Pseudorandom Knapsacks and the Sample
Complexity of LWE Search-to-Decision
Reductions*

Daniele Micciancio and Petros Mol

Department of Computer Science & Engineering,
University of California, San Diego
{daniele,pmol}@cs.ucsd.edu

Abstract. We study the pseudorandomness of bounded knapsack func-
tions over arbitrary finite abelian groups. Previous works consider only
specific families of finite abelian groups and 0-1 coefficients. The main
technical contribution of our work is a new, general theorem that pro-
vides sufficient conditions under which pseudorandomness of bounded
knapsack functions follows directly from their one-wayness. Our results
generalize and substantially extend previous work of Impagliazzo and
Naor (J. Cryptology 1996).

As an application of the new theorem, we give sample preserving
search-to-decision reductions for the Learning With Errors (LWE) prob-
lem, introduced by (Regev, STOC 2005) and widely used in lattice-based
cryptography. Concretely, we show that, for a wide range of parameters,
m LWE samples can be proved indistinguishable from random just un-
der the hypothesis that search LWE is a one-way function for the same
number m of samples.

1 Introduction

The Learning With Errors (LWE) problem, introduced by Regev in [31], is the
problem of recovering a secret n-dimensional integer vector s € Zj, given a
collection of perturbed random equations a;s ~ b; where a; € Zq is chosen uni-
formly at random and b; = a;s + e; for some small, randomly chosen error term
e;. In recent years, LWE has been used to substantially expand the scope of
lattice based cryptography, yielding solutions to many important cryptographic
tasks, including public key encryption secure against passive [31/20/29] and active
attacks [30U28], (hierarchical) identity based encryption [TAT0/TI2], digital signa-
tures [I4J10], oblivious transfer protocols [29], several forms of leakage resilient
encryption [BIGITTII6], homomorphic encryption [I3] and more. The versatility

* This research was supported in part by NSF under grants CNS-0831536 and CNS-
0716790. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation. This is an extended abstract of the work. For the full
version, see the authors’ webpage.

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 465 2011.
© International Association for Cryptologic Research 2011

466 D. Micciancio and P. Mol

of the LWE problem in the construction of a plethora of cryptographic applica-
tions is due in large part to its pseudorandomness properties: as proved in [31],
if recovering (with highll probability) the secret s from the samples (a;,a;s+ e;)
is computationally hard, then it is also hard to distinguish the LWE samples
(a;,a;s + ;) from uniformly random ones (a;, b;) where the b; € Z, are chosen
uniformly and independently at random. In other words, any efficient distin-
guisher (between the LWE and uniform distributions) can be turned into an
inverter that recovers the secret s, with only a polynomial slow-down.

On the theoretical side, cryptography based on LWE is supported by deep
worst-case/average-case connections [31J28], showing that any algorithm that
solves LWE (on the average) can be efficiently converted into a (quantum) al-
gorithm to solve the (worst-case) hardest instances of several famous lattice
approximation problems which are believed to be intractable, including approxi-
mating the minimum distance of a lattice within factors that grow polynomially
in the dimension, and related problems [23]. It should be remarked that, while
such proofs of security based on worst-case lattice assumptions provide a solid
theoretical justification for the probability distributions used in LWE cryptogra-
phy, they are hardly useful in practice: in order to get meaningful estimates on
the hardness of breaking LWE cryptography, it is generally more useful and ap-
propriate to conjecture the average-case hardness of solving LWE, and use that
as a starting point. In fact, all recent work aimed at determining appropriate key
sizes and security parameters [20/22/33] follows this approach, and investigates
experimentally the concrete hardness of solving LWE on the average.

In light of that, LWE is best formulated as the problem of inverting the one-
way function family (indexed by a random matrix A € Zg**", where m is the
number of samples) that maps the secret s and error vector e to Ax + e. The
search-to-decision reduction of [31] shows that if the LWE function family is one-
way, then it is also a good pseudorandom generator. However, the reduction in
[31] somehow hides a very important detail: the value of m for which the function
is assumed to be one-way is much higher (still polynomially related) to the value
of m for which the output of the function is pseudorandom. While theoretical
results based on worst-case lattice problems are fairly insensitive to the value of
m (i.e., the number of samples used in the LWE instance), this number becomes
more important and relevant when considering concrete attacks on the average-
case hardness of LWE.

For instance, recent algorithmic results [7], show that when the errors e; are
sufficiently small, the LWE problem can be solved in subexponential (or even
polynomial) time, provided a sufficiently large (but still polynomial) number of
samples is available. Therefore, for certain ranges of the parameters, the number
of available samples can have a significant impact on the computational hardness
of the LWE problem. Likewise, some lattice attacks perform better in practice
when given many (typically w(n)) samples [26]. However, LWE-based encryp-
tion schemes (e.g., see [22]) typically expose only a small number of samples (say,

! Due to the self-reducibility properties of the LWE problem, here “high” can be
interpreted in a variety of ways, ranging from “nonnegligible” to “very close to 1”.

Pseudorandom Knapsacks and the Sample Complexity of LWE 467

comparable to the dimension n of the LWE secret s) during key generation and
encryption. Fixing the number of available samples to a small value may signif-
icantly reduce the effectiveness of concrete attacks, and increase our confidence
in the security of the schemes.

It should also be noted that when the number of available samples is above a
certain threshold, one can efficiently generate an arbitrary number of additional
samples [T4J6l32], but at the cost of increasing the magnitude of the errors. So,
for certain other ranges of the parameters the impact of increasing the number
of samples may not be as critical as in [7]. Still, even in such situations, using
a large number of samples comes at the price of lowering the quality of the
samples, which can negatively impact the concrete security and performance of
LWE-based cryptographic functions.

This motivates the following question: how big of a blow-up in the number of
samples is required to prove the pseudorandomness of the LWE problem, based
on the conjectured hardness of its search (secret recovery) version? The main
result of this paper is that, perhaps surprisingly, in most common applications
of LWE in cryptography, no such blow-up is necessary at all: there is a sample
preserving reduction from solving the search LWE problem (with nonnegligible
success probability) to the problem of distinguishing the LWE distribution from
random (with nonnegligible advantage). At the core of our result is a general
theorem about the pseudorandomness of the bounded knapsacks over arbitrary
groups, that substantially extends previous results in the area and might be of
independent interest.

