
Goal-Based Behavioral Customization of Information
Systems

Sotirios Liaskos1, Marin Litoiu1, Marina Daoud Jungblut1, and John Mylopoulos2

1 School of Information Technology, York University, Toronto, Canada
{liaskos,mlitoiu,djmarina}@yorku.ca

2 Department of Information Engineering and Computer Science, University of Trento, Italy
jm@disi.unitn.it

Abstract. Customizing software to perfectly fit individual needs is becoming in-
creasingly important in information systems engineering. Users want to be able to
customize software behavior through reference to terms familiar to their diverse
needs and experience. We present a requirements-driven approach to behavioral
customization of software systems. Goal models are constructed to represent al-
ternative behaviors that users can exhibit to achieve their goals. Customization
information is then added to restrict the space of possibilities to those that fit
specific users, contexts or situations. Meanwhile, elements of the goal model are
mapped to units of source code. This way, customization preferences posed at
the requirements level are directly translated into system customizations. Our ap-
proach, which we apply to an on-line shopping cart system, does not assume
adoption of a particular development methodology, platform or variability imple-
mentation technique and keeps the reasoning computation overhead from inter-
fering with execution of the configured application.

Keywords: Information Systems Engineering, Goal Modeling, Software
Customization, Adaptive Systems.

1 Introduction

Adaptation is emerging as an important mechanism in engineering more flexible and
simpler to maintain and manage information systems. To cope with changes in the en-
vironment or in user requirements, adaptive systems are able to change their structure
and behavior so that they fit to the new conditions [1,2]. An important manifestation of
adaptivity is the ability of individual organizations and users to customize their software
to their unique and changing needs in different situations and contexts.

Consider, for example, an on-line store where users can browse and purchase items.
Normally, an anonymous user can browse the products, view their price information and
user comments, add them to the cart, log-in and check-out. But different shop-owners
may want variations of this process for different users. They may need, for example,
to withhold prices, user comments or other product information unless the user has
logged in, or only if the user’s IP belongs to a certain set of countries. Or they may
wish to rearrange the sequence of screens that guide the buyer through the check-out
process. Or, finally, they may wish to disable purchasing and allow just browsing, with
only some frequent buyers allowed to add comments – with or without logging in first.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 77–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 S. Liaskos et al.

The shop-owner should be able to devise, specify and change such rules every time she
feels it is necessary and then just observe the system reconfigure appropriately without
resorting to expert help. But how easy is this?

Satisfying a great number of behavioral possibilities and switching from one to the
other is a challenging problem in information systems engineering. While there is sig-
nificant research on modeling and implementing variability and adaptation, e.g. in the
areas of Software Product-Lines and Adaptive Systems, two aspects of the problem
seem to still require more attention. Firstly, the need to easily communicate and actuate
the desired customization, using language and terms that reflect the needs and experi-
ence of the stakeholders, such us the shop owner of our example. Secondly, the need to
allow the stakeholders to construct their customization preferences themselves, instead
of selecting from a restricted set of predefined ones, allowing them, thus, to acquire a
customization that is better tailored to their individual needs.

To address these issues, in this paper we extend our earlier work on goal variabil-
ity analysis [3,4] and introduce a goal-driven technique for customizing the behavioral
aspect of a software system. A generic goal-decomposition model is constructed to rep-
resent a great number of alternative ways by which human agents can use the system to
achieve their goals through performance of various tasks. The system-to-be is developed
and instrumented in a way that the chunks of code that can enable or prevent perfor-
mance of such user tasks are clearly located and controlled in the source code. After
completion and deployment of the application, to address their specific needs and cir-
cumstances, individual stakeholders can refine the goal model by specifying additional
constraints to the ways by which human and machine actions are selected and ordered
in time. A preference-based AI planner is used to calculate such admissible behaviors
and a tree structure representing these behavioral possibilities is constructed. Thanks to
having appropriately instrumented the source code, that tree structure can be used as a
plug-in which is inserted in the system and enforces the desired system behavior. This
way, high-level expressions of desired arrangements of user actions are automatically
translated into behavioral configurations of the software system. Amongst the benefits
of our approach are both that it brings the customization practice to the requirements
level and that it allows leverage of larger number of customization possibilities in a flex-
ible way, without imposing restrictions to the choice of development process, software
architecture or platform technology.

The paper is organized as follows. In Section 2 we present the core goal modeling
language and the temporal extension that we are using for representing behavioral al-
ternatives. In Section 3 we show how we connect the goal model with the source code,
how we express goal-level customization desires and how we translate them into be-
haviors of the system. We discuss the feasibility of our approach in Section 4. Finally,
in Section 5 we discuss related work and conclude in Section 6.

