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Abstract. Learning underlying mechanisms of data generation is of
great interest in the scientific and engineering fields amongst others.
Finding dependency structures among variables in the data is one possi-
ble approach for the purpose, and is an important task in data mining.
In this paper, we focus on learning dependency substructures shared
by multiple datasets. In many scenarios, the nature of data varies due
to a change in the surrounding conditions or non-stationary mecha-
nisms over the multiple datasets. However, we can also assume that the
change occurs only partially and some relations between variables remain
unchanged. Moreover, we can expect that such commonness over the mul-
tiple datasets is closely related to the invariance of the underlying mech-
anism. For example, errors in engineering systems are usually caused
by faults in the sub-systems with the other parts remaining healthy. In
such situations, though anomalies are observed in sensor values, the un-
derlying invariance of the healthy sub-systems is still captured by some
steady dependency structures before and after the onset of the error.
We propose a structure learning algorithm to find such invariances in
the case of Graphical Gaussian Models (GGM). The proposed method
is based on a block coordinate descent optimization, where subproblems
can be solved efficiently by existing algorithms for Lasso and the continu-
ous quadratic knapsack problem. We confirm the validity of our approach
through numerical simulations and also in applications with real world
datasets extracted from the analysis of city-cycle fuel consumption and
anomaly detection in car sensors.

Keywords: Graphical Gaussian Model, common substructure, block
coordinate descent.

1 Introduction

In the real world, it is common that multivariate data, such as the stock mar-
ket [I], gene regulatory networks [2], or biomedical measurements [3], to have
a complex dependency structure among variables. Such a structure is closely
tied to the intrinsic data generating mechanism, which one aims to reveal. For
example, we can expect the interaction of brain sub-regions to be reflected by
the dependency structures between fMRI signals [3].
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The dependency structure among variables also plays an important role in the
analysis of multiple datasets. It is frequently seen that datasets collected under
different conditions have different dependency structures, which is caused by a
change in the underlying mechanism [24]. On the other hand, if some relations
are common to several conditions, we can expect that background mechanism
to have a certain invariance against the change. An illustrative example is an
engineering system where system errors are observed as dependency anomalies
of sensor values [B]. These are usually caused by a fault in a sub-system. The
invariance, which in this example is the remaining healthy sub-systems, is cap-
tured by a steady dependency over the multiple datasets sampled before and
after the error onset.

Motivated by the example above, we propose a method for finding common
dependency structures from multiple datasets. In this paper, we consider the
case of the Graphical Gaussian Model (GGM) [6]. GGM is one of the most basic
models representing linear dependencies among continuous variables. Identifica-
tion of the structure was firstly studied by Dempster [7] where it was referred to
as covariance selection. Though classical approaches have encountered several
difficulties, there is a recent development on the use of ¢;-regularization [SI9JT0],
that enables the design of an efficient Graphical Lasso (GLasso) algorithm [11].
Since this breakthrough, several extensions have been proposed [BT2/T3/T4/T5].
For example, Zhang et al. [I2] used a Fused Lasso type formulation [I6] to ex-
tract structural changes in a two-sample situation. In the multi-task learning
literature [I7], joint estimation algorithms for a set of GGMs with the same
topological structures [3[I3/T4] have been studied based on a group-Lasso [I§],
while Guo et al. [I5] proposed iterative re-weighting of GLasso for estimating
multiple GGMs.

Though several GGM learning methods have been proposed, to the best of our
knowledge, there are no general techniques for finding a common substructure
from multiple datasetdl]. Tn many practical situations, such as sensor data, the
data is highly noisy and the estimated structures tend to have a high variance,
which masks the invariance we wish to detect. The scarcity of available data is
also a crucial factor in this problem. In our work, we penalized the variation in
resulting structures and formulated the common substructure learning problem
as an extension of the two approaches presented in Zhang et al. [I2] and Honorio
et al. [I3], respectively. The problem is convex and the solution is obtained
by adopting a block coordinate descent procedure [19]. We further show that
the solution to the subproblem in the coordinate descent can be classified into
three types each of which can be derived efficiently using existing methods. We
confirm the validity of our approach through numerical simulations and also in
an application with real world datasets derived from the analysis of city-cycle
fuel consumption and anomaly detection in car sensors.