Contributions and Applications. Let (G, +) be a finite abelian group, and
g =1(91,.-.,9m) € G™ a sequence of group elements chosen uniformly at ran-
dom. The group elements g define a knapsack function fg(x) that maps the
vector x € Z™ to the group element fg(x) = Y . x;g;. If the input x is restricted
to vectors with small entries, then for a large variety of groups G, fg is conjec-
tured to be a one-way function family, i.e., a family of functions that are hard to
invert on average when the key g is chosen uniformly at random. For example,
when the input x is restricted to the set {0, 1} of binary vectors, inverting fg is
the famous subset-sum problem, which is conjectured to be hard to solve on av-
erage, and has been extensively studied in cryptography. In a classic paper [I§],
Impagliazzo and Naor showed that for some specific, but representative, choices
of the group G, if the subset-sum function is one-way, then it is also a pseudo-
random generator, i.e., it is computationally hard to distinguish (g, fg(x)) from
a uniformly random element of G™*!, when g € G™ and x € {0,1}™ are chosen
uniformly at random. We generalize the results of [18] in two respects:

— We consider functions over arbitrary groups G. Only groups of the form Zy
were considered in [I8], and for two specific (but representative) choices of
N (prime and power of 2).

— We consider input coeflicients x; that take values from a set {0,...,s} (or
{—s,...,s}) for any (polynomially bounded) s. Moreover, we consider arbi-
trary input distributions. By contrast, the results in [18] hold for inputs x
distributed uniformly with coefficients in {0, 1}.

468 D. Micciancio and P. Mol

Both extensions are essential for the sample-preserving search-to-decision LWE
reduction presented in Section .2, which requires the pseudorandomness of the
knapsack function over vector groups G = Z’;, and for inputs x following a
nonuniform (Gaussian) distribution over a sufficiently large set {—s, ..., s}. Our
main technical result (Theorem [2]) shows that for any group G and input dis-
tribution X, the output of the knapsack function is pseudorandom provided the
following two conditions hold:

1. fg is a one-way function family with respect to input distribution X', and

2. certain folded versions of fg (where both the key g and the output fg(x)
are projected onto a quotient group G4 = G/dG for some d € Z,) have
pseudorandom output.

The second condition above may seem to make the statement in the theorem vac-
uous, as it asserts the pseudorandomness of fg assuming the pseudorandomness
of (certain other versions of) fg. The power of the theorem comes from the fact
that the quotient groups G4 considered are very small, so small that in many
important settings the output of the folded knapsack function fg(x) mod dG
is statistically close to uniform. As a technical tool, we provide upper bounds
on the statistical distance between the distribution (g, fg(x)) mod dG and the
uniform distribution over G7"*!' (Lemma H)). We use these bounds to show that
for many interesting groups and input distributions, the output of the folded
knapsack function is statistically close to uniform. Therefore, as a corollary to
the main theorem, we get that one-wayness of the bounded knapsack function
implies that knapsacks are good pseudorandom generators. Specific groups and
input distributions for which this holds include among others:

— Groups whose order contains only large prime factors, larger than the max-
imum value of the input coefficients. Cyclic groups with prime order and
vector groups Z’; for prime p fall into this category. This result generalizes
those in [I§] from uniform binary input to arbitrary input distributions.

— Distributions that, when folded (modulo small divisors of the order of G,)
maintain high entropy relative to the size of the quotient group G/dG. (See
Theorem [6l) Groups of the form G = Z¥, and uniform input distribution
over Zj; for some i < £ satisfy this requirement. This parameter set is a very
attractive choice in practice since both group operations and input sampling
are particularly efficient and easy to implement.

Using the duality between LWE and the knapsack problem [35/25], we obtain
sample preserving search-to-decision reductions for LWE for several interesting
choices of the modulus ¢ and input distribution, which include (among others):

— ¢ = 2 and any error distribution. This directly proves the pseudorandomness
of the well-known Learning Parity with Noise (LPN) problem, as already
established in [9T9], but in a sample-preserving manner.

prime g and any polynomially bounded error distribution.

power-of-prime modulus ¢ = p® for p large enough so that the error distri-
bution is concentrated over {—(p —1)/2,...,(p — 1)/2}.

— ¢ = p° for small prime p and uniform error distribution over Z,: (i < e).

Pseudorandom Knapsacks and the Sample Complexity of LWE 469

These results subsume (see below) several previous pseudorandomness results
for LWE [316] and LPN [19] but with an important difference. While the proofs
in [BII6ITY] require that LWE (resp. LPN) is hard to solve for a very large num-
ber of samples, our reductions are sample preserving: the pseudorandomness of
LWE (resp. LPN) holds, provided the same problem is one-way for the same
number of samples. We remark that previous results are often phrased as reduc-
tions from solving the LWE search problem with high probability, to solving the
LWE decision problem with nonnegligible advantage, combining the search-to-
decision reduction and success probability amplification into a single statement.
By contrast, our reduction shows how to solve the LWE search problem with
nonnegligible probability. Our results subsume previous work in the sense that
the LWE search problem can be solved with high probability by first invoking
our reduction, and then amplifying the success probability using standard rep-
etition techniques. Of course, any such success probability amplification would
naturally carry the cost of a higher sample complexity. We remark that a close
inspection of worst-case to average-case reductions for LWE [3TI28] shows that
these reductions directly support the conjecture that LWE is a strong one-way
function. As already discussed, worst-case to average-case reductions do not
provide quantitatively interesting results, and are best used as qualitative argu-
ments to support the conjecture that certain problems are computationally hard
on average. Under the standard conjecture that search LWE is a strong one-way
function, the results in this paper offer a fairly tight, and sample preserving
proof that LWE is also a good pseudorandom generator, which can be efficiently
used for the construction of many other lattice based public key cryptographic
primitives. By contrast, it is not known how to take advantage of the strong
one-wayness of LWE within previous search-to-decision reductions, resulting in
a major degradation of the parameters. Of course, if we change the complexity
assumption, and as a starting point we use the worst-case hardness of lattice
problems or the assumption that LWE is only a weak one-way function, then
our reduction will also necessarily incur a large blow up in sample complexity
through amplification, and lead to quantitatively uninteresting results.

2 Preliminaries

We use N,C, T for the sets of natural, complex and complex numbers of unit
magnitude respectively. We use lower case for scalars, upper case for sets, bold
lower case for vectors and bold upper case for matrices. We use calligraphic
letters for probability distributions and (possibly randomized) algorithms. For
s € N, the set of the first s nonnegative integers is denoted [s] = {0,1,...,s—1}.

2.1 Probability

We write z < X for the operation of selecting x according to a probability
distribution X or by running probabilistic algorithm X. We use {(z,z’) | © «—
X,x' «— X} to denote the probability distribution obtained by drawing two

470 D. Micciancio and P. Mol

samples from X independently at random. For any probability distribution X’
over set X and any value x € X, Pr{z «— X'} is the probability associated to x
by distribution X'. The uniform distribution over a set A is denoted U(A), and
the support of a distribution X is denoted [X] = {z € X | Pr{z «— X} > 0}.
The collision probability of X is the probability Col (X) = Pr{z = 2’ | v <
Xa' =X} =3 cx Priz X'}? that two independent identically distributed
samples from X take the same value. The mode of X is the probability of the
most likely value, i.e. mode (X) = max,cx Pr{z «— X}. It is easy to see that
Col (X) < mode (X) .

