The term PS [margin(f, x, y) ≤ θ] is the empirical margin error of f
on the sample S, that is, the proportion of examples of S which are misclassified,
or which are correctly classified but with a margin smaller than θ. In the following
section, we use εθ(f, S) instead of PS [margin(f, x, y) ≤ θ].

The second term in the theorem is a complexity penalization cost.

Mumbo. Theorem 2 holds for every voting method using multiclass classifiers
as weak classifiers; it thus also holds for Mumbo since his final hypothesis is
HT (x) = argmax

l∈1,2,...,k
fT (x, l), where :

fT (x, l) =

(
T∑

t=1

ht(x, l)αt

)

/
T∑

t=1

αt

The weak classifier ht chosen at each iteration is selected from a set of classifiers
{ht,1, ..., ht,m}. These classifiers are selected from potentially different spaces of
hypothesis, namely H1, ...,Hm. Thus the space of hypothesis H from which ht

is selected is the union of H1, ...,Hm. We deduce by the definition of the VC-
dimension [20] that dH = min{dH1, ..., dHm}.

We still have to prove that the generalization error decreases with the number
of iterations. To do so, it is sufficient to prove that the empirical margin error

decreases, since the term O

(
1√
n

+
(

d log2(nk/d)
θ2 + log(1/δ)

)1/2
)

is a constant.

We start with showing that we can find a bound for εθ(fT , S).

Lemma 1. The empirical margin error of Mumbo after T iterations is bounded
by:

εθ(fT , S) ≤ (k − 1)
n

(
T∏

t=1

(1 + δt)
1+θ
2 (1 − δt)

1−θ
2

)

2 Note : the base-classifiers are referred to as weak classifiers in our paper.
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Proof
Let l = argmax

y′ �=y
f(x, y′). For readability reasons, we may write

∑

t
instead

of
T∑

t=1
.

By the definition of the margin and f , we get :

margin(f, x, y) = f(x, y) − f(x, l) =

∑

t
ht(x, y)αt

∑

t
αt

−
∑

t
ht(x, l)αt

∑

t
αt

Hence,

margin(f, x, y) < θ ⇔
∑

t
ht(x,y)αt

∑

t
αt

−
∑

t
ht(x,l)αt

∑

t
αt

≤ θ

⇔ θ
∑

t
αt −

(
∑

t
ht(x, y)αt −

∑

t
ht(x, l)αt

)
≥ 0

Let Ai = −
(
∑

t
αtht(xi, y) −∑

t
αtht(xi, l)

)
and B = θ

∑

t
αt. We deduce that

P[margin(f, xi, y) ≤ θ] = 1 ⇔ Ai + B ≥ 0, that is, exp(Ai + B) ≥
P[margin(f, x, y) ≤ θ]. Thus, εθ(fT , S) ≤ 1

n

n∑

i=1

exp(Ai) exp(B).

εθ(fT , S) ≤ 1
n

n∑

i=1

exp(Ai) exp(B)

≤ 1
n

n∑

i=1

exp
(
−(
∑

t
αtht(xi, y) −∑

t
αtht(xi, l))

)
exp(θ

∑

t
αt)

≤ 1
n

n∑

i=1

exp (−(fT (xi, y) − fT (xi, l))) exp(θ
∑

t
αt)

≤ 1
n

n∑

i=1

∑

y′ �=y

exp (fT (xi, y
′) − fT (xi, y)) exp(θ

∑

t
αt)

Using the bound on the empirical error, we deduce :

εθ(fT , S) ≤ 1
n

exp(θ
∑

t

αt)(k−1)
∏

t

√
1−δ2

t ≤ 1
n

exp(θ
∑

t

1
2

ln( 1+δt
1−δt

))(k−1)
∏

t

√
1−δ2

t

≤ 1
n

∏

t

( 1+δt
1−δt

)
θ
2 (k − 1)

