
Interactively Eliciting Database Constraints and

Dependencies

Ravi Ramdoyal and Jean-Luc Hainaut

Laboratory of Database Application Engineering - PReCISE Research Centre
Faculty of Computer Science, University of Namur
Rue Grandgagnage 21 - B-5000 Namur, Belgium

{rra,jlh}@info.fundp.ac.be

http://www.fundp.ac.be/precise

Abstract. When designing the conceptual schema of a future informa-
tion system, it is crucial to define a set of constraints that will guarantee
the consistency of the subsequent database once it is implemented and
operational. Eliciting and expressing such constraints and dependencies
is far from trivial, especially when end-users are involved and when there
is no directly usable data to play with. In this paper, we present an inter-
active process aimed to elicit hidden constraints such as value domains,
functional dependencies, attribute and role optionality and existence con-
straints. Inspired by the principles of Armstrong relations, it attempts to
acquire minimal data samples in order to validate declared constraints,
to elicit hidden constraints and to reject irrelevant constraints in concep-
tual schemas. This process is part of the RAINBOW approach, destined
to develop the data model of an information system based, among others,
on the reverse engineering of user-drawn form-based interfaces.

Keywords: Information Systems Engineering, Requirements Engineer-
ing, Database Engineering, Electronic Forms Reverse Engineering,
Constraint Discovery.

1 Introduction

In the realm of Requirements engineering, Database engineering focuses on data
modelling, where the static data requirements are typically expressed by means
of a conceptual schema, which is an abstract view of the static objects of the
application domain. There are numerous types of constraints and dependencies
that can be established for such a schema. They can concern individual elements,
their components, or even how (the components of) an element can affect (the
components of) other elements. Traditional database elicitation techniques, such
as the analysis of corporate documents and interviews of stakeholders, usually
yield many relevant constraints during the design of the conceptual schema,
however some constraints may be forgotten, typically because the domain experts
were not aware of them, or (more probably) because they are part of some tacit
knowledge.

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 184–198, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Interactively Eliciting Database Constraints and Dependencies 185

Though the necessity to associate end-users of the future system with its spec-
ification and development steps has long been advocated [1], several approaches
rather propose to deal with the discovery of such constraints by analysing the
content of a related database (or at least, a set of relevant data samples). How-
ever, they rely on the preexistence of large sets of data, which can obviously be
problematic in the process of designing a new information system: there might
be no usable legacy database, or gathering and reencoding a significant amount
of data would be unrealistic.

In this context, the RAINBOW approach [2] provides an alternative and in-
teractive process based on the analysis of a limited set of user-provided data
samples in order to elicit and suggest database constraints and dependencies for
a given schema. RAINBOW is a collaborative and interactive user-oriented ap-
proach to develop the static data model of an information system based on the
reverse engineering of user-drawn form-based interfaces. It relies on the adapta-
tion and integration of principles and techniques coming from various fields of
study, ranging from Database Forward and Reverse Engineering to Prototyping
and Participatory Design.

In this paper, we present how to use the RAINBOW approach to discover
constraints and dependencies. In particular, we focus on the elicitation of func-
tional dependencies, which are a fundamental and critical aspect of conceptual
modelling that has proved difficult to apprehend. The remainder of the paper is
structured as follows. Section 2 delineates the research context, while Section 3
describes the related works. The main principles of the proposal are detailed
in Section 4. Section 5 discusses the evaluation of this process, while Section 6
discusses the proposal and concludes this paper.

2 Research Context

2.1 The RAINBOW Approach

The RAINBOW approach is a collaborative and interactive user-oriented ap-
proach to design database conceptual schemas in the context of Information
System engineering [2]. It exploits the expressiveness of user-drawn form-based
interfaces and prototypes, and specialises and integrates standard techniques
to help acquire and validate data specifications from existing artefacts in or-
der to use such interfaces as a two-way channel to communicate static data
requirements between end-users and analysts. The approach is formalised by a
semi-automatic seven-step process dealing with the progressive modelling of the
application domain:

1. Represent : the end-users are invited to draw and specify a set of form-based
interfaces to perform usual tasks of their application domain;

2. Adapt : the forms are “translated” into data models, which basically consists
in extracting a data model from each interface using mapping rules;

3. Investigate: the data models are cross-analysed to highlight and arbitrate
semantic and structural similarities and produce a pre-integrated schema;

186 R. Ramdoyal and J.-L. Hainaut

4. Nurture: using the interfaces that they drew, the end-users are invited to
provide data examples that are analysed to infer and arbitrate possible con-
straints and dependencies;

5. Bind : the pre-integrated schema is completed and refined into a non redun-
dant integrated conceptual schema;

6. Objectify: from the integrated conceptual schema, the artefacts of a proto-
typical data manager application are generated;

7. Wander : finally, the end-users are invited to play with the prototype in order
to refine and ultimately validate the integrated conceptual schema.