The statistical distance A(X,)) between distributions X and), defined over
the same set X, is the quantity 5 >y [Pr{z < X} — Pr{z < V}|. The sta-
tistical distance satisfies A(f(X), f())) < A(X,Y) for any (possibly proba-
bilistic) function f. Two distributions X, are e-close if A(X,)) < e. They
are (t, €)-indistinguishable if A(D(X),D(Y)) < € for any probabilistic predicate
D: X — {0,1} (called the distinguisher) computable in time at most ¢. Other-
wise, we say that X,) are (¢, €)-distinguishable. When) = U(X) is the uniform
distribution, we use Ay (X) = A(X,U(X)) as an abbreviation and say that X is
e-random (resp. (t,€)-pseudorandom) if it is e-close (resp. (t,€)-close) to U(X).

Function families. A function family (F,X) is a collection F' = {f;: X —
R},er of functions indexed by ¢ € I with common domain X and range R,
together with a probability distribution X over the input set X DO [X]. For
simplicity, in this paper we always assume that the set of functions is endowed
with the wniform probability distribution U(F). Each function family (F,X)
naturally defines a probability distribution

FFX) ={(f, f(@) | f —U(F),x — X} (1)

obtained by selecting a function at random and evaluating it at a random input.

A function family F = (F,X) is called (t,¢€)-one-way if there is no (prob-
abilistic) algorithm Z running in time at most ¢ such that Pr{f(z) = y |
(f,y) «— F(F,X),z — Z(f,y)} > e. In this paper it is convenient to use the
related notion of “uninvertible function”. A (¢, ¢)-inverter for a function fam-
ily (F,X) is a (probabilistic) algorithm Z running in time at most ¢ such that
Pr{ix =y | f «— UF),x — X,y — Z(f, f(x))} > e. If there exists a (¢, ¢€)-
inverter for a function family (F, X), then we say that (F, X) is (¢, €)-invertible.
A function family such that there is no (¢, €)-inverter is called (¢, €)-uninvertible.
In this paper, we deal with function families that are (almost) injective, i.e. with
overwhelming probability over f «— U(F) and & « X, there exists no 2’ # x such
that f(z) = f(z'). When this is the case, then one-wayness and uninvertibility
are equivalent notions. A (t, €)-pseudorandom generator family is a function fam-
ily (F, X) such that the associated distribution () is (¢, €)-pseudorandom, i.e.,
it is (¢, €)-indistinguishable from the uniform distribution U(F x R).

Asymptotics. We use n as a (security) parameter that controls all other param-
eters. Unless otherwise stated, any other parameter (say m) will be polynomi-
ally related to n. We use standard asymptotic notation O(-), £2(-), o(-),w(-), etc.

Pseudorandom Knapsacks and the Sample Complexity of LWE 471

We write negl(n) for the set of negligible functions and poly(n) for the set of
polynomially bounded functions. In the asymptotic computational complexity
setting, one often considers probability ensembles, i.e., sequences X = (X,)nen
of probability distributions over possibly different sets X,, 2 [X},]. Two distribu-
tions ensembles X = (X,)nen and Y = (Vn)nen are statistically close (denoted
XA Y) if X, and Y, are e(n)-close for some negligible function e(n) = negl(n).
The ensembles X' and Y are computationally indistinguishable (denoted X & V)
if X, and Y, are (t(n), €(n))-indistinguishable for €(n) = negl(n) and any t(n) =
poly(n) under a uniform sequence (D,,: X,, — {0,1}),en of distinguishers. Def-
initions for function families are also extended in the obvious way to function
family ensembles F = (F,,), in the asymptotic setting by taking e(n) = negl(n)
and t(n) = poly(n), and considering uniform sequences of distinguishing algo-
rithms. In particular, a function family ensemble F = (F,,),, is one-way if F,, is
(t(n), e(n))-one-way for e(n) = negl(n) and any ¢(n) = poly(n). It is pseudoran-
dom if the associated (asymptotic) distribution () is (¢(n), e(n))-pseudorandom,
i.e., it is (¢(n), €(n))-indistinguishable from the uniform distribution U (F,, x Ry,).

Discrete Gaussian Distributions. Gaussian-like distributions play a central
role in the Learning With Errors (LWE) problem. For each sample (a,b = a -
s + e), the distribution x from which e is drawn, is a normal distribution over
the integers. Below, we focus mainly on the discrete Gaussian distribution and
provide bounds on its collision probability. Those bounds are used in establishing
the search-to-decision reduction for LWE. Similar bounds can be established for
the discretized Gaussian (defined in [31]).

The Gaussian function on R™ with parameter r and center c is defined as
Vx € R™, p.c(x) = exp(—7||x — c||?/r?). The discrete Gaussian distribution
over a countable set S is defined as

Vx € 8, Do = . Pre®)
> oyes Pre(y)

Here, we are interested in vectors x = (21,...,zy) € Z™ distributed according
to Dzm , (c = 0). In that case, each coordinate z; of x is identically and in-
dependently distributed according to the 1-dimensional Gaussian Dz ... For our
search-to-decision reduction of LWE with discrete Gaussian error distribution,
we need to consider the folded (1-dimensional) distribution Dz, mod d. The
following lemma bounds the collision probability of this distribution.

Lemma 1. For any r > 0 and d € Z, we have Col(Dz, mod d) < 1{ + (11.
Furthermore, if r = d - w(y/logn), then Col(Dz,» mod d) < } + negl(n).

2.2 Groups and Knapsack Function Families

In this work, by group we always mean finite abelian group. We use additive
notation for groups; O¢ is the identity element, |G| is the order (size) of G and
Mg its exponent, i.e. the smallest non-zero integer e such that e - g = Og for
all g € G. We use the dot product notation x -y = >, x; - y; both for the

472 D. Micciancio and P. Mol

inner product of two vectors x,y € R™ with elements in a ring R, and also
to take integer linear combinations x € Z™ of a vector y € G™ with elements
in an additive group. For x = (21,...,2,) € R™ and a € R, we also define
x-a=(r1-a,...,Tp - a).

For any group G and (positive) integer d, we use G4 to denote the quotient
group G/dG where dG is the subgroup {d-g | g € G}, in analogy with the usual
notation Zg = Z/dZ for the group of integers modulo d. Likewise, for an element
g € G, we use g mod dG (or just g mod d) for the image of g under the natural
homomorphism from G to G4. For any integer vector w = (w1, ...,w,) € Z",
we write gedg(w) = ged(ws, . . ., w,, M) for the greatest common divisor of the
elements of w and the group exponent.