! Zhang et al. [I2] considered a similar problem and although their approach provides
a common substructure, it is limited to only two-sample situations. The approach
by Chiquet et al. [I4] adopted commonness only with respect to its signs.
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The remainder of this paper is organized as follows; We first review exist-
ing methods for GGM learning and its extensions to joint estimation settings in
Section Bl We formulate the common substructure learning problem in
Section [} and then, in Section Hl we present the block coordinate descent al-
gorithm. Section [3] contains numerical simulations to show the validity of the
proposed method using synthetic and real world data. Finally, we conclude the
paper in Section

2 Structure Learning of Graphical Gaussian Model

In this section, we review the GGM estimation problem [S[9JTO/TT] and extensions
to joint estimation of multiple GGMs [12I13].

2.1 Graphical Gaussian Model

In multivariate analysis, covariance or correlation are commonly used as an indi-
cator of the relationship between two variables. However, in general, the covari-
ance between two variables x; and x; is affected by a third variable. Therefore,
we need to remove such effects to estimate the essential dependency structure,
which is obtained by searching conditional dependency among variables. If a d-
dimensional random variable = (z1, x2,. . ., xd)T is Gaussian, the conditional
dependency between two variables is expressed by a precision matrix A € R%*¢
(or inverse covariance). Under multivariate Gaussian distribution, the following
property exists:

Ajjy =0 < z; Laj | other variables (1)

where L denotes statistical independence. With this property, GGM is defined as
a graph where each node corresponds to a random variable z; and the adjacency
matrix is given by A. In a GGM, there is an edge between two nodes only if the
corresponding two variables are conditionally dependent. In the case that only
a few pairs of variables are dependent, most of the off-diagonal elements in A
are zero and the corresponding graph expression is sparse, which allows us to
visually inspect the underlying relations.

2.2 Sparse Estimation of GGM

The maximum likelihood estimator of a precision matrix is given as the inverse
of the sample covariance matrix Y. This estimator is usually dense and the
corresponding GGM is a complete graph, which states that every pair of variables
is dependent. The difficulty arises here in that this occurs even when the true
precision matrix is sparse and masks the underlying intrinsic relationships. To
avoid this unfavorable property, Meinshausen and Biithlmann [8] proposed the
use of Lasso for the sparse graph identification, which is later reformulated as a
£1-regularized maximum likelihood problem [910]:
nax £(A4; ) = pl| Al
subject to A > 0 (2)
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where p is a regularization parameter and £(A; ) is the log-likelihood of a Gaus-
sian distribution defined as

0(A; 2) =logdet A — tr (f)/l) . (3)

The constraint is imposed since /A must be positive definite as a valid preci-
sion matrix. The solution to (2]) is sparse due to the effect of an additional ¢;-
regularization term. An efficient algorithm, using a block coordinate descent [11],
is available to solve this problem.

2.3 Learning Structural Changes

When comparing two GGMs representing similar models, some common edges
may exist whose weights are close to one another. Zhang et al. [I2] proposed the
use of a Fused Lasso type regularization [16] to round these similar values to ex-
actly the same value, thus allowing only the significant differences between two
GGMs to be extracted. Their original idea is based on the work of Meinshausen
and Bithlmann [8], which can naturally be transformed to an ¢;-regularized max-
imum likelihood type setting:

2

max ) {5(/11; i) - pHAiHl} =) Mgy = Azl
i=1 it

subject to Ay, A3 =0 (4)

where p and «y are regularization parameters. The last term forces the difference
between certain elements of two matrices to be zero. They also provided an
efficient technique for solving the subproblem of (@) which makes the entire
procedure fast.