2 Goal Models

Goal models [5,6] are known to be effective in concisely capturing alternative ways by
which high-level stakeholder goals can be met. This is possible through the construction
of AND/OR goal decomposition graphs. Such a graph can be seen in Figure 1. The

Goal-Based Behavioral Customization of Information Systems 79

Shop On-
Line

Login

AND

Browse
Items

AND

Check Out

Review
Order

AND

Provide New
Address Info

AND

AND

AND

View
Prices View Basic

Product Info

AND

Logout

AND

AND

Provide
CC Info

AND

Confirm
Check Out

AND

View and Post
Comments

View
Comments

AND

Add
Comment

AND

AND

Learn About
Items

AND

Consult
Printed
Catalog

AND View Items

AND
Use

External
Web Site

AND

Use
Cart pre

pre
pre

pre

pre
pre

pre
pre

View Product
Image

AND

t1

t2

t3 t4 t7

t8

t9

t10

t11

t12

t13

Change
Ordering

AND

t15

t16

t5

pre

pre

pre

pre

Provide
Address Info

Use Stored
Address Info

OR
OR

t6

t14

Fig. 1. A goal model

model shows alternative ways by which an on-line store can be used for browsing and
purchasing products.

The graph consists of goals and tasks. Goals – the ovals in the figure – are states of
affairs or conditions that one or more actors of interest would like to achieve [6]. Tasks
– the hexagonal elements – describe particular low-level activity that the actors perform
in order to fulfill their goals. To ease our presentation, next to each task shape a circular
annotation containing a literal of the form ti has been added, which we will use in the
rest of the paper to concisely refer to the task. For example, t7 refers to the task View
Basic Product Info.

Tasks can be classified into two different categories depending on what the system
involvement is during their performance. Thus, human-agent tasks are to be performed
by the user alone without the support or other involvement of the system under consid-
eration – an external system outside the scope of the analysis may be used though. For
example Consult Printed Catalog (t3) belongs to this category because it is performed
without involvement of the system. On the other hand, mixed-agent tasks are tasks that
are performed in collaboration with the system under consideration. Thus Add Com-
ment is a mixed-agent task as the user will add the comment and the system will offer
the facility to do so. Another example of a mixed-agent task is View Image: the system
needs to display an image and the user must view it in order for the task to be consid-
ered performed. All tasks of Figure 1 are mixed-agent except for t3 and t8 which are
human-agent tasks.

Goals and tasks are connected with each other using AND- and OR-decomposition
links, meaning, respectively, that all (resp. one) of the subgoals of the decomposition
need(s) to be satisfied for the parent goal to be considered satisfied. In addition, chil-
dren of AND-decompositions can be designated as optional. This is visually repre-
sented through a small circular decoration on top of the optional goal. In the presence
of optional goals, the definition of an AND-decomposition is refined to exclude op-
tional sub-goals from the sub-goals that must necessarily be met in order for the parent
goal to be satisfied. For example, for the goal View Items to be fulfilled, the task View
Basic Product Info is only mandatory – tasks View Prices, Change Ordering and View
Product Image may or may not be chosen to be performed by the user.

80 S. Liaskos et al.

Furthermore, the order by which goals are fulfilled and tasks are performed is rele-
vant in our framework. To express constraints in satisfaction ordering we use the prece-
dence link (

pre−→). The precedence link is drawn from a goal or task to another goal or
task, meaning that satisfaction/performance of the target of the link cannot begin unless
the origin is satisfied or performed. For example the precedence link from the task Use
Cart (t2) to the goal Check Out implies that none of the tasks under Check Out can be
performed unless the task Use Cart has already been performed.

Given the relevance of ordering in task fulfillment, solutions of the goal model
come in the form or plans. A plan for the root goal is a sequence of leaf level tasks
that both satisfy the AND/OR decomposition tree and possible precedence links. In
plan [t1, t7, t4, t2, t12, t14, t15, t16, t11] for example, the user logs-in, browses the prod-
ucts with their prices, adds some of them to the cart and then checks out. In plan
[t1, t7, t4, t9, t10, t2, t12, t14, t15, t16, t11], the user also views and adds comments.

The goal model implies a potentially very large variety of such plans, which are
understood as a representation of the variability of behaviors that an actor may exhibit
in order to achieve their goals. Note that this behavioral variability is to be contrasted
with variability of the actual software system, in that the same system variant may be
used in a variety of ways by the user. For example, the user of our on-line store may
variably choose to use or not to use the Add Comment feature, even if that feature is
invariably available to them.

3 Enabling Goal-Driven Customization

Let us now see how our framework allows specification of preferred user behaviors and
enables subsequent customization of the software system in a way that these preferred
behaviors are actually enforced. A schematic of our overall approach can be seen in
Figure 2. At design time the system is developed in a way that the code that enables
each leaf level task is clearly identified in the source code (frame B in the Figure) and
can be disabled or enabled using information appropriately acquired from replaceable
customization plug-ins, whose construction takes place after deployment, as described
below. After deployment of the application, the users can define behavioral customiza-
tion constraints at a high-level using structured English (frame C). These constraints are
translated into formulae in Linear Temporal Logic (D), which, together with the goal
model (A) are provided to a preference-based planner. The latter produces plans of the
goal model that best satisfy the given behavioral constraints (E). These plans are finally
merged into a structure called policy tree (F) which is then plugged into the application
so that the latter, thanks to the instrumentation that took place at design time (B), ex-
hibits the behavior that is desired in the original customization constraints. In the rest
of this section we describe each of these steps in more detail.