∏

t

√
1 − δ2

t ≤ (k−1)
n

(
∏

t

(1 + δt)
1+θ
2 (1 − δt)

1−θ
2

) �

The lemma 1 gives a bound on the empirical margin error. As it was shown in
[19], if θ < δt/2, then (1 + δt)

1+θ
2 (1 − δt)

1−θ
2 < 1. We thus finally claim that the

generalization error decreases with the number of iterations:

Theorem 3. Let θ > 0 be a fixed margin, then the empirical margin error
εθ(fT , S) converges towards 0 with the number of iterations, if the edge of the
weak hypothesis selected at each iteration is > 2θ.
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Theorem 3 and the bound given in theorem 2 together prove that the gener-
alization error of the final hypothesis of Mumbo decreases with the number of
iterations. Indeed, the second term of the bound in theorem 2 is a constant, since
all the parameters, including dH, are constant in a given problem, and theorem 3
proves that the first term of the bound decreases with the number of iterations.

4 Experiments on Mumbo

In order to empirically validate and illustrate this approach of multiview learning
with boosting, we mainly used synthetic data that obey the underlying assump-
tions of Mumbo. After explaining the used protocol, this section presents and
discusses the results of experiments.

4.1 Protocols

Data Generation. Data is generated within 3 views, and clustered in two
classes {−1, +1}. In each view, the descriptions of examples are vectors of real
values. Examples of each class y in view v are generated along a gaussian dis-
tribution G[my,v, σy,v]. However, in order to generate weak views, two types of
noise disrupt the sample:

– in each view, the distributions of classes may overlap: some examples are
likely to belong to both classes3.

– In each view, some examples are generated using a uniform distribution, the
same for both classes. Let η be the rate of such a description noise (ηM is
the noise rate of the major view, while ηm is the noise rate of minor views).

One major view is generated. The two minor views are generated with ηm =
3−2ηM

4 in such a way that half of the noisy examples in view M are likely to
be sane in minor views. Figure 1 pictures an example of a learning sample with
n = |S| = 20 examples per class.

We can associate the disruption amount (distribution overlap and noise on de-
scriptions) with the edge-over-random capabilities of weak-classifiers. The more
disruption we have in a view, the more γv is low on that view. Such a sample
generation process was designed in order to fit the assumptions that lead to the
design of Mumbo: views are rather weak, and learning a classifier on the whole
sample needs a cooperation between learners on each view, because information
may be distributed among views.

Processing Experiments. Each weak classifier on view v is obtained by train-
ing a linear SVM on a subsample of examples randomly drawn from the current
distribution (cost matrix) of v. We check that each weak classifier trained on the
view v complies with the definition of weak classifiers in the theoretical scheme
of [15], using B=U. Results are the mean of 10 experiments: one experiment

3 For these examples x, P (y = +1|x) = P (y = −1|x)).
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Fig. 1. Each example of the learning sample is represented under three views: the major
view is on top, with ηM = 0.38; other views are minor (bottom), with ηm = 0.56. The
ovals picture the parameters of the examples distribution within each class. The same
example is pointed out in each view, in order to illustrate the distribution of information
among views.

is made up of (1) the generation of learning and test samples, (2) the learning
process, and (3) the evaluation process.

As said in the introduction, Mumbo was designed as an alternative way to
fuse classifiers. We thus compare it with two basic methods of fusion, and with
Adaboost: (1) late fusion SVM: one RBF SVM is trained on each view, and the
final decision is a margin-weighted combination of their results; (2) early fusion
SVM: descriptions of each example are concatenated, then a RBF SVM is trained
on the single resulting view; and (3) early fusion Adaboost: descriptions of each
example are concatenated, then Adaboost is trained on the single resulting view,
with a RBF SVM on a subsample of examples as the weak learner.
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Fig. 2. Empirical and test errors of Mumbo (top), and Mumbo vs. Adaboost early
fusion

Classifiers performances are computed using a testing sample drawn from the
same setting that generated the learning sample, but twice bigger.