2.4 Multi-task Approach for Learning a Set of GGMs

The ordinary GGM estimation problem (2] aims to learn a single GGM from
one dataset. Apart from the GGM estimation, it is known that jointly solving
multiple similar tasks often improves the learning performance, which is referred
to as multi-task learning [I7]. Honorio et al. [I3] assumed that all GGMs have the
same topological structures, i.e., the same zero patterns in all precision matrices,
and adopted the group-Lasso [I8] approach, which is formulated as:

N
max Y ti0(Ai; 23) — p Yy max| Ayl
{Ai}izl i=1 j#5 v
subject to Ay, As,..., An =0 (5)
where p is a regularization parameter and t;,ts,...,t5 are non-negative con-

stants. The regularization term ensures that the joint structure A;;=max; [A; ;|
is sparse, where A;;; = 0 denotes that the corresponding (j,j’)-th entries are
commonly zero in all N precision matrices.
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3 Common Substructure Learning

The aim of the common substructure learning is to find a dependency structure
between variables that is invariant to changes in the surrounding conditions. For-
mally, we have N covariance matrices ﬁ‘l, 22, ey Y'n each of which is calculated
from datasets sampled under different conditions. The task is to identify com-
mon elements shared by all precision matrices A1, As, ..., Anx. To begin with, we
assume that the number of variables in each condition is the same, i.e., all have
d-dimensions. Also, the identities of each variable are the same, e.g., x; is always
the value from the same sensor while surrounding conditions may change. Then,
we define a common substructure of multiple GGMs as follows:

Definition 1 (Common Substructure of Multiple GGMs)
Let Ay, Ag, ..., AN be the corresponding precision matrices of each GGM. Then,
their common substructure is expressed by an adjacency matriz @ defined as

S A dif Ay = Asyy == ANy
iy = { otherwzse ' (6)

The common substructure defined here has an edge between nodes only if the
corresponding edge weights among all GGMs are equal. We expect to find such
a substructure in the estimated precision matrices. To that end, we impose two
regularizations and formulate the following problem:

N
max » til(Ai; Zi) =Y (Pmax/li,jj’ +ymax |4 55 — Az‘hjj’)
{A }z 1;=1 j#j, v 5
subject to A1, Ag, ..., Ay =0 (7)
where p, v are regularization parameters and t1, 2, ..., tyx are non-negative con-

stants that satisfy Zf\il t; = 1. Here, constants t; are weighting parameters,
usually chosen as t; = n;/ Zf\;1 n; where n; is the size of the i-th dataset. The
second regularization term is a generalization of the one in {@l) for N > 3, which
ensures that some entries in the resulting precision matrices are common to all
matrices. Since the second regularization does not impose any sparsity on the
resulting precision matrices, we added the joint regularization term appearing
in (B)). The resulting common substructure © is obtained by applying Definition[I]
to the estimated precision matrices /11, /12, .. AN

4 Algorithm

The problem ([7]) is a concave maximization with convex constraints. In this sec-
tion, we introduce the solution algorithm based on the block coordinate descent
method [19], where the approach is justified by the following theorem.

Theorem 1. The solution sequence generated by the block coordinate descent
for problem () is bounded and every cluster poz’m@ is a solution.

2 A point where the sequence converges.
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4.1 Block Coordinate Descent

In the block coordinate descent, we fix elements in A; corresponding to variables
T1yeveyTme1,Tm+1,--.,Lq and update entries related to a variable z,,. Since
([@) is invariant for permutations of rows and columns in matrices, we can always
arrange x,-related entries located in the last row and column. Then, we partition
each matrix into four parts, namely, one matrix, two vectors, and a scalar:

7. 2 . P, p;
A= |77, = 1+ . 8
L? w} {p? Q] )
Now, we fix Z1, Za, ..., Zy and derive the subproblem on {z;,w;}¥ :

N
max Zti {log (w,» — z;erlz,») — Qp;rzi — q,w,»}
{ziwihils i

—QZ (pmiaxzij +7I€17?;X‘Z¢j — Z,‘/j) (9)

J

where z;; is the j-th entry of z;. By setting the derivative over w; to zero, we get:
wi=2z Z7'zi+ gt (10)

Here, Z; >~ 0 and w; — z;'—Zjlzi = q[l > 0 guarantee the positive definiteness
of A;. Therefore, by choosing the initial A; to be positive definite, that property
is always preserved by the updating procedure of the block coordinate descent.
Next, by substituting (I0]) into (@), we derive:

N

min - » (qz 2] 27 z; eriTzi)JrZ <PmaX|2ij + vy max [z;; — Zz”j|) -(11)
{=: 4L, 2 > i i3’

Instead of solving this problem, we again adopt a coordinate descent approach

and further decompose it into subproblems. We solve (1) only for elements

related to the variable x,,» (m’ # m) and fix the other entries. As before, we

arrange the corresponding elements into the last of the vectors and matrices:

| Y T 51 _ | Hih;
Then, we derive the following subproblem of () over w = (w1, w2, ..., wN)":
1
min 2wTdiaug(a,)w —b"w + pl|w||so + ymax Jw; — wy| (13)
w i3/

with coefficients a; = t;q;9; and b; = —t; (qihiTvi + si). The dual problem is
1
min (b - &) diag(a) (b - €)
subject to [15€] < p, [€]x < p+27 (14)

where & = b—diag(a)w. This is the subproblem for the block coordinate descent
of (). In the next section, we show that this problem has three types of solutions
each which can be derived efficiently.
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4.2 Subproblem

First, we can see that subproblem (I4) has a solution £ = b when [1b| < p
and [|b]l; < p+ 2v. In the case of |1 b| > p or ||b]l1 > p + 27, the solution
is on the boundary of the constraint set and can be classified into three types.
Here, we give the solution procedure for each of these. The entire procedure is
summarized in Algorithm [

1) The solution is on the boundary ||£||1 = p+ 2+ : In this case, we ignore
the first constraint in (I4]) and solve only for the second constraint. Moreover,
this problem is shown to be equivalent to the following continuous quadratic
knapsack problem [13]:

mlnz |b|—y) subject to ¥y >0, 1y =p+2y (15)

which relates to &€ by & = sgn(b;)y; where sgn(x) is a sign function. We give the
solution procedure for this problem [13] in Section 3 Here, we note that the
resulting € may violate the constraint |1 &| < p since we have ignored it. In this
case, we discard the solution and move on to the next case.

2) The solution is on the boundary |1[;£| = p : This time, we ignore the
second counstraint in (I4]) and solve

1
mgin 2(b — &) "diag(a)"*(b— &) subject to |1 €| < p. (16)
This problem has the following single variable Lasso for its dual:

. a
min 2w0 bwo + plwo] (17)

with a = Zfil a; and b= Zfil b;, and the solution is obtained as

bl —
wp = sgn(b)(‘ =P (18)
a
where () = max(x, 0) is a soft-thresholding operator. Again, the resulting value
& = b— wpa may violate ||€||; < p+ 27. In this case, the solution is on the edge
of the intersection of two constraints, and is obtained by the next procedure.

3) The solution is on both boundaries |1 £| = p and ||€]|1 = p + 27 :
Here, we solve ([4]) with two equality constraints. The procedure in this section
is based on the following theorem.

Theorem 2. Let the solution to ({I8) be €. Then, the solution to (I3) has the
same signs as f, i.€e. @@ >0 for1<i<N.
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From this result, we can factorize the objective function into the sum of two
components » s o (bi—&)?* and > 60 o (bi—&;)?. The constraint terms can

also be expressed as > ¢ &+ g 0& =p (or —p)and Doz 50— e 06 =
p+ 27. As a result, we derive two independent problems:

1
mi+n 0. (v — bi)2 subject to y* >0, Z y =at, (19)
Yoez €20

1
min Z 9. (y; + b,»)2 subject to y~ >0, Z Yy, =a . (20)
Y £i<0 ! £i<0

The solutions to these problems relate to £ in that & = y;L for 51 >0and ¢ =
—y; for §~Z < 0. The parameters ™ and o~ are p-++ and v, respectively if the so-
lution is on 1€ = p, and v and p++, respectively, for 1€ = —p. These problems
are once again continuous quadratic knapsack problems and the solutions can be
efficiently obtained by using the algorithm presented in [I3]. We can derive the
final solution by solving these problems for both cases 1.& = p and 1,¢ = —p,

and choosing the one with the smaller objective function value in (I4).