3.1 Connecting Goal Models with Code

To allow interpretation of preferred plans into preferred software customizations, the
system is developed in a way such that elements of the source code are associated with
tasks of the goal model. In our framework, the nature of this association as well as

Goal-Based Behavioral Customization of Information Systems 81

Customization Formula

 Plans
 [t1, t4 , t7, t2, t10, t12 , t13, t15,...]
 [t

1
, t

3
, t

4
, t

7
, t

2
, t

10
, t

12
, t

14
,...]

 ….

Goal Model

Pre-Deployment
(Design Time)

Post Deployment

Plug-In

Policy Tree

perform(t)

canBePerformed(t)

hasBeenPerformed(t)

Instrumentation

Instrumented Code
...
<?php if($tree->canBePerformed("addComment")) { ?>
 <p> Writting comment </
font></p>
 <form method='POST' action='commentControl.php'>
 Title
 <input type='text'
name='title'>

 Body
 <textarea rows="10" cols="30"
name='body'></textarea>
 ...

$tree->perform("addComment")
<?php } ?>
…

Planner

Interpreter

Customization
Desires
des1: “Add Comment is
never satisfied.”
des2: “Provide CC Info is
satisfied after Provide
Address Info is satisfied.”
des3: “View Prices is not
satisfied before Login is
satisfied.”

A

B

CD

E

F

...

Fig. 2. From Customization Desires to Policy Trees

the way it is established is transparent from a particular implementation technology
or architectural approach (e.g. agent-, service- or component-orientation) or particular
development process that, for example, goal-oriented development methodologies pro-
pose (e.g. [7]). It is also independent of variability implementation and composition
techniques (e.g. [8,9,10]) in a sense that any such technique could potentially be chosen
and applied. Thus, to establish the association between goal models and code we only
identify two general principles, which, if applied during development – in whatever ar-
chitectural or process context – our framework becomes applicable. These principles
refer to task separation and task instrumentation, explained below.

Task Separation. For every mixed-agent task in the goal model there exists a set of
statements which are dedicated to exclusively supporting that task – and, thus, serve no
other purpose. Furthermore, it should be possible to prevent these statements from exe-
cuting, preventing in effect the user from performing the task. There is no requirement
that these statements are located in the same part of the implementation and not scat-
tered across components, modules, classes etc. – thus the principle is not a suggestion
of task-oriented modularization. We call this code mapped code (fragment) to the task.
Back in the on-line cart example, the mapped code for task Login is the code for drawing
the username and password text boxes as well as the “Submit” and “Clear” button on
the user screen. This code exists exclusively for allowing the user to perform this task.
Not drawing those widgets, through conditioning the mapped code, effectively prevents
execution of the task. As we will see, we found that the mapped code is predominantly
code that conveniently exists in the view layer of an application.

Task Instrumentation Points. For every mixed-agent task, there is a location in the
source code where the state of the system suggests that a task has been performed. In the
Login example this might be the point in which confirmation that the login credentials
are correct is sent back from the database and the application is ready to redirect control
elsewhere. In the task Review Order, this can be the point where a summary of the

82 S. Liaskos et al.

order has been displayed on the screen – and we assume that the user has successfully
performed the subsequent reviewing task.

The above principles are deliberately general and informal so that they can be easily
refined and applied in a variety of architectural, composition and variability implemen-
tation scenarios. In a component-based or service-oriented setting, for example, the
mapped code of each task can be associated with existing interfaces or services – or
adapters thereof – which may or may not be used by the process engine or other orches-
tration/composition environment. In an aspect-oriented application, on the other hand,
modularization need not follow task separation. Instead tasks can be written as advice
to be weaved (or not) in appropriate locations in the source code. Later in the paper,
drawing from our case study with the on-line cart system, we show how fulfilling the
above principles turned out to be a very natural process.

3.2 Adding Customization Constraints

The temporally extended goal model with its precedence links is intended to be an un-
constrained and behaviorally rich model of the domain at hand. Indeed, the goal model
of Figure 1 describes a large variety of ways by which the user could go about fulfilling
the root goal, as long as each of these ways is physically possible and reasonable. How-
ever the shop owner may wish to restrict certain possibilities. For example, she may
want to disallow the user to view the prices unless he logs in first or prevent the user
from viewing and/or adding comments, before logging in or in general. She may even
go on to disallow use of the cart, again prior to logging in or even for the entire session.
In the last case, this would effectively imply turning the system into a tool for browsing
products only.