In order to position end-users as major stakeholders throughout the data require-
ments process, the approach uses form-based interfaces as a controlled basis for
joint development, analysis and discussion. In particular, in order to make the
development of the interfaces more accessible and focus the drawing on the sub-
stance rather than (ironically) the form, the available graphical elements are
restricted to the most commonly used ones (forms, fieldsets and tables, in-
puts, selections and buttons) and limited the layout of forms as a vertical
sequence of elements, which also simplifies the transition from the form model
and the ER model. This drawing phase is supported by the RAINBOW Toolkit,
which is the dedicated and integrated tool support intended to assist end-users
and analysts during the different RAINBOW processes.

The interfaces being drawn by non experts and possibly multiple end-users
increases the possible inconsistencies among the individual labels and the struc-
tures used in the forms [2]. The semantic and structural similarities are therefore
analysed to manage commonality and standardise the form constructs and their
underlying data counterpart. Semantic similarities arise due to the richness of
written natural language, which can lead to spelling and meaning ambiguities.
Structural similarities which occurs when two entity types share a pattern, which
is a bijection between two sets of attributes belonging to different entity types.
RAINBOW deals with the elicitation and subsequent unification of semantic
similarities using String Metrics, Ontologies and dictionaries. Though the forms
and their underlying data models have a tree-like arborescence, their structure
is simple and does not necessitate using complex techniques such as tree min-
ing approaches to discover structural similarities. The shared patterns are in-
stead elicited by comparing the different entity types, and the structures are
subsequently unified according to the meaning of the pattern (equality, union,
comprehension, complementarity, composition or difference).

The RAINBOW approach also deals with the integration of each schema cor-
responding to a form into a single normalised schema representing the domain
of application, before generating and testing the resulting associated applica-
tive components. However, before leading these processes, an important step
consists in eliciting the relevant constraints and dependencies of the domain of
application.

Interactively Eliciting Database Constraints and Dependencies 187

2.2 Constraints and Dependencies in Conceptual Schemas

When designing a conceptual schema, it is indeed important to define a set of
constraints that will guarantee that once the subsequent database is implemented
and operational, any change made to its content by authorised users will main-
tain its consistency. Typically, inserting, modifying or deleting values from the
database should not result into data anomalies or unnecessary redundancies. For
this purpose, let us introduce the relational model of a database according to the
First normal form (1NF), which is a database model based on first-order pred-
icate logic, first formulated and proposed by Codd [3]. In the relational model,
all the data is represented through relations (also known as tables). A relation
is composed of attributes (a.k.a. as columns), each of which is defined on a do-
main, which is a given set of values. A tuple (a.k.a. row) contains all the data
of a single instance, that is, a value for each attribute of the relation. Relations
and attributes of the relational model will be used to model entity types and
attributes in the GER model1, as illustrated in Figure 1.

The transition between conceptual and relational models is facilitated in the
RAINBOW approach since the complex conceptual schemas obtained from the
form-based interfaces are recursively transformed until they reduce to simple
schemas including flat entity types (with elementary attributes) and binary re-
lationship types. Coping with these relationship types in the 1NF relational
modeling requires a little trick; the roles are represented through role attributes,
so that they appear as attributes for which the value belongs to the possible
tuples of the entity type associated through the binary relationship type. In
addition, when no value is provided in a form for a given attribute, a default
“empty” value (noted ∅) is encoded, so that null values are avoided.

Fig. 1. The representation of a Customer using the GER and relational model

Among the many constraints usually found in database schema, we have se-
lected the following ones. Domains of values restrict the possible values of given
attributes, for instance using domain types, sets or ranges of (un)authorised
values, rule-based formulas for the values, and so on. For instance, a Customer
Number may be restricted to integer values, and the Gender limited to the set
of values {Female, Male}. Cardinality constraints define the minimal (typically

1 The Generic Entity-Relationship (GER) model is a wide-spectrum model used to
describe database schemas in various abstraction levels and paradigms [4].