Lemma 2. For any group G and integer vector w € Z", {w-g | g — U(G")} =
U(gedg(w) - G). In particular, Pr[w-g=0¢ | g — U(G")] = |ngG%W)G|.
Knapsack Families. For any group G and input distribution X over Z™, the
knapsack family (G, X) is the function family with input distribution X and set
of functions fg: [X] — G indexed by g € G™ and defined as fg(x) =g -x € G.
We will often use g instead of fg to describe a member function drawn from
K(G,X). When G,X are clear from the context we will simply write K. We
often consider folded knapsack families (G4, X) over quotient groups Gg4. For
brevity, when G and X are clear from the context, we will write ICy instead of
K(G4, X). The following lemma shows that the distribution F(KCy4) associated
to a folded knapsack function family is closely related to the distribution

Fa(K) ={(g,9+n) | (8 9) — F(K),h —U(d-G)}. 2)

Lemma 3. For any knapsack family K and d € Z, Ay(Fq(K)) = Ap(F(Kq)).
Also, Fq(K) is pseudorandom if and only if F(Kq) is pseudorandom.

For a group H such that IC(H, X') compresses its input, Lemma [provides an
upper bound on the statistical distance between F(K(H, X)) and U(H™ x H)
by generalizing the Leftover Hash Lemma [I7] to (non-necessarily universal)
knapsack function families X(H, X') over arbitrary groups.

Lemma 4 (LHL, generalized). For any finite abelian group H and integer d,

A(FE) <) | S [Hal Pelacdy(xc—y) =d | x — X,y « X}
1<d| M

3)

where M is the exponent of H and d > 1 ranges over all divisors of M.

2.3 Fourier Analysis and Learning

Fourier analysis has been used extensively in learning theory, especially in the
context of learning functions defined over the boolean hypercube (see [21I827]
for some examples). In Cryptography, two noteworthy examples are the

Pseudorandom Knapsacks and the Sample Complexity of LWE 473

Kushilevitz-Mansour [21I] formulation of the proof of the Goldreich-Levin [15]
hard-core predicate for any one-way function and the proofs of hard-core predi-
cates for several number-theoretic one-way functions by Akavia, Goldwasser and
Safra [4].

Below we review some basic facts from Fourier analysis focusing on the discrete
Fourier transform over finite abelian groups. We restrict the presentation to what
is needed and refer the interested reader to [3I34] for more details.

Fourier Basics. Let H be a finite abelian group and hy,hy : H — C be
functions from H to the complex numbers. The inner product of h; and hs is
defined as

(ko) = E | n()ha(r) | = uﬂzhl

U(H
z—U(acH

where Z is the conjugate of z € C. The ¢3-norm and ¢..-norm of h are defined as

Ihlla = v/(hy k) and [|hl|oc = max |h(z)].
c€H

The set of characters of H (denoted as char(H)) is the set of all the homomor-
phisms from H to the complex numbers of unit magnitude T. Namely,

char(H)={x: H — T|Vm,y € H, x(x+y) =x(z) x(y)}

When H is a vector group, i.e. HzZi, and a = (a1,...,a¢) € H, then the
character yo: H — T is defined as xq(x) = (wk)2f=1 T = e,

FOURIER TRANSFORM. The Fourier transform of a function h: H — C is the
function h: H — C defined as h(a) = (h, xa). The Fourier transform measures
the correlation of h with the characters in H. R

The energy of a Fourier coefficient av is defined as the square of its norm (|h(c)|?)

while the total energy of h is defined as) |h(x)|2. Parseval’s identity says
that 3 qep [h(c)[* = [[]3.

Learning Heavy Fourier Coefficients. Let 7 € R, « € H and h: H —
C where H is a finite abelian group. Following the notation and terminology
from [3], we say that a is a 7-significant (or 7-heavy) Fourier coefficient of
h if \ﬁ(a)\z > 7. The set of 7-significant Fourier coefficients of h is denoted by
Heavy, (h), that is Heavy,(h) = {a € H | |h(at)|? > 7}. The following Theorem
provides the conditions for learning heavy Fourier coefficients of functions defined
over arbitrary finite groups and will be used in the proof of our main result.

Theorem 1. (Significant Fourier Transform,[3, Theorem 38.3]) There exists a
probabilistic algorithm (SFT) that on input a threshold T and given query access
to a function h: H — C, returns all T-heavy Fourier coefficients of h in time
poly(log |H|,1/7, ||h||lsc) with probability at least 2/3.

2 The success probability is taken over the internal randomness of the SF7 algorithm
only, and can be amplified using standard repetition techniques. However, this is not
needed in our context, so for simplicity we fix the success probability to 2/3.

474 D. Micciancio and P. Mol
3 Pseudorandomness of Knapsack Functions

In this section we establish the connection between the search and decision prob-
lems for families of bounded knapsack functions. The following theorem summa-
rizes our main result.

Theorem 2 (Main). Let X be a distribution over [s]™ C Z™ for some s =
poly(n) and G be a finite abelian group. If K(G, X) is one-way and K(Gg4, X) is
pseudorandom for all d < s, then K(G, X) is pseudorandom.

The proof of TheoremPlmakes use of the intermediate notion of (un)predictability
defined below. Informally, for any £ € N, a ¢-predictor for a function family (F, X')
is a weak form of inverter algorithm that on input a function f € F, a target
value f(x) and a query vector r € Z}’, attempts to recover the value of x - r
(mod ¢), rather than producing the entire input x.

Definition 1. For any ¢ € N and function family (F, X) with domain [X] C Z™,
a L-predictor for (F,X) is a probabilistic algorithm P that on input (f,y,r) €
F x R X Z}' outputs a value P(f,y,r) € Z; which is intended to be a guess for
x-r (mod £). The error distribution of a predictor P is defined as

E(P)={x-r—=P(f, f(x),r) (mod ¥)|f—UF),x— X, r—UZ)}.

The bias of a l-predictor P is the quantity ‘ZkGZ(Pr{k « &(P)} - w; *|. If P
runs in time t and has bias at least €, we say that P is (t,€)-biased. A function
family (F, X)) that admits a (t,€)-biased ¢-predictor is (t, €, £)-predictable.

The proof of Theorem [2 proceeds in two steps. In the first step (Lemma [l) we
show that a certain (non-trivial) predictor for K implies a non-trivial inverter
for K. This step uses Fourier analysis and holds true for any function family
(and not just for) with domain [X] C Z™. In the second step (Proposition [2),
we prove that if there exists a distinguisher for (G, X), but no distinguisher
for K(G4,X) for small d, then there exists a predictor for (G, X'). This step
is specific to knapsack families and depends on both the underlying group G
and the distribution X. The two steps combined yield Theorem Bl Sections [31]
and are devoted to each step of the reduction.