To express additional constraints on how users can achieve their goals we augment
the goal model with the appropriate customization formulae (CFs - frame D in Figure
2). CFs are formulae in linear temporal logic (LTL) grounded on elements of the goal
model. Different stakeholders in different contexts and situations may wish to augment
the goal model with a different set of CFs, restricting thereby the space of possible
plans to fit particular requirements. To construct CFs we use 0-argument predicates such
as useCart or browseItems to denote satisfaction of tasks and goals. These predicates
become (and stay) true once the task or goal they represent is respectively performed
or satisfied. Furthermore, symbols �,�, ◦ and U are used to represent the standard
temporal operators always, eventually, next and until, respectively.

Using CFs we can represent interesting temporal constraints that performance of
tasks or satisfaction of goals must obey. Back to our on-line shop example, assume that
the shop owner would like to disallow certain users from browsing the products without
them having logged in first. This could be written as a CF as follows:

¬ viewBasicProductInfo U login

The above means that, in a use scenario, the task View Basic Product Info (t7) should
not be performed (signified by predicate viewBasicProductInfo becoming true) before
the task Login (t1) is performed for the first time (thus, predicate login becoming true).
For another class of users there may be a more relaxed constraint:

¬ viewPrices U login

Goal-Based Behavioral Customization of Information Systems 83

Universal and existential constraints are also relevant. For example the shop owner
may want to disallow users from adding comments, thus:

�¬addComment

If, in addition to these, she wants to prevent them from viewing prices, logging in
and using the cart, this translates into a longer conjunction of universal properties seen
in Figure 3. In effect, with the property of the figure the shop owner allows the users to
only browse the products, their basic information and their images.

(�¬ addComment) ∧ (�¬ viewPrices)∧
(�¬ login) ∧ (�¬ useCart)

Fig. 3. A Customization Formula

While CFs, as LTL formulae, can in theory be of arbitrary complexity, we found
in our experimentation that most CFs that are useful in practical applications are of
specific and simple form. Thus simple existence, absence and precedence properties
are enough to construct useful customization constraints. Hence, LTL patterns such as
the ones introduced by Dwyer et al. [11], can be used to facilitate construction of CFs
without reference to temporal operators. In our application, we used patterns in the form
of templates in structured language. Thus, CFs can be expressed in forms such as “h1

is [not] satisfied before/after h2 is satisfied” to express precedence as well as “h is
eventually [not] satisfied” to express existential properties, where h, h1, h2 are goals or
tasks of the goal model. Examples of customization desire expressions can be seen in
frame C of Figure 2. A simple interpreter performs the translation of such customization
desires into actual LTL formulae. In this way, construction of simple yet useful CFs is
possible by users who are not trained in LTL.

3.3 Identifying Admissible Plans

Adding CFs significantly restricts the space of possible plans by which the root goal can
be satisfied. Given a CF, we call the plans of the goal model that satisfy the CF admissi-
ble plans for the CF. Thus, all [t7], [t7, t5],[t7, t10, t6], [t8, t7, t6, t5] and [t3, t7, t10] are
examples of admissible plans for the CF of Figure 3. However, plan [t1, t7, t4, t9, t2, t12,
t14, t15, t16, t11], although it satisfies the goal model and its precedence constraints, it
is not admissible because it violates the CF – all its conjuncts actually.

To allow the identification of plans that satisfy a given CF, we are adapting and using
a preference-based AI planner, called PPLan [12]. The planner is given as input a goal
model, automatically translated to a planning problem specification as well as a CF
and returns the set of all admissible plans for the CF (frame E in Figure 2). Unless
interrupted, the planner will continue to immediately output plans it finds until there
are no more such. Details on how the planner is adapted can be found in [3].

3.4 Constructing and Using the Policy Tree

We saw that the introduction of a CF dramatically decreases the number of plans that
are implied by the goal model into a smaller set of admissible ones that also satisfy

84 S. Liaskos et al.

login (t1)

root

View basic prod. Info (t7)

View prod. Image (t6)

View

Prices (t4)

View Comments (t10)

Add Comment (t9) Logout (t11)

...

...

...

...

... state
pointer

login (t1)

root

View basic

prod. Info (t7)

View prod.

Image (t6)

View Prices (t4)

Use Cart (t2) logout (t11)

...

...

...

state
pointer

state
pointer

I

II

IIICF

CF

Fig. 4. The effect of Customization Formulae

the CF. The policy tree is simply a concise representation of those admissible plans –
with the difference that it includes only the mixed-agent tasks. In particular, each node
of the policy tree represents a task in the goal model. Given a set of plans P – where
human-agent tasks have been removed – the policy tree is constructed in a way that
every sequence of nodes that constitutes a path from the root to a leaf node is a plan in
P and vice versa. It follows that every intermediate node in the policy tree represents
both a plan prefix – i.e. the first n tasks of a plan – that can be found in P (by looking at
the path from the root) and a set of continuation possibilities that yield complete plans
of P (by looking at possible paths towards the leafs).