4.3 Continuous Quadratic Knapsack Problem

In this section, we briefly summarize the algorithm for solving the following
continuous quadratic knapsack problem presented in [13]:

N
1
minz (y; —d;)? subject to y >0, 1 y=a. (21)
v = 2¢;

Note that this formulation is common to ([H), (I9) and @0). From the KKT
condition, the solution to this problem is given as y;(v) = max(d; — v¢;, 0) with
some constant v. Moreover, the optimal v is what satisfies 1,y(v) = «. Since
15y(v) is a decreasing piecewise linear function with breakpoints iﬁ we can

find a minimum breakpoint vy = i’“ that satisfies 1y(v0) < a by sorting the
0
N breakpoints. Then, the optimal v is given as

ves0di —
y = Zdiroczo . (22)

Zdi_VOCiZO Ci

4.4 Hyper-Parameters p and ~

The choice of hyper-parameters p and -y affects the resulting graphical models.
There are several approaches for choosing these, such as cross validation [9J15]
or the Bayesian information criterion [I5]. Apart from selection techniques, the
following result gives us some insight into p and ~, and is helpful for analyzing
the data more intensively.
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Algorithm 1. Pseudo Code for Common Substructure Learning

Input : sample covariances ﬁ'1, ﬁ‘g, e ﬁ'N, regularization parameters p,~y
constants t1,ta,...,tx > 0, Ziv:l ti=1
Output : precision matrices Ay, A2, ..., An
1: initialize A; «— ﬁ‘;l for each 1 <i¢ < N;
2: repeat
for ,, :m =1toddo

4 for z,,, : m' # m do

5 if [1b| < p and b1 < p+ 27y then

6: & —b;

7 else

8: solve continuous quadratic knapsack problem (IH);

9: if the solution does not satisfy [15£| < p then

10: solve () with single variable Lasso;

11: if the solution does not satisfy ||€||1 < p + 2y then

12: solve ([@) and @0) for [a™,a”] = [p+7,7];

13: solve ([3) and @0) for [a™, o] = [y,p +7];

14: adopt one of the two solutions with the smaller value for (I4);
15: end if

16: end if

17: end if

18: w «— diag(a) ™ (b — &);

19: update (m,m')-th and (m', m)-th elements of A; with w; for 1 <4 < N;
20: end for
21: update (m,m)-th element of A; by (I0);
22:  end for
23: until Ay, Az, ..., Axn converges

Proposition 1. In the bivariate case, the off-diagonal elements of the precision
matrices \; have the following property:

N

Z tﬂ"i

i=1

[ril <p+2vy for 1<i< N and <p = \N=0 (23)

where r; is the covariance between two variables in the i-th dataset.

Although the result is specific to the bivariate case, we can interpret ¥ = p + 2~
and p as thresholding parameters. If we wish to treat dependencies higher than
some level as significant and expect them to be non-zero, 4 should not exceed
that level. We can also see that p is the threshold for the average covariance and
the parameter that controls the existence of common substructures.

Motivated by this result, we adopt a heuristic approach for the selection of
~v. We interpret the parameter 2y as the difference in characteristic scalings
between r; and 7 = ) ", r;. Here, we approximate the distributions of r; and

T = vazl r; with Gaussians and adopt their 1 — « levels as their characteristic
scalings. Then we set v to be a half of their difference.
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5 Simulation

In this section, we present numerical results of the proposed method both in a
synthetic setting and using real world datasets.

5.1 Synthetic Experiment

The aim of this experiment is to evaluate the common substructure detection per-
formance of the proposed method. For the sake of comparison, we adopted GLasso
[11] as discussed in Section Z2]and multi-task structure learning (MSL) [I3] from
Section 2.4 as baseline methods. Since neither method was designed for common
substructure learnmg, we thresholded the variation in the estimated precision
matrices Ay, As, ..., Ay and heuristically extracted the substructure © by

A {ij/ R if max; i/ ‘Ai,jj’ — Ai’,jj" <€ (24)
0, otherwise

where € is some given threshold for the maximum variation. Here, to avoid
selecting zero edges as common substructures, we set 6;;; to zero if /L»J'j/ =0
for all % and one otherwise.