188 R. Ramdoyal and J.-L. Hainaut

zero or one) and maximal numbers (typically one or infinite) of occurrence(s) of
given attributes and roles. Existence constraints define how optional components
(attributes and roles) may influence each other. For two components A and B,
these constraints can be:

– coexistence, which implies that A and B must always be not null simultane-
ously;

– exclusion, which implies that A and B cannot be not null simultaneously;
– at-least-one, which implies that A and B cannot be null simultaneously;
– exactly-one, which implies that if A is not null, then B should be null, and

vice-versa;
– implication, where A implies B means that A can be not null only if B is not

null itself;

For a relation, an identifier (a.k.a. candidate key) is a set of attributes so that,
when considering all the possible tuples of the relation, there cannot be more than
one tuple having the same combination of domain values for these attributes.
For instance, from the tuples visible in Figure 1, we could assume that Customer
Number forms an identifier for relation Customer, since there are no two tuples
with the same value of this attribute.

A similar notion is the concept of functional dependencies, which are mate-
rialised by the explicit or implicit constraints between two sets of attributes in
a relation. Given relation R, a set of attributes X ⊆ R is said to functionally
determine another set of attributes Y ⊆ R, if and only if all the tuples with
the same combined values of X also have the same combined values of Y . This
functional dependency is written R : X → Y , with X and Y respectively called
the left-hand side (a.k.a. determinant) and right-hand side (a.k.a. dependent) of
the functional dependency f . For instance, from the tuples visible in Figure 1,
it seems that the functional dependency Customer:First Name → Last Name
does not hold, since there are two persons named “Bill” but with a different
family name. On the other hand, the functional dependency Customer:First
Name, Last Name → Gender could hold, but would need to be validated.

3 State of the Art in Constraints and Functional
Dependencies Mining

Analysing the content of a database or a subset of data samples can intuitively
lead to make plausible assumptions on, e.g., the domains of values, the cardinal-
ities of the attributes, their existence constraints and possibly their identifiers.
Let t[C] be the restriction of a tuple t to the set of components C (called pro-
jection of t onto C), and t[C] be the restriction of t onto a given component C.
Now consider for instance an optional textual attribute A: if for any tuple ti,
we observe that ti[A] is never null and always composed of a number, we could
easily wonder if A is not actually a mandatory numeric attribute. Moreover, if
all the ti have different values A, this could suggest that A is in fact an identifier.
The same kind of induction can be applied on optional attributes to assess their

Interactively Eliciting Database Constraints and Dependencies 189

possible existence constraints. However, functional dependencies mining is far
less trivial.

Back in 1995, Ram presented four types of approaches to derive functional
dependencies from an existing conceptual ER schema [5]. The first category con-
sists in using keyword analysis to identify intra-entity functional dependencies:
typically, attributes bearing a suffix or prefix such as “id” or “number” should be
considered potential determinants, while attributes bearing a suffix or prefix such
as “maximum”, “minimum”, “average” or “total” should be considered potential
dependent attributes. The second category consists in analysing the cardinalities
of binary relationships to identity inter-entity functional dependencies, typically
between their identifiers. The third category is similar, but concerns N-ary rela-
tionships. And finally, the fourth category consists in analysing sample data to
elicit undiscovered functional dependencies. These principles were supported by
the FDExpert tool.

The first three categories rely on the analysis of the schema itself, while the
latter category, known as the dependency discovery problem, focuses on the con-
tent of the database. The latter category is a standard issue, especially in data
mining, database archiving, data warehouses and Online Analytical Processing
(OLAP). The most prominent existing algorithms dealing with this issue can be
classified in three categories, that are difficult to compare qualitatively [6,7].

The first two categories basically try to explore the search space (i.e. the pos-
sible combinations of the attributes for a given relation) in the most efficient way
possible, in order to test the associated functional dependencies using a stripped
partition database computed from that relation. The candidate generate-and-test
approach progressively explores and prunes the search space in a levelwise man-
ner, while partitioning the database using attribute-based equivalence classes, as
in Huhtala et al.’s TANE [8], Novelli and Cicchetti’s FUN [9], or Yao and Hamil-
ton’s FD Mine [7]. The minimal cover approach structures the search space using
hypergraphs that are explored to discover the minimal cover of the set of FDs
for a given database, i.e. the minimal set of FDs from which the entire set of
FDs can be generated using the Armstrong axioms, as in DepMiner, proposed
by Lopes et al. [10] and FastFDs, proposed by Wyss et al. [11].

Finally, Formal concept analysis (FCA) has also been used recently to find
and represent logical implications in datasets [12], mainly through a closure op-
erator from which concepts (closed sets) can be derived. For instance, Baixeries
uses Galois connections and concept lattices as a framework to find functional
dependencies [13], while Rancz et al. optimise an existing method introduced
by [14], which provides a direct translation from relational databases into the
language of power context families, in order to build inverted index files to opti-
mise the elicitation the functional dependencies in a relational table through the
construction of their formal context [15]. The latter authors also developed the
subsequent FCAFuncDepMine software to detect functional dependencies in re-
lational database tables [16]. Similar principles were also used in Flory’s method,
which was based on the definition and analysis of a matrix and its associated
graph of functional dependencies [17].