Goal-Based Behavioral Customization of Information Systems 85

The policy tree is also supplied with a pointer that points to one of the nodes of the
tree. We call this the state pointer. The role of the state pointer is to maintain informa-
tion about what tasks have been performed in a given use scenario at run time. Thus, the
state pointer pointing to a given node means that the tasks of the plan prefix associated
to that node (the associated prefix) have already been performed. On the other hand, the
tasks that can possibly be performed from that point are restricted to the children of the
node currently pointed at, or any of the tasks in the associated prefix – in a sense that
these tasks can be repeated.

In Figure 4, for example, on the left side of the bottom frame, part of a policy tree
can be seen together with the CF it originated from (�¬useCart). Through use of the
planner, that CF results in a set of admissible plans, say P . Some of those plans have a
prefix [t1, t7, t6, t4, t10, . . .]. Thus, in the resulting policy tree that is depicted, there is a
path from the root to the node t10 that constructs this prefix. By looking at the children
of node t10, we infer that only two expansions of the prefix at hand will yield a longer
prefix that also exists in P and therefore is admissible with respect to the CF: t9 and
t11. In practice, this means that if we are to keep satisfying the CF, we should either
perform one of those two actions or repeat actions of the existing prefix (but without
moving the state pointer).

An algorithm for constructing a policy tree, from a list of admissible plans that the
planner returns can be found in our technical report [13]. It is important to note here
that a new plan can always be appended to an existing policy tree in linear time and
enrich the behavioral possibilities. This allows us to use partial outputs of the planner
immediately while gradually enriching the tree as new plans are generated.

3.5 Conditioning and Instrumenting the Source Code

Let us now see how the policy tree can be plugged into the software system to enable
a behaviors that comply with the expressed customization desires. Preparation for this
needs to actually happen at design time, when the application is developed. Recall that
the system is built following the principles of task separation and task instrumentation.
This means that, on one hand, each mixed-agent task is associated with a set of state-
ments (the mapped code) whose removal can prevent execution of the task, and on the
other hand, for each task there is a well defined location in the code that marks comple-
tion of the task. The policy tree is integrated by conditioning access to the mapped code
based on the position of the state pointer, and by adding statements in the instrumenta-
tion points that advance the position of the state pointer accordingly.

More specifically, the former is implemented through the use of the function can-
BePerformed(t). The function canBePerformed(t) returns true iff task t is one of the
children of the node currently pointed at by the state pointer or part of the associated
prefix. In other words, the code fragment can be entered only if the new plan prefix that
would result from performing the task that maps to that fragment belongs to at least one
of the admissible plans. For example the mapped code of the task Use Cart involves
buttons for adding items to the cart, text fields for specifying quantities, links for view-
ing the cart content etc. All these will be displayed only if canBePerformed(useCart) is
true, that is the task Use Cart is in one of the children of the state pointer, or it is part
of the path from the root to the state pointer. If this is not the case, the mapped code

86 S. Liaskos et al.

viewDetailedProductInfo.php:
...

<?php if($tree->canBePerformed("addComment")) { ?>
 <p> Writting comment </p>

 <form method='POST' action='commentControl.php'>
 Title
 <input type='text' name='title'>

 Body
 <textarea rows="10" cols="30" name='body'>
 </textarea>

 ...
 <input type='submit' name='submitComment' value='Submit'>

 <input type='reset' name='reset' value='Clear'>

 ...
<?php } ?>

...

commentControl.php:
...

$title = $_POST['title'];
$body = $_POST['body'];

$inventoryID = $_POST['inventoryID'];
$userID =$_POST['userID'];

$commentControl = new commentControl();
$commentControl->setComment($title, $body, $userID,

$inventoryID);
$tree->perform("addComment");
header("Location:http://

".$_SERVER['HTTP_HOST'].$clientRoot."productControl/
viewDetailProductInfo.php?inventoryID=$inventoryID");

...

viewCart.php:
...
<?php
 if($tree->canBePerformed("reviewOrder"))

 && ($CartControl->getNumOfItem()>0){?>
 <form action="CartControl.php"

method="POST"><p>
 <input type='submit' value='Checkout'

name='continue'/></p>

 <?php } ?>
...

Fig. 5. Conditioning and Instrumenting Code

will not be accessed, preventing rendering of the user interface elements, which in turn
prevents performance of the task by the user.

Advancement of the position of the state pointer, on the other hand, is implemented
through simple perform(t) statements inserted in the instrumentation points, where t is
the task that was just performed. The effect of the perform(t) statement is that the state
pointer advances to the child labeled with t or stays where it is if t is part of the path
from the root to the state pointer.