We generated sparse precision matrices in the following manner. First, we
divided d variables x1, o, ..., x4 into non-overlapping subsets for each of the N
conditions and generated small precision matricedd for each subset. In this step,
we set some variable subsets and the corresponding matrices to be common to all
N conditions so that the substructure could be shared by all GGMs. Finally, we
combined these small matrices by adding some edges between them and derived
N precision matrices A1, A, ..., Ayx. In the experiment, we set the dimension-
ality of the data d = 20 and the number of conditions N = 5. We selected the
size of the variable subsets to be 4 and therefore, the generated GGMs were
composed of 5 cliques. The resulting GGM structure is shown in Figure [I1

For the simulation, we generated 100 samples according to the Gaussian dis-
tribution with A; in each condition and scaled each variable to have a unit
variance. We then compared the common substructure detection rates of the
three methods. We repeated the simulations for 100 random realizations of the
datasets and drew average ROC curves by varying the hyper-parameter p as
shown in FigureBl In this experiment, we chose parameter v from the procedure
presented in Section 4 with « = 0.05. In Figure we set the threshold
€ = 10 for GLasso and MSL, which means that almost all edges were actually
treated as common substructures. The resulting curves clearly show that the
proposed method outperforms the two baseline methods. If we set € to a smaller
value, e.g. € = 1 in Figure the ROC curves for GLasso and MSL are no
longer monotone increasing for p. Here, we note that ¢ = 1 is already a very

3 We set the diagonal elements in the matrix to one and the off-diagonals elements to
a uniformly random value in [—0.8, —0.1] U [0.1, 0.8], although this uniformity might
be slightly skewed due to the positive definiteness constraint.
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Fig.1. A GGM structure: edges in the
top two cliques (solid lines) are com-
mon dependencies, while others are not

4
max; i |Aijj — Air,jj|

Fig. 2. Histogram of the wvariation
in precision matrices estimated by
GLasso with p = 0.0032. The vertical

(dashed lines) line denotes the threshold € = 1.

H
N

[
%o_g *@' 0.8]
[ (%)
206 308
@ 2 A
o4 & 0.4f);
[} 3 o 3
3 3 —Proposed E] 8 —Proposed
E02f ---GLasso =0.2 ---Glasso
o --MSL o ~-MSL
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive rate False Positive rate
(a) e=10 (bye=1

Fig. 3. ROC curves. The horizontal axis is the false positive detection rate of common
substructures, while the vertical axis is the true positive rate.

optimistic choice. An example of the histogram showing the variation in preci-
sion matrices estimated by GLasso with p = 0.0032 is depicted in Figure 2l In
this example, 74% of the estimated non-zero elements have variation less than
€ = 1 and are judged to be common dependencies. However, only 38% of the
true common edges are actually included in the histogram below € = 1, while the
other 62% are in the remaining 26% of the estimated non-zero elements. This
means that the estimated edge weights using GLasso or MSL for true common
substructures vary greatly across the matrices. This example clearly shows the
limitation of the existing approaches in that common substructures can easily
be masked by estimation variances.

5.2 Analysis of City-Cycle Fuel Consumption Data

We applied the proposed method to the Auto MPG dataset from the UCI Ma-
chine Learning Repository [20]. The dataset consists of 398 different car data
entries containing MPG (Miles Per Gallon), number of cylinders, displacement,
horsepower, weight, and acceleration data. Although the name of the car, its
model year and the originating region are included in the data, we discarded
these fields since they seem to be irrelevant to the other variables. We rear-
ranged the data according to the number of cylinders, giving 199 entries for 4
cylinder cars, 83 for 6 cylinders, and 103 for 8 cylinders. We discarded the data
for 3 and 5 cylinders since there were only few entries.
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Acceleration

(a) p=0.1, v = 0.062 (b) p=0.2, v = 0.062

Fig. 4. Estimated dependency structures for MPG data. The solid lines denote common
relations among cars with different numbers of cylinders while the dashed lines are vary-
ing dependencies. The numbers attached to solid lines denote the common edge weights.