3.1 From Predictability to Invertibility

Proving that predictability implies invertibility is not specific to knapsack fam-
ilies. Rather, it holds for any function family (F,X) with F': X — G where
X CZ™ and G is a finite abelian group. Lemma [l provides the conditions under
which predictability implies invertibility.

Lemma 5. Let (F,X) be a function family with [X] C [s]™ C Z™ for some
s = poly(n). If (F,X) is (t,e,0)-predictable for some ¢ > s, then (F,X) is
(poly(n,logt,1/¢) - t, 5)-invertible.

Pseudorandom Knapsacks and the Sample Complexity of LWE 475

Proof (Sketch). We use Fourier analysis and the SFT algorithm from Theo-
rem[Il Let P be a ¢-predictor for F that runs in time ¢. Roughly speaking, the
inverter Z on input (f, f(x)) for some f «— U(F), simulates the execution of
SFT in order to find x. For every query r € Z}* issued by SF7T, T invokes P
on appropriate input and sends back the result to SF7. It turns out that, if the
predictor P is (t, €)-biased for some “sufficiently large” bias ¢, then Z simulates
to SFT a (deterministic) function h : Zj* — C which is highly correlated with
the character xx(-), that is, the function h SFT is given access to (through Z, P)
is such that TL(X) is “sufficiently heavy” and therefore SF7 will include x in
the list it returns.

3.2 From Distinguishability to Predictability

We now proceed into proving that, under certain conditions, a distinguisher
D for K(G, X) with noticeable distinguishing advantage implies a predictor for
K(G, X) with noticeable bias. At a high level, the predictor works as follows:
on input a modulus ¢, function g «— U(G™),y =g-x € G andr € Z}", it
first makes a guess for the inner product x - r mod ¢; it then uses that guess
to modify the knapsack instance (g,y), and finally invokes the distinguisher
D on the modified instance (g’,y’). To conclude, the output of D is used to
determine whether the initial guess was correct or not. The same technique has
been used by Impagliazzo and Naor in [I§]. However, in the setting considered
in [I8] — subset-sum over a cyclic group of prime ordeIE — the reduction is rather
straightforward: if the guess for x - r is correct, then the modified knapsack
instance (g’,y’) is distributed according to F(K(G, X)), whereas if the guess is
wrong, the distribution of (g’,y’) is (statistically close to) uniform. Therefore, a
distinguisher with noticeable advantage implies almost immediately a 2-predictor
with noticeable bias.

When considering general (not necessarily cyclic) abelian groups with possi-
bly composite order and distributions X with [X] € {0,1}™, several technical
difficulties arise. Unlike [I8], if the guess for x-r is wrong, then the distribution of
(g',y') can be statistically far from uniform. In fact, (g’, 3’) can be distributed ac-
cording to Fy4(K(G, X)) for any divisor d of the group exponent M. Depending
on the order and structure of the underlying group, and the output distribution
of the distinguisher D on the various auxiliary distributions Fy(K(G, X)), the
technical details of the reduction differ significantly. As a warm-up, we first state
a weak form of our main Theorem.

Proposition 1. If K(G, X) is (t,0)-distinguishable from uniform for some no-
ticeable §, but K(Ggq,X) is pseudorandom for all d < 2ms® then there is a

3 In the context of polynomial time reductions “sufficiently high” and “sufficiently
heavy” is to be interpreted as noticeable in the security parameter.

4 [18] also consider cyclic groups with power-of-2 order but this makes their analysis
only slightly more complicated.

476 D. Micciancio and P. Mol

poly(n)-bounded prime p > s and a polynomiall q(-) such that KK(G, X) is (O(t+
m), 1/q(n), p)-predictable.

Even though Proposition [[] already gives search-to-decision reductions for some
interesting families /IC, it is not strong enough to establish Theorem [2 in its full
generality. This is achieved in Proposition 2l Theorem [then follows directly if
we combine Proposition Pl and Lemma [5l

Proposition 2. If K(G, X) is (t,9)-distinguishable from random for some no-
ticeable 6, but K(Gq, X) is pseudorandom for all d < s, then there exists a polyno-
mially bounded d* > s and polynomial q(-) such that K is (O(t+m),1/q(n),d*)-
predictable.

Proof. For simplicity, we write K (resp. Ky) instead of K(G, X) (resp. K(Gq4, X)).
We use F4(K) (as in [@)) for all auxiliary distributions. For a distinguisher D,
prob? := Pr[D(F4(K)) =1]. Notice that Pr[DU(G™ x G)) =1] = prob”
and Pr[D(F(K))=1] = probAD4G, The distinguishing advantage of D between
distributions F,, (K) and F, (K) is defined as Adv? (Fy, (K), Fa, (K)) = |prob§1 -
probg2 |. When one of the two distribution is U(G™ x G), we write Adv} instead
of AdvP (F4(K), F1(K)). We often write a =, b instead of a = b (mod ¢) and
define §;; = 1 if ¢ = j and 0 otherwise.

By hypothesis, there exists distinguisher D and polynomial ¢(-) such that
Advi,| >) and |Adv| = negl(n) Vd' < s. If Advg = negl(n) Vd' < 2ms?
then proof follows directly from Proposition[Il Else, there exists d with s < d <
2ms? (notice that since both s and m are polynomially bounded in n, so is d)
and polynomial w(-) such that [Adv%| > w(ln). Let d* be the smallest divisor of

d such that [AdvD.| > dsi?n) (in particular, this implies that|Adv}| < daij/zn)

for all d’ | d*). Since ;%" > 1 and |Adv]| = negl(n) ¥d' < s, it should be
the case that d* > s. Consider now the predictor P shown in Algorithm [(P
tries to guess the inner product r - x (mod d*)).

It can be checked that, if P’s guess for r - x (mod d*) (line 1) is correct,
then the input distribution to D (line 4) is exactly Fg«(K). Otherwise the input
distribution to D is Fy (K) for some d’ | d* with d’ < d*.

It only remains to compute the bias of P. First notice that

Pr{k « E4-(P)} = Pr[guess =¢= v — k|

d*—1
:Zpr[guesszd*vfk‘czd* v—j|Pric=¢v—j]
§=0
e
:d* ZPr[guesszd*nyczd*vij])
j=0

5 We only care about the predicting advantage being noticeable and do not seek to
optimize it as a function of the distinguishing advantage. We simply mention that
the success probability € of the predictor is € > §/4ms>.

5 such a d* always exists. Indeed d itself satisfies this condition and is a divisor of
itself.