4.2 Results

We present here two kinds of results: an illustration of the behaviour of Mumbo,
and a comparison of Mumbo with basic fusion approaches.

Illustration of Boosting Properties. Figure 2 reports, on the left, the
boosting-like behaviour of Mumbo. As expected, the empirical costs on each
view decrease with iterations, and the estimation of the generalization error also
decreases. On the right, the figure pictures a first comparison of Mumbo with
Adaboost (in an early fusion setting). We obtained this results with n = |S| = 60
and ηM = 0.12, but the same outlines of behaviours are observed whatever the
parameters are (|S| from 20 to 200, and ηM from 0 to 0.5).
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Table 1. Comparison of Mumbo with early fusion and late fusion (base classifiers RBF
SVM). Note that results of Adaboost are given after 200 iterations (like Mumbo): raw
results show that Adaboost obtains slightly better results after about 50 iterations,
then tends to over-fit.

|S| = 80, ηM 0.5 0.38 0.25 0.12 0

Early+SVM 0.390 0.410 0.437 0.396 0.389

SVM+Late 0.246 0.229 0.263 0.254 0.232

Early+Adaboost 0.415 0.420 0.403 0.364 0.358

Mumbo 0.148 0.152 0.168 0.174 0.164

|S| = 120, ηM 0.5 0.38 0.25 0.12 0

Early+SVM 0.367 0.382 0.396 0.389 0.343

SVM+Late 0.198 0.225 0.240 0.208 0.279

Early+Adaboost 0.425 0.415 0.466 0.411 0.389

Mumbo 0.02 0.036 0.012 0.026 0.020

The bad results of Adaboost are not surprising. Indeed, it processes examples
on only one view that concatenates the smaller views. Since data was generated
such that half of the disrupted examples on the major view are not disrupted in
the minor views, the concatenation of descriptions leads to about 75% of noisy
data. Adaboost is well-known to be sensitive to the noise, so one cannot expect
better results, despite the true convergence of its empirical error.

In addition, which is not reported here, we observed that, whatever ηM is
(always under 0.5), weak classifiers on minor views are selected in some rounds,
in addition to the weak classifiers of the major view which are the most often
selected. First rounds tend to only select the classifiers of the major view, then
the minor views are alternatively selected with the major view. Besides, this
behaviour can be observed on the first rounds on figure 2. It empirically shows
that Mumbo actually encourages views to cooperate.

Comparison with Other Approaches. Table 1 compares Mumbo with basic
early and late fusion approaches, with various values of ηM and various sizes of
S. Late SVM is the best fusion approach with this type of data, which is not
surprising since data is partially noisy (either in description or because distri-
butions overlaps). Yet Mumbo is better for it processes the cooperation among
views, leading each view to focus on the examples disrupted in other views.

However, the learning time of Mumbo is T times longer than the learning time
of Late SVM. The collaboration slightly improves the results when the major
view is disrupted. This is quite obvious with smaller learning samples (when
|S|=15 or 30).

4.3 Discussion

As expected theoretically, the boosting usual behaviour is observed throughout
the experiments, and the results of Mumbo are very good on synthetic data.
These results validate the relevance of the Mumbo algorithm when cooperation
among views is mandatory for obtaining a strong classifier. Results on empirical
and generalization bounds of section 3 are also observed.

In further works, we should test Mumbo on UCI benchmarks. However, these
benchmarks are not designed for multiview learning. We plan to select
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relevant views on these benchmarks (one major and several minor) using PCA or
Canonical Component Analysis tools.

5 Related Works and Discussion

5.1 Related Works

So far, in the supervised setting, there is no multiview machine learning al-
gorithm that considers the representation spaces as complementary. Early and
late fusion-based approaches are only empirical ways to process the whole useful
information available on samples.