In Figure 5, examples of conditioning and instrumentation are shown for our PHP-
based on-line cart system. The upper right frame shows how displaying the widgets for
performing the task Add Comment is conditional to canBePerformed(addComment) be-
ing true. Once the user presses the submit button, a different file (commentControl.php)
arranges to insert the comment to the database and, among other workings, a call to per-
form(addComment) is made (seen in upper left frame), so that the policy tree advances
to the corresponding node. In the lower right frame, how customization conditions are
mixed with run-time conditions is illustrated. Thus, the “Checkout” button is visible if
“Checkout” is allowed by the current customization policy and the cart is non-empty,
which is something irrelevant of policy tree. It is important to notice, therefore, that
the policy tree is not used to completely arrange the details of the control flow of the
application but to only enforce more abstract customization decisions that have been
made at the requirements level. Note also that use of the policy tree is not restricted to
the functions discussed above. For example the function hasBeenPerformed(t), which
returns true iff task t is part of the associated prefix of the node currently pointed,
proved in our application to be helpful in handling large numbers of task permutation
possibilities.

Goal-Based Behavioral Customization of Information Systems 87

Note, again, that the injection of conditioning and instrumentation code discussed
above is taking place at design time and based on the goal model. It is therefore in-
dependent of the actual structure of the policy tree, which, once the system is up and
running, varies based on the customization constraints that are in effect each time.

3.6 In Action

Let us now see a complete example of how a system is customized through expression
of high-level customization desires. Back to our on-line shop, consider the scenario in
which the shop-owner wants to construct CFs for newly identified groups within her
customer base. In Figure 4, two different CF scenarios she devised can be seen together
with screen-shots showing the effect they have to system behavior. On the scenario
on the top frame the CF prevents the users from – among other things – viewing any
product information before they login. In effect this means that once the session starts
the only user action that is allowed is logging in. Indeed, in the policy tree, login is the
only child of the root. This explains the bare-bones screen that is offered to the users
(upper screen-shot labeled [I]). Later in the same scenario of the top frame the user
has logged in and is browsing products. However, the CF prevents the user from adding
any comments. Hence, this facility is absent when viewing detailed product information
(screen-shot [II]). Nevertheless, at that stage, making use of the cart or logging out is
possible as seen in the policy tree. Thus, the button “Add to cart” is visible next to the
product and the button “Logout” on the top left of the screen. The scenario on the lower
frame of Figure 4, on the other hand, tailored to e.g. customers from a particular country
overseas, prevents use of the cart but does not prevent addition of comments. Thus, at a
stage where detailed product information is viewed, the user cannot add the item to the
cart as before, but she can post a comment or log-out (screen-shot [III]). This is exactly
what the state pointer indicates.

4 Applying Goal-Based Customization

Let us now discuss some of the experiences we acquired from our case study with our
on-line cart system. A detailed account on this application can be found in [13].

Code Development and Instrumentation. The on-line cart system we built is a 5 thou-
sand lines-of-code (5KLOC) application in PHP, following a common 3-layer architec-
tural style – i.e. separating view, application logic and storage layers. Two developers,
senior undergraduate students at that time, where asked to develop the system following
a standard textbook object-oriented approach with the only goal model related restric-
tion that the leaf level tasks of the goal model (which was maintained exclusively by the
first author) would be treated as acceptance tests for the end-product and that optional
and alternative tasks maintain that status in the implementation. Looking at the result
afterwards we found that task separation not only was possible but emerged naturally
in the development process. Interestingly, the mapped code would tend to appear at the
view layer of the application. Furthermore, subsequent conditioning and instrumenta-
tion of the mapped code did not pose difficulties either. Policy trees, on the other hand,
are plugged as separate globally visible PHP classes in the application. The use of the

88 S. Liaskos et al.

methods canBePerformed(t) and performed(t) to query/manipulate the tree did not pose
any obvious perception problems or design issues requiring intense problem solving
effort.

Anchoring the Policy Control Process. An issue that triggered further investigation is
that of scoping behaviors. In our example, a plan prefix reflects the use of the system
by one user at a particular time. The same or a different behavior may unfold from the
beginning in a different client system (some other customer trying to buy something),
or by the same customer later that day. With the term anchor we refer to any type of
entity, or group thereof, whose lifetime is bound to a plan prefix. In our example, the an-
chor is the web session. If, for example, the session expires so does the plan prefix that
has been constructed to that point. A new session always means an empty plan prefix
(i.e. state pointer points to the root of the policy tree) waiting to be expanded through
user actions. In different applications different anchoring entities can be thought. In an
application processing business process, e.g. for academic admissions, a student appli-
cation can be considered as the anchoring entity. Thus, for each new application that
arrives a new empty prefix is constructed which is then augmented (through progres-
sion of the state pointer) based on tasks that are performed to process that particular
application. Interestingly, different anchoring entities can be treated by different policy
trees. For example different users of our on-line store (identified through e.g. a cookie
mechanism) may experience different behavioral customizations, through assigning a
separate policy tree to each of them.