Pseudorandom Knapsacks and the Sample Complexity of LWE 477

input : (g,5.1) // y—g-x r— UZL)
output: guess € Zg-
Pick ¢ — U(Zg4+);
Pick g1 < U(G), g2 «— U(G);
g—g-r-g1//r-q1=(r1-91,-,"m " g1) ;
Run D on input (g,y —c- g1 +d* - g2) ;
if D returns 1 then

JUESS +— C ;
else

guess — U(Zg \) ;
end
return guess

© 0 N O Uk W N

=
o

Algorithm 1. Predictor for strong reduction (Proposition [2])

Conditioning on D’s output and after doing some calculations, we get

11
Prik —&-(P)y= + . probgia,ar) — Z Probiea;.a-)
J;ﬁk

which implies that

rob? .y — prob? Adv? .
Prik — E(P)} — Pr{l — £.(P)} = " gcd((’;jjl Probr dde,(kl’d)

Using this and the fact that ZZ;BI wd_*k = 0 we get that

d*—1 d -1
- 1 -
> Prik—a(P)}wgt| = | D Advgagras @
k=0 —
> g — ‘AdVZi)* Z ’Advgcd(k d)] ()

Next we bound 22;1 ’Advgpcd(,“d*) . Define §(d*, k) = {1 <i < d*: ged(i,d*) =
k} and lefll ¢(d*, k) = |&(d*, k)| Clearly ¢(d*,d’) < % Vd'| d*. So

D
Advgcd(k7d*)

< Y od,d)

d* p
< d?
< Bun) 2

d*—1

D
Z ‘/—\dvgcd(k’d*)
k=1

" This is a generalization of Euler’s totient function.

478 D. Micciancio and P. Mol

where in the last inequality we used the fact that for all proper divisors d’ of d*,
AR ° . Replacing back in B we finally get

d3w(n) "
d*—1
1 d*3 d*
P — E g+ . :k > . - 2
kz:(:) r{k — & (P)} - wy"| 2 d* —1 {dSw(n) dBw(n) dwzd*d]
d'<d*
a3 72 1
> 2 — >
> i -) 2 6) Z g

for some polynomial ¢(-). In the last inequality we used the fact that for any
d €N, Zr|d,r<dr2 < (7%/6) - d>.

4 Implications and Applications

Theorem [provides explicit criteria for checking if a knapsack family is pseu-
dorandom. For a group G and input distribution X', one needs only to check
whether the folded families K4 = (G4, X) are pseudorandom. As it turns out,
for many choices of (G, X), the folded knapsack functions Kq4 compress their in-
put and map X to a distribution which is statistically close to uniform over Gg.
More specifically, Ay (F(K(Gq, X))) = negl(n), and K(Gq, X) is pseudorandom
in a strong statistical sense. Below, we provide some representative examples
focusing on those that are most interesting in applications.

4.1 Specific Groups and Input Distributions

We start with groups G whose order does not contain any factors that are smaller
than the maximum value the input can take, i.e. [X] C [s]™ and any prime factor
of |G| is at least as large as s. In this case, a direct interpretation of Theorem [2]
reveals that one-wayness implies pseudorandomness for any input distribution.

Corollary 1. Let p be the smallest prime factor of |G| and X be such that
[X] C [p]™. If K(G, X) is one-way, then it is also pseudorandom.

Corollary [is already very powerful. For instance, in the standard subset sum
problem we have [X] = {0,1}™ C [p]|™ for any prime p. Therefore, Corollary [I]
significantly generalizes the results from [18] and [12]. More specifically, it asserts
that any knapsack family (G, X) with [X] C {0,1}™ is pseudorandom provided
it is one-way, for any abelian group G. Other interesting groups Corollary [is
directly applicable to include groups with prime order, vector groups Zg for
prime p and generally groups Z’;e where p is a prime such that [X] C [p]™.

For groups with small prime factors (smaller than s, where [X] C [s]™), the
connection between one-wayness and pseudorandomness is more subtle: search
to decision equivalence can be shown only for some input distributions and
groups G. We summarize a few such examples focusing on wvector groups, i.e.
G= Z’; both for simplicity and because those groups are most interesting from

Pseudorandom Knapsacks and the Sample Complexity of LWE 479

a cryptographic viewpoint (see Section [£2]). Throughout, we assume m — k =
w(logn).

For a vector group G = Z’q“ consider the folded knapsack function K; =
K(Gg4, X). First notice that Mg = ¢ and dG = dZF = ged(d, q) - ZF. By Theo-
rem 2l proving pseudorandomness of K(G, X') amounts to proving that K4 are
pseudorandom for all d < s with d | ¢. In fact, below we study cases where K4
are statistically random, i.e. Ay (F(K(ZE, X))) = negl(n) for all divisors d < s
of q. Lemma [6] provides sufficient conditions for pseudorandomness expressed in
terms of the statistical properties of X and the factorization of q. The statisti-
cal properties of X can be better expressed by defining the d-folded distribution
Xg = {x (mod d) | x «— X}. Lemmal6l then requires that, for every “small” divi-
sor of ¢, the d-folded distribution &); has collision probability sufficiently smaller
than a quantity that depends exclusively on d*, the order of the quotient group
Gq= Z’:l. The proof follows almost immediately from Theorem 2] and Lemma [4l

Lemma 6. If K = K(Z}, X) is one-way, [X] C [s]™ and d* - Col (Xy) = negl(n)
for all d| q with d < s, then IC(Z];, X) is also pseudorandom.

Below, we present 2 natural families of distributions which have small collision
probability when “folded” over small d. Search to decision reductions for the
corresponding knapsack families follow directly from Lemma [0l and the bounds
on the collision probability of the two distributions. Lemmas [7] and [provide
formal statements.

UNIFORMLY FOLDED DISTRIBUTIONS. For a given vector group G we say that
a distribution X with [X] C [s]™ is uniformly folded with respect to G, if Xy =

(X mod d) & U(Z}) for all d < s such that d | Mg. When G = Z%, one such

example is X' = U(Zy") or X =U(Zy;) when g = p® for some e > i.

Lemma 7. If IC(Z’;,X) is one-way and X is uniformly folded with respect to
Lk, (with [X] C [s]™ for s = poly(n)), then it is also pseudorandom.

GAUSSIAN. Gaussian-like distributions are typically used for sampling the error
in LWE-based cryptographic constructions. The following lemma establishes the
search-to-decision reduction for knapsack families defined over Z’q“ and discrete
Gaussian input distribution. Qualitatively similar results hold for discretized
(rounded) Gaussians.

Lemma 8. Let r be the Gaussian parameter withy w(logn) < r < poly(n). If
IC(Z’;,'DZm’r) s one-way then it is also pseudorandom provided that either

(a) q is prime or

(b) q is composite and there exists a function B(n) = w(v/logn) such that all
divisors d of q lie outside the interval [r/B(n),r - B(n)].