We applied the proposed method to the 3 datasets containing data for cars
with different numbers of cylinders. Each dataset was composed of 5 variables.
Empirically, the number of cylinders is closely related to the displacement and
the horsepower. The aim of the analysis was to find relations between variables
that are irrelevant to the number of cylinders, which might be related to the un-
derlying functional mechanism of cars. As pre-processing, we scaled each variable
to have a unit variance.

Figure [ shows the results for the two settings, p = 0.1 and 0.2. We chose
v based on the proposed heuristic. In the estimated graph, there are two ma-
jor cliques composed of weight, horsepower and acceleration and MPG, weight
and displacement, respectively. In the first clique, the relations between mass
(weight), acceleration, and force (horsepower) are those expressed by Newton’s
motion equation. Since each variable has been scaled to unit variance, it is natu-
ral that the relation between them is steady. Data fields in the second clique, we
believe, they are related to the quality of the car. Typically, expensive cars have
many more features including a high specification engine which results in greater
weight, higher displacement, and improved MPG. What the results suggest is
that this tendency is common to cars with any number of cylinders. We conclude
that the proposed method successfully found some reasonable common relations
between variables without using any prior knowledge about the datasets.

5.3 Application to Anomaly Detection

In this section, the proposed method is applied to an anomaly detection problem.
The task is to identify contributions of each variable to the difference between
two datasets. Correlation anomalies [B], or errors on dependencies between vari-
ables, is known to be difficult to detect using existing approaches especially with
noisy data. To overcome this problem, the use of sparse precision matrices was
proposed by Idé et al. [5], since the sparse approach reasonably suppresses the
pseudo correlation among variables caused by noise and improves the detection
rate. Here, we propose to use the common substructure learning approach. There
is a clear indication that the proposed method can further suppress the variation
in the estimated matrices. In particular, we expect that dependency structures
among healthy variables are estimated to be common, which reduces the risk
that such variables are mis-detected and only anomalies are enhanced.
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Fig. 5. Anomaly detection : best AUC values and corresponding ROC curves
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(a) Proposed Method (b) GLasso (c) MSL

Fig. 6. Anomaly scores. All plots are normalized so that their maximum values are the
same. Dotted lines denote true faulty sensors.

We evaluated the anomaly detection performances using the sensor error
data [5]. The dataset comprised 42 sensor values collected from a real car in 79
normal states and 20 faulty states. The fault was caused by mis-wiring of the
24-th and 25-th sensors, resulting in correlation anomalies. We compared three
methods, GLasso, MSL and our proposed method with the anomaly score pro-
posed by Idé et al. [5] which is based on the KL-divergence between two datasets.
Since sample covariances are rank deficient in some datasets, we added 1073 on
their diagonal to avoid the singularity. For simulation, we randomly sampled 20
datasets from the normal states and 5 datasets from the faulty states, and esti-
mated sparse precision matrices with each method. We set the weight ¢; in MSL
and the proposed method as t; = 410 for normal datasets and ¢; = 110 for faulty
datasets to balance the effects from the two states. Since the anomaly score was
designed only for a pair of datasets, we calculated anomaly scores for each of
20 x 5 pairs and reported the average score and detection rate. We tested each
method by varying the parameter p between 0.05 and 0.30.

We repeated the above procedure 100 times and drew ROC curves of the
average anomaly detection rate with the best area under curve (AUC) results
shown in Figure[fl First, we see that MSL and the proposed method surpass the
detection rate of GLasso. This is because these two methods estimate precision
matrices with joint regularizations. This reduces the estimation variance among
matrices while GLasso conducts the estimation separately resulting in more var-
ied estimators, which masks the correlation anomalies. Secondly, though the de-
tection performances are competitive between MSL and the proposed method,



14 S. Hara and T. Washio

we can see further differences in the resulting anomaly scores in Figure[dl Clearly,
the scores for the proposed method show lower significance for normal variables,
especially for variables from 16 to 21 and 33 to 42, whereas anomaly variables
are still enhanced. This is what we expected in the beginning; that is, the pro-
posed method successfully reduces the nuisance effects and highlights only those
variables with correlation anomalies. The remaining peaks at some normal vari-
ables are caused by the effect of the two faulty variables, since the correlation
anomaly is calculated as faults of a pair of variables.