190 R. Ramdoyal and J.-L. Hainaut

4 An Interactive Process to Elicit Constraints and
Functional Dependencies

4.1 Overview

As we have seen, traditional elicitation techniques may neglect constraints, while
dependency discovery approaches rely on massive pre-existing data sets, which is
problematic when there is no data samples available, or when their re-encoding
would be too expensive. To tackle this problem, the RAINBOW approach pro-
poses to use form-based interfaces that were previously drawn by the end-users
themselves in order to let them provide a limited set of data samples from which
constraints and dependencies could be inferred and suggested. Though such con-
straints can be provided directly, it appears that the interactive acquisition and
processing of data samples is useful and more natural in this process, as it also
helps to visualise the implications of existing constraints.

In this section, we present an interactive process inspired by the principles of
Armstrong relations, which are relations that satisfy each functional dependency
implied by a given set of functional dependencies, but no functional dependency
that is not implied by that set [18]. This twofold process focuses on eliciting the
constraints and dependencies mentioned in Section 2.2, i.e. domains of value,
cardinalities, existence constraints, identifiers and functional dependencies. On
the one hand, data samples are acquired to restrict the potentially “hidden” con-
straints, and on the other hand, potential constraints are arbitrated to conversely
restrict the tuples that can be encoded. Some of these properties can be trivial
and may be expressed directly, or have been expressed during the preliminary
drawing of the form-based interfaces. For instance, in the form of Fig. 2, the
Last Name of a Person is mandatory, while its Title appears to be optional.
Likewise, the Birth date has been encoded as a date value, while the Zip code
of the Contact may have been encoded as a textual value. However, the speci-
fied properties may need to be refined (for instance, the Zip code may prove to
be numeric), and there may be some unsuspected constraints and dependencies
among the elements of the schema.

We therefore propose to start by envisaging initial potential constraints and
dependencies. Then, using user input, we progressively validate or discard them,
and generate alternatives until they are all arbitrated. This process hence relies
on several sub processes:

– the initialisation of all the currently declared (explicitly expressed during the
drawing step) and potential (implicitly verified by the present set of tuples)
constraints and dependencies;

– the acquisition and analysis of new valid data samples in order to automati-
cally discard the invalid potential constraints and dependencies, and possibly
generate acceptable potential alternatives;

– the arbitration of potential constraints and dependencies through user
validation or discardure, and the subsequent generation of new potential
alternatives;

Interactively Eliciting Database Constraints and Dependencies 191

Fig. 2. A form-based interface describing a “Person” and its associated conceptual
schema, using the GER representation2

– the processing of the validated constraints and dependencies, once there are
no other potential constraints or dependencies left.

The acquisition of data samples progressively restricts the set of potential con-
straints, while conversely, validating constraints also restricts the future data
samples that will be encodable.

4.2 Initialisation

Before beginning the interaction with the end-users, we start by initialising an
empty set of tuples and defining the initial sets of validated, potential and dis-
carded constraints and dependencies for each entity type associated with a given
form. The validated constraints are initially the same than the previously de-
clared constraints. From these initial validated constraints, the potential domains
of value, cardinalities and existence constraints are initialised using induction.
Typically, if a given component is considered optional so far, it could actually
be mandatory if there is no tuple with this component empty (whereas the op-
posite is not possible). Similarly, an attribute declared as textual could be of
any other type, while an attribute declared as real could only be restricted to
the type integer. In the same way, any subset of optional components for which
no existence constraint has been declared should be submitted to existence con-
straint elicitation. Consider for instance that the attribute Zip code has been
declared optional and textual in Fig. 2. Further examination should therefore
check whether this attribute is not mandatory and whether its value domain is
not restricted to integers, reals, dates, ...

Regarding functional dependencies, the ideal process should lead us to build
a set of data samples and dependencies so that each entity type of the underly-
ing conceptual schema becomes an Armstrong relation. Reaching such a state is
2 Note that the GER notation uses the participation interpretation rather than the

look-across interpretation (as in UML). In the given example, the notation therefore
indicates that same contact details may apply to more than one person.

192 R. Ramdoyal and J.-L. Hainaut

obviously not trivial per se, and these principles are here inapplicable due to the
requirement of user involvement. However, we can try to near it by progressively
narrowing the functional dependencies. Since the number of possible functional
dependencies for each entity types can be very high, we start from the set of
strongest dependencies, through which each component of a given entity type
determines the other components. For instance, the form of Fig. 2 induces the
initial functional dependencies F1, F2, F3, F4, F5 and F6 of Fig. 3. From these
dependencies, we will be able to recursively generate weaker functional depen-
dencies to cover all the existing ones, by progressively reducing the right-hand
sides and enlarging the left-hand sides. The objective is to favour functional
dependencies with minimal left-hand sides and maximal right-hand sides.