8 In typical instantiations, r = £2(n?) for some constant 6 > 0.

480 D. Micciancio and P. Mol

4.2 Applications to LWE

In this section, we show how our results for knapsack functions imply similar
search-to-decision reductions for the Learning With Errors (LWE) problem with
the interesting feature of being sample-preserving. Following existing LWE liter-
ature, we use n for the length of the secret vector s, m for the number of samples,
q for the modulus and x for the error distribution. Let n, m, g be positive integers
and x a distribution with [x] C Z,. For a vector s € Z7, define the distribution

Asx ={(a,a-s+e)|a—UZy) e —x}

The LWE problem is the problem of recovering s given m samples from distri-
bution As . In its decisional version (DLWE), one is given m samples drawn in-
dependently at random either from As , (for some secret s) or from U(Z x Zg).
The goal is to tell the two distributions apart with noticeable probability.

We are interested in reductions from LWE to DLWE that preserve all the
parameters n,m,q,x, including the number of samples m. Sample-preserving
reductions are more naturally described using matrix notation for the LWE
problem. Given a collection of m LWE samples (a;, b;) < As. 5, we can combine
them in a matrix A having the vectors a; as rows, and a column vector b with
entries equal to b;. That is, b = As + e where e < x™. With this notation,
we want to prove that any algorithm that distinguishes (A, b = As + e) from
U(Zg™™ x Zy") can be used to recover the secret s. Notice that once the secret
s has been recovered, one can also recover the error vector e = b — As. So, we
can equivalently define LWE as the problem of recovering both s and e. This is
exactly the problem of inverting the following function family.

Definition 2. Let n,m,q and x defined as above. LWE(n,m, q, x) is the func-
tion family (F, X) where X = {(s,e) | s — U(Zy),e < x™}, and F is the set of
functions fa indexed by A € Z7"*™ and defined as fa(s,e) = As +e.

The decision LWE is the problem of distinguishing F(LWE(n,m, ¢, x)) from
U(Z*™ x Zy'). However, LWE(n,m, g, x) is not a knapsack family. In order
to apply the results from Section Bl we exploit the duality between the LWE
problem and an associated knapsack function family described in the following
lemmas.

Lemma 9. For anﬂ n,m > n+ w(logn),q and x, there is a polynomial time
reduction from the problem of inverting LWE(n, m, q, x) with probability €, to the
problem of inverting K(Zy'~",x™) with probability ¢ = € + negl(n).

Proof (Sketch). The transformation from the LWE problem into an equivalent
knapsack problem requires that the matrix A be nonsingular, i.e., the rows
of A generate Z;. When A « U(Zy**™), this is true except with probability
at most 1/p™~"~1 where p is the smallest prime factor of ¢. So, for m > n +

9 The requirement m > n + w(logn) is a standard assumption in the context of LWE,
where typically m > n + 2(n).

Pseudorandom Knapsacks and the Sample Complexity of LWE 481

w(logn), Pr[A singular | = negl(n). We can therefore assume A has been chosen
at random, but conditioned on the property that it is nonsingular.

Consider now the set that contains all vectors g such that gA = 0 (mod q).
Under the assumption that A is nonsingular, this set is generated by the rows
of a matrix G € Zémfn)xm that can be efficiently computed from A using
linear algebra. We can further randomize G by left-multiplying it by a random
unimodular matrix U € ng_")x(m_"). Finally, if A is chosen at random among
all nonsingular matrices, then this randomized G is also distributed uniformly
at random among all matrices whose columns generate Z;'~". As before, the

distribution of G is within negligible statistical distance from Z/{(Z((Im_")xm),

so we can treat the columns of G as random elements from the vector group
G = Zg". Finally, we set ¢ = Gb = GAs + Ge = Ge, so the distribution
(G, c) is statistically close to a random instance of the knapsack problem with
group G = Z;*~™" and input distributed according to the error distribution x™.

Lemma 10. For any n,m > n+ w(logn),q and x, there is a polynomial time
reduction from the problem of distinguishing F(IC(Zy*~", x™)) from uniform with
advantage € to the problem of distinguishing F(LWE(n,m,q,x)) from uniform
with advantage € = € + negl(n).

Proof (Proof Sketch). The reduction reverses the steps taken to transform LWE
into knapsack. We start from a pair (G, c). As before, we can assume that the
columns of G generate Z;'~". Next, by linear algebra, we compute a matrix
A € Z]*™ whose columns generate the set of vectors a such that Ga = 0
(mod q). As before, we can randomize A by right-multiplying it by a random
unimodular matrix U € Zg*" to obtain A’. We also map ¢ to A's’ + r where
s’ « U(Zy) and r is a random solution to the equation Gr = c. It can be
checked that this transformation maps the knapsack distribution (G, c = Ge)
to the LWE distribution (A’, A’s +) (with uniformly random s), when G and
A’ are chosen at random subject to the constraint that they are nonsingular.
The transformation also maps the uniform distribution to a (statistically close
to) uniform distribution.

LWE: From Search to Decision. Sample-preserving search to decision reduc-
tions for LWE are immediately obtained combining the reductions from Lemma[d
and Lemma [[0 with the results from Section [on IC(Z7' ™, x™). Similarly to
the knapsack case, the reductions do not hold unconditionally; rather they hold
for specific, yet very broad, moduli ¢ and error distributions x. Below we give
a general statement for the search to decision reduction parametrized by n,m, q
and x. Upon giving the statement, we provide specific instantiations of the error
distribution x and the modulus ¢ for which the statement holds. Throughout,
we assume that m > n + w(logn).

Proposition 3. Assume there exists an efficient algorithm D that distinguishes
between F(LWE(n, m, g, x)) and U(Zy**"™ x Zy") with noticeable advantage. Then
there exists an efficient algorithm I that inverts LWE(n, m, q, x) with noticeable
success probability.

482 D. Micciancio and P. Mol

The following “assignments” provide examples of ¢ and x that make the above
statement true.

e prime g = O(n°) for constant ¢ and x = Dz . The search to decision reduc-
tion of the corresponding bounded knapsack problem follows directly from
Corollary [l Setting ¢ and x as above is typical for instantiations of LWE-
based cryptographic applications.

e ¢ = p° for prime p = poly(n), and x = Dz, for “sufficiently narrow” standard
deviation (more specifically, it is required that r = o 102). Again, the
search to decision reduction of the bounded knapsack problem stems from
Corollary [[l We note that this case provides a sample-preserving version of
the search to decision reduction proved in [6].

e g = p° = poly(n), with x = U(Z,:) for some i < e. Pseudorandomness of the
knapsack instance stems directly from Lemmal[d Search to decision reduction
for LWE with such noise distribution appears to be new; no such (even non-
sample-preserving) reduction has previously appeared in the literature.