6 Conclusion

In this paper, we formulated the common substructure learning problem of mul-
tiple GGMs and presented an optimization algorithm based on the block coor-
dinate descent. We further showed that the subproblem of the block coordinate
descent has three types of solutions and can be solved efficiently with techniques
for Lasso and the continuous quadratic knapsack problem. Numerical results on
synthetic and real world datasets indicated the clear advantage of the proposed
method over existing GGM structure learning methods.

Several future works have been identified: the analysis of the asymptotic prop-
erty of (@), and the extension of the current formulation to the adaptive Lasso [21]
type one to guarantee the oracle property [21] of the estimator. Applying the
notion of commonness to more general dependency models is also an important
work, e.g. non-linear relations or the commonness based on higher order moment
statistics.
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Appendix

Proof of Theorem [k The non-differentiable term in (), i.e., the regulariza-
tion term, is continuous and convex, and is a sum of O(d?) terms where each
term is composed of variables Ay j;/, Ag jjr, ..., AN jj:. Moreover, (@) is continu-
ous in a compact level set. Then, the claim follows from Theorem 4.1 in [I9]. O

Proof of Theorem We prove this for the case ||€]l; > p+ 27, otherwise € is
a solution to (I4) and the claim holds. Let f be the objective function in (I4) and
&o be one of the feasible solutions. Then, for &) = &y +€(€ — &p) with 0 < e <1,
f(&) < f(&o) holds from the convexity of f. Therefore, &) is a better solution
to problem (1)) as long as [1 &) < p and ||€)]|1 < p + 27 are satisfied. The
first condition always holds because |14&5] < (1 — €)|1N&o| + €[1L€] < p. On
the other hand, the latter condition ||&f||x = Ef\il |€0.i 4 €(& — €0.4)| < p+ 2
is no longer valid if [|€ol1 = p + 2 and sgn(&o;) = sgn(&; — &.;), which results
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in g}go,i > 0. This is the necessary condition for the solution to (Id]). Otherwise,
we can always improve the solution by the above procedure which contradicts
its optimality. O

Proof of Proposition [I[k Here, we use the alternative expression of ([7)):

N
max ) i 00+ 2 5) — ) (p@m +WmaX|ﬂi,jj")
@,{Qi},fvzl i1 oyt a
subject to @ + 21, O+ (25, ..., O+ 2y =0 (25)

where A; = ©+(2; and ¥ = p+2v. The equivalence can be proved by comparing
their dual problems. In the bivariate case, let matrices @, §2; and X; be

040 U; Wy &S | A Ty
o=loa o= [En] == ]
Since ZZ]\LI t;lw;| < max; |w;|, the objective function (25]) is upper-bounded by

N
L0, {ui, vi,wi } N {rid ) = Zt’i {log (uzvl —(0+ wi)g)
i=1

N
—(agui + bivi) = 2(riw; + Flwil)} = 2> tirid — 2p|6)] . (26)

i=1
Moreover, this coincides with 28) if w; = 0 for all i. Therefore, if w; =0 (1 <
i < N) is a maximizer of £, it is also the solution to (25). From the derivative
of £ over w;, we get that w; = 0 is a maximizer if

—(F+mr) < <@y -m). (27)

U;V; — 92

This is a sufficient condition for [25) to have w; =0 (1 <4 < N) as its optimal
value. If |r;| < 4 holds for all 4, the problem (25]) coincides with the ¢;-regularized
maximum likelihood (2]) with the above constraints on 6:

s 2\ [~ 7~ ~
max log (a0 — 67) (au + bv) 2 (76 + p|f))
subject to # bounded by 7)) , (28)

where 7 = Zf\;l t;r;, and u, v are diagonal components of the resulting common
structure. Since the bound of @ involves 0, we see that § = 0 if |F| < p from
Proposition 1 in [5], and hence \; = 0 + w; = 0. ]
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