The Multiple Kernel Learning (MKL) approaches [21], which may be used to
process multiview samples, is then a costing way to rank the views. But yet,
MKL does not promote the cooperation between views: it is much like a way to
select the strongest views.

The closest approaches to Mumbo are co-training [5] and 2-boost [18]. The
former is a multiview approach in the semi-supervised setting, where views itera-
tively cooperate for producing classifiers that converge to the same final hypoth-
esis. The latter is a multiview boosting algorithm. However, Mumbo is different
from co-training, first because it works in the supervised setting, and second
because it does not assume that the classifiers actually must agree on the same
examples. Indeed, Mumbo exploits the disagreements between views. Mumbo is
thus closer to 2-Boost, although the motivations are not the same. 2-Boost is
designed for dealing with one specific weak learner per view, in order to manage
homogeneous views. Then, 2-Boost maintains only one global distribution of
examples, whereas Mumbo maintains as many distributions as views in order to
process cooperation.

Mumbo is an algorithm that may be categorized as an ensemble of classifiers,
for the final classifier is a combination of other classifiers. In the literature, it was
proved that without diversity between combined classifiers, the resulting classi-
fier can not be better than the best of the combined classifiers. Many measures
of diversity have then been studied so far [22]. We think that the hypothesis
underlying Mumbo promote such a diversity. In that sense, we aim at obtain-
ing some theoretical results between some diversity measures and classification
accuracy of Mumbo.

5.2 Discussion and Improvements

In algorithm 1, the function dz(·) indicates whether the update of the cost matrix
is possible or not. It is a discrete 0 − 1 function, which allows the update of the
cost matrix only when some conditions are met (section 2.3). However, such an
update rule might be too drastic for promoting the collaboration between views.
We think that smoothing it, by changing its range to [0, 1], could improve the
efficiency of the cooperation. Hence, in addition of having one or several views,
each specialized in some parts of the description space, the minor views could
be used more efficiently to increase the accuracy of the final predictions.
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One of the main ideas of Mumbo is to enhance as much collaboration as
possible between the views. We believe that it is possible to achieve a better
cooperation also by changing the decision rule for ht. Indeed, in algorithm 1, ht

is the best classifier among the m chosen classifiers at round t, i.e. the one that
guarantees the best edge on the general cost matrix Gt,m. Many other ways to
choose ht could be studied, namely a combination of a subset of weak classifiers,
or the choice between the weak classifier of the major view and a combination of
the classifiers on minor views, etc. Hence, many alternate selections deserve to
be studied, both theoretically (for example, in the PAC-Bayes framework [23])
and empirically.

The most urging work on Mumbo is its study on benchmark and real data. In
some domains, such as image indexing, the views are quite natural: there exists
dozens of image descriptors, either global or local, that could be considered as
complementary views (texture vs. color, etc.). In many other domains, though,
we must select the views according to the hypothesis underlying Mumbo (one
major still weak view, and many minor views). We wish to adapt statistical tools
for view selection, such as Principal Component Analysis as the simplest one.

6 Conclusion and Future Works

Mumbo is a boosting-like algorithm in the setting of multiview learning, where
views are of different strenghts with regard to a classification task. The idea
underlying Mumbo is to promote the cooperation between stronger and weaker
views. To implement this idea, the originality of Mumbo is to maintain one
distribution of examples per view, and to proceed to distribution updates that
allow some views to focus on examples that are hard to classify in other views.

Mumbo is proved to be a boosting algorithm, within the new theoretical frame-
work of [15]: the empirical error decreases with iterations, globally and within each
view. Then, the generalization error of Mumbo is proved to be bounded. Finally,
the experimental results on dedicated synthetic data give credits to the relevance
of Mumbo for encouraging the cooperation among complementary views.

For now, Mumbo is a first attempt to tackle the problem of unbalanced views
on data, and we expect to improve it both theoretically and through experiments
on benchmarks and real data.
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