Performance and Tool Considerations. The construction of a policy tree is an off-line
activity and can afford longer computation times on separate computing infrastructure.
This way, we avoid unpredictably expensive computational steps to intervene in the
normal control flow. In our experimentation with several CFs over the bookseller goal
model we found that the first hundred of admissible plans can be calculated within a
time period ranging between one and 30 minutes. It is important to note that a working
customization can be achieved even if a subset (in our case some tens) of all admissible
plans is provided, though the resulting policy may prevent behaviors that are otherwise
desired. The policy tree can keep being updated as the planner returns new plans. We
definitely anticipate improved performance as the field of preference-based planning
is fast progressing. For example, an HTN-based planner with preferences has recently
been introduced which offers dramatically better performance through utilization of the
domain knowledge expressed as task hierarchies ([14]). The principles applied in this
paper are applicable to any preference-based planner that can generate sets of plans.

5 Related Work

Our proposal for requirements-driven software customization relates to research on a
variety of topics including adaptive systems, product lines and software/service com-
position.

General goal-driven adaptation has been proposed by several authors. Thus, Zhang
et al. [15] use temporal logic to specify adaptive program semantics. Further, work
by Brown et al. [16] uses goal models to explicitly specify what should occur during

Goal-Based Behavioral Customization of Information Systems 89

adaptation. Their approach uses goal models to specify the adaptation process; in our
approach the adaptation is the indirect result of imposing customization and precedence
constraints on goals. Strategy trees have also been used to evaluate alternative recon-
figurations of software systems in the context of QoS and structural changes [17]. Our
approach differs in that it deals with user goals and behavior adaptation.

Researchers have also proposed different ways to model and bind variability in busi-
ness processes. Lapouchnian et al. use goal models for analyzing alternative business
process configurations [18]. Lu et al. propose the construction of flexible business pro-
cess templates that lay the basic constraints that must be met [19]. Elsewhere [20,21]
variability constructs are added to existing business process notations. In requirements
engineering, a constraint language with temporal features has been proposed to analyze
families of scenarios [22]. In general, such frameworks do not include an implementa-
tion approach, and when they do, this is restricted to specialized frameworks such as
workflow engines [21] or e.g. BPEL-based service composition platforms [18].

The extensive literature on software composition, on the other hand (e.g. [9] for a
taxonomy), is focusing on specific technologies, frameworks or techniques by which
composition can be implemented – e.g. composition of services ([23]), the AHEAD
framework and its descendants [24,25] or Aspect Orientation [26], Domain Specific
Languages and Generators [27,28]. Use of existing AI planning applications to service
composition, in particular, ([29,30] – cf. [10] for a survey), requires certain assumptions
such as, for example, availability of cleanly defined services, limited degree of user
intervention or the existence of some implementation and execution technique of the
desired composition that also alleviates increased reasoning times. Our customization
framework attempts to be more generally applicable, has a stronger focus on the im-
plementation aspect without making platform or architectural assumptions and it also
focuses on user interactions and therefore families of behaviours (system customiza-
tions) rather than single-purpose compositions. At the same time, it focuses on the re-
quirements aspect of the problem, that is how the desired customization result can be
communicated through reference to terms related to the experience and the goals of the
actual users, rather than technical features of the system.

6 Conclusions

Tailoring the behavior of a software system to the needs of individual stakeholders,
contexts and situations as these change over time has emerged as an important need
in today’s systems development. However, it also poses a challenging engineering and
maintenance problem.

The main contribution of our paper is a technique to exactly allow this translation
of high-level customization requirements into an appropriately configured system, in a
flexible and accessible way. The merits of our approach lie in the following features.
Firstly, it offers a direct linkage of software customization with user requirements using
goal models and high-level customization desire specifications. This way customization
is performed through talking about the user activity and experience rather than features
of the system to be. Secondly, our proposal for constructive customization, where users
express their exact needs, versus selective, where users select from predefined options,

90 S. Liaskos et al.

allows for flexibly leveraging a much larger space of customization possibilities, leading
to systems that are better tailored to the exact needs of users. Thirdly, the proposed
approach implies minimum impact to the implementation process, being transparent
to the architectural, modularization, process and platform choices the engineers have
made, as long as two simple mapping principles are followed and the ability to maintain
and query the policy tree is arranged. Our application in the on-line cart system offered
us strong evidence that both the customization practice per se and the engineering and
development intervention that enables it are feasible and exhibit the above advantages.

Our proposal opens a variety of possibilities for future research. One of them is an
extended empirical investigation on the applicability and generality of our basic im-
plementation principles. Such empirical work also includes evaluating with end-users
the extent and manner by which they can construct customization desires of various
levels of complexity. Furthermore, application of the technique in a variety of system
types would allow better understanding of whether the current form of the policy tree
offers the right level of information or whether adding more expressiveness should be
attempted. This could include, for example, adaptation of the semantics of satisfaction
predicates so that task repetition also becomes subject to CF compliance or addition of
run-time instance-level information to the produced policy structure. Such extensions
would potentially allow for finer grain customization, but at the significant expense of
simplicity, of impact minimality to the design and of maintaining a modest computa-
tional cost.