5 Open Problems

Our work leaves many interesting open questions. To start with, sample-preserving
search to decision reductions for LWE with bounded noise as considered in this
work, don’t seem to extend to the unbounded noise regime, i.e. when each coef-
ficient e; of the error vector e of LWE is drawn from a set with superpolynomial
size. We note that such search to decision reductions are known [28] but are not
sampling preserving. These reductions rely heavily on a Chinese Reminder The-
orem (CRT) approach: using a perfec@ distinguisher, they first learn the secret
modulo p; with overwhelming success probability for each polynomially bounded
prime factor p; of the modulus ¢; they then use the CRT to recover the entire
secret. In sample preserving reductions, where only an imperfect distinguisher
can be afforded by the available number of samples, learning the secret modulo
p; can be performed in a much looser, list-decoding sense: the secret modulo p; is
included in the corresponding lists L; but among possibly many other elements.
And the only way to check which of the list elements corresponds to the secret
modulo p; seems to be by forming first the entire secret using CRT and then
verifying that the result is the LWE secret. Thus, one has to solve superpolyno-
mially many CRT instances before recovering the correct value of the secret. It
would be nice to extend the list-decoding approach to work even in that case.
As an additional motivation, we mention that extending our sample preserving
reductions to the unbounded error setting is likely to have implications to the
search to decision equivalence of the newly introduced Ring LWE (R-LWE)
problem [24]. R-LWE is an algebraic variant of LWE that leads to much more
efficient constructions than standard LWE while still enjoying strong security

10 By perfect here we mean a distinguisher with advantage almost 1. Getting a perfect
distinguisher out of an imperfect one (one with only a nonnegligible advantage) is
the main reason for the blowup in the number of samples the reduction consumes.

Pseudorandom Knapsacks and the Sample Complexity of LWE 483

guarantees. Much like LWE with unbounded noise, existing search to decision
reductions [24] decompose the secret (which is an element from a ring R) modulo
q; where q; are prime ideal factors.

Our work also highlights the importance of understanding the hardness of
LWE under various noise distributions. Current hardness proofs for search LWE
[31] based on worst-case lattice problems rely on the noise following a Gaussian
distribution. Can lattice-based hardness results for search LWE be extended
to noise distributions other than Gaussian? Can we show similar lattice-based
hardness results if the noise is distributed uniformly at random modulo 2°? The
latter case is very attractive from a practical viewpoint since arithmetic modulo
2 and sampling from uniform distributions can be implemented very efficiently.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553-572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimen-
sion and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 98-115. Springer, Heidelberg (2010)

3. Akavia, A.: Learning Noisy Characters, Multiplication Codes and Hardcore Pred-
icates. PhD thesis. MIT (February 2008)

4. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List
Decoding. In: FOCS, pp. 146-157 (2003)

5. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474-495. Springer, Heidelberg (2009)

6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595-618. Springer, Heidelberg (2009)

7. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: ICALP
(2011), http://www.eccc.uni-trier.de/report/2010/066/

8. Blum, A., Furst, M.L., Jackson, J.C., Kearns, M.J., Mansour, Y., Rudich, S.:
Weakly Learning DNF and Characterizing Statistical Query Learning using Fourier
Analysis. In: STOC, pp. 253-262 (1994)

9. Blum, A., Furst, M.L., Kearns, M. J., Lipton, R.J.: Cryptographic Primitives
Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 278-291. Springer, Heidelberg (1994)

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate
a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523-552. Springer, Heidelberg (2010)

11. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 361-381. Springer, Heidelberg (2010)

12. Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as
syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 245-255. Springer, Heidelberg (1996)

13. Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem
from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506—
522. Springer, Heidelberg (2010)

http://www.eccc.uni-trier.de/report/2010/066/

484

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

D. Micciancio and P. Mol

Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: STOC, pp. 197-206. ACM, New York (2008)
Goldreich, O., Levin, L.A.: A Hard-Core Predicate for All One-Way Functions. In:
STOC, pp. 25-32 (1989)

Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
Learning with Errors Assumption. In: ICS (2010)

Impagliazzo, R., Zuckerman, D.: How to Recycle Random Bits. In: FOCS, pp.
248-253. IEEE Computer Society, Washington, DC, USA (1989)

Impagliazzo, R., Naor, M.: Efficient Cryptographic Schemes Provably as Secure as
Subset Sum. J. Cryptology 9(4), 199-216 (1996)

Katz, J., Shin, J.S.,; Smith, A.: Parallel and Concurrent Security of the HB and
HB™ Protocols. J. Cryptology 23(3), 402-421 (2010)

Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315
329. Springer, Heidelberg (2007)

Kushilevitz, E., Mansour, Y.: Learning Decision Trees Using the Fourier Sprectrum.
In: STOC, pp. 455-464 (1991)

Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer,
Heidelberg (2011)

Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577-594. Springer, Heidelberg (2009)

Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1-23. Springer, Heidelberg (2010)

Micciancio, D.: Duality in Lattice Based Cryptography. In: Public Key Cryptog-
raphy (2010) (invited talk)

Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Post Quantum Cryp-
tography, pp. 147-191. Springer Publishing Company, Heidelberg (2009)

Mossel, E., O’Donnell, R., Servedio, R.A.: Learning Juntas. In: STOC, pp. 206—212
(2003)

Peikert, C.: Public-Key Cryptosystems from the Worst-Case Shortest Vector Prob-
lem. In: STOC, pp. 333-342. ACM, New York (2009)

Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554-571. Springer, Heidelberg (2008)

Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In:
STOC, pp. 187-196. ACM, New York (2008)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of ACM 56(6), 34 (2009); Preliminary version in STOC 2005

Regev, O.: The Learning with Errors Problem (Invited Survey). In: IEEE Confer-
ence on Computational Complexity, pp. 191-204 (2010)

Riickert, M., Schneider, M.: Estimating the Security of Lattice-based Cryptosys-
tems. Technical Report 2010/137, IACR ePrint archive (2010)

Stefankovic, D.: Fourier Transform in Computer Science. Master’s thesis, Univer-
sity of Chicago (October 2000)

Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient Public Key Encryption
Based on Ideal Lattices. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912,
pp. 617-635. Springer, Heidelberg (2009)

	Pseudorandom Knapsacks and the Sample Complexity of LWE Search-to-Decision Reductions
	Introduction
	Preliminaries
	Probability
	Groups and Knapsack Function Families
	Fourier Analysis and Learning

	Pseudorandomness of Knapsack Functions
	From Predictability to Invertibility
	From Distinguishability to Predictability

	Implications and Applications
	Specific Groups and Input Distributions
	Applications to LWE

	Open Problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