References

1. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:
Proceedings of the 20th International Conference on Software Engineering (ICSE 1998),
Washington, DC, USA, pp. 177–186 (1998)

2. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-
ware Engineering (FOSE 2007), Washington, DC, USA, pp. 259–268 (2007)

3. Liaskos, S., McIlraith, S.A., Mylopoulos, J.: Towards augmenting requirements models with
preferences. In: Proceedings of the 24th International Conference on Automated Software
Engineering (ASE 2009), Auckland, New Zealand, pp. 565–569 (2009)

4. Liaskos, S., McIlraith, S.A., Mylopoulos, J.: Integrating preferences into goal models for re-
quirements engineering. In: Proceedings of the 10th International Requirements Engineering
Conference (RE 2010), Sydney, Australia, pp. 135–144 (2010)

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming 20(1-2), 3–50 (1993)

6. Yu, E.S.K., Mylopoulos, J.: Understanding “why” in software process modelling, analysis,
and design. In: Proceedings of the Sixteenth International Conference on Software Engineer-
ing (ICSE 1994), pp. 159–168 (1994)

7. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
Extending Tropos. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 2(4)
(2007)

8. Gacek, C., Anastasopoules, M.: Implementing product line variabilities. SIGSOFT Software
Engineering Notes 26(3), 109–117 (2001)

Goal-Based Behavioral Customization of Information Systems 91

9. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive software.
IEEE Computer 37(7), 56–64 (2004)

10. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st International Conference on Software Engineering
(ICSE 1999), Los Alamitos, CA, USA, pp. 411–420 (1999)

12. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal preferences. In:
Proceedings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2006), Lake District, UK, pp. 134–144 (2006)

13. Liaskos, S., Litoiu, M., Jungblut, M.D., Mylopoulos, J.: Goal-based Behavioral Customiza-
tion of Information Systems. Technical Report CSE-2010-10, York University (2010)

14. Sohrabi, S., Baier, J.A., McIlraith, S.: HTN planning with preferences. In: Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, CA,
USA, pp. 1790–1797 (2009)

15. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program semantics. Jour-
nal of Systems and Software (Special Issue on Architecting Dependable Systems) 79(10),
1361–1369 (2006)

16. Brown, G., Cheng, B.H.C., Goldsby, H., Zhang, J.: Goal-oriented specification of adapta-
tion requirements engineering in adaptive systems. In: Proceedings of the 2006 Interna-
tional Workshop on Self-Adaptation and Self-Managing Systems (SEAMS 2006), pp. 23–29.
ACM, New York (2006)

17. Simmons, B.: Strategy-trees: A Novel Approach to Policy-Based Management. PhD thesis,
University of Western Ontario (February 2010)

18. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and configuration
management of business processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

19. Lu, R., Sadiq, S., Governatori, G.: On managing business processes variants. Data and
Knowledge Engineering 68(7), 642–664 (2009)

20. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable
workflow models. International Journal of Cooperative Information Systems (IJCIS) 17(02),
177–221 (2008)

21. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process constraints
for flexible workflows. Information Systems 30(5), 349 (2005)

22. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting scenario-based re-
quirements engineering. IEEE Transactions on Software Engineering 24(12), 1072–1088
(1998)

23. Baresi, L., Pasquale, L.: Live goals for adaptive service compositions. In: Proceedings of the
2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2010), pp. 114–123 (2010)

24. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Proceedings of
the 25th International Conference on Software Engineering (ICSE 2003), Washington, DC,
USA, pp. 187–197 (2003)

25. Apel, S., Kastner, C., Lengauer, C.: Featurehouse: Language-independent, automated soft-
ware composition. In: Proceedings of the 31st International Conference on Software Engi-
neering (ICSE 2009), pp. 221–231 (2009)

26. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-m., Irwin, J.:
Aspect-oriented programming. In: Liu, Y., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241,
p. 313. Springer, Heidelberg (1997)

92 S. Liaskos et al.

27. Cleaveland, J.C.: Building application generators. IEEE Software 5(4), 25–33 (1988)
28. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools, and Applica-

tions. Addison-Wesley, Reading (2000)
29. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic proce-

dures and customizing user preferences. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
597–611. Springer, Heidelberg (2006)

30. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S web services
composition using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

	Goal-Based Behavioral Customization of Information Systems
	Introduction
	Goal Models
	Enabling Goal-Driven Customization
	Connecting Goal Models with Code
	Adding Customization Constraints
	Identifying Admissible Plans
	Constructing and Using the Policy Tree
	Conditioning and Instrumenting the Source Code
	In Action

	Applying Goal-Based Customization
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