Fig. 3. The initial functional dependencies F1, F2, F3, F4, F5 and F6 for form of Fig. 2,
as well as alternatives for F2

Finally, potential unique constraints are induced from validated and potential
functional dependencies, using the fact that the left-hand side of a given func-
tional dependency f : X → Y is a potential identifier for an entity type having
the set of components C = X ∪ Y .

4.3 Analysing New Data Samples to Suggest Constraints and
Dependencies

Once the sets of constraints and dependencies have been initialised, we take
advantage of user input to acquire data samples that will progressively reduce
the set of potential constraints and dependencies. To be consistent with the
previously validated constraints and dependencies, any new tuple must respect
the latter to be accepted. Once a new tuple is acceptable, we proceed with
its analysis to determine which potential constraints and dependencies do not
hold any more. The invalidated constraints are discarded, while the invalidated
functional dependencies are replaced by alternative dependencies. Let us explicit
this process for each type of constraint and dependency when adding a new valid
tuple. Fig. 4 illustrates three data samples that could be encoded for the form of
Fig. 2, and Fig. 5 illustrated the underlying relation Person after the acquisition
of these data samples. Despite the apparent structure of attribute Contact, this
relation is in 1NF. Indeed, the compound value must be considered as a whole
whose unique goal is to reference a target tuple in the CONTACT table.

First of all, discarding the potential domains of value and cardinalities that
do not hold any more is relatively straightforward, since it consists in removing

Interactively Eliciting Database Constraints and Dependencies 193

Fig. 4. Three data samples for the form of Fig. 2

Fig. 5. The relation Person after the acquisition of the data samples of Fig. 4. The
compound value of attribute Contact must be considered as a whole whose unique goal
is to reference a target tuple in the corresponding CONTACT table.

the constraints with which the tuple does not agree. Regarding the cardinalities,
we remove the possible mandatory constraints for components that are empty,
and we remove the value type constraints that are not compatible with the
value provided for each attribute and replace the value size if the provided value
is longer. For instance, adding the first data sample confirms that the Title
is definitely optional, while the Birth date potentially remains a mandatory
attribute. The Zip Code of a Contact can now only be validated as integer, real
or textual. The second data sample still supports Birth date being a possibly
mandatory attribute.

Secondly, discarding the potential existence constraints that do not stand any
more also consists in removing the constraints with which the tuple does not
agree. Consequently, coexistence constraints are removed if their set of compo-
nents is different from the set of non empty optional components of the tuple.
Exactly-one, exclusion and at-least-one constraints are respectively removed if
there is not one and only one, more than one or less than one of their components
that is not null among the set of non empty optional components of the tuple.
Finally, we remove all the implication constraints for optional components if the
suggested prerequisite components are not part of the non empty components
of the tuple. The first data sample for instance suggests that there could be at-
least one, at-most one or exactly one value of Title or Birth date, or that the

194 R. Ramdoyal and J.-L. Hainaut

former could require the latter (implication). The second data sample implies
that the only remaining potential configurations for Title or a Birth date is
at-least-one, or that the former requires the latter.

We also analyse each potential functional dependency to check if there is a
conflictual tuple among the previously provided tuples, i.e. if an existing tuple
has the same left-hand side but a different right-hand side when considering the
components of the functional dependency. If such a conflictual tuple exists, the
functional dependency is discarded and alternatives are recursively generated.
First of all, this implies that the right-hand side may be too large with respect
to left-hand side, and we therefore consider smaller right-hand sides by remov-
ing a component. The removed component may be purely dismissed, or added
to the left-hand side to consequently generate two alternatives per component.
For instance, the first data sample doesn’t jeopardize the potential functional
dependencies, but the second data sample discards the FD F2 and generates the
alternatives F21, F22, F23, F24 and F25 of Fig. 3. The second data sample then
discards the FD F4 and generates its subsequent alternatives.

Understanding the implications of a functional dependency is not always triv-
ial and easy to grasp. Presenting the end-users with automatically generated
data samples that would contradict the validity of existing functional dependen-
cies therefore helps them to visualise the relevance of these dependencies, while
reducing the number of tuples that they would need to provide by themselves. As
we can observe, a tuple t is actually problematic for the functional dependency
f : X → Y and the existing set of tuples T if ∃ t′ ∈ T : t′[X] = t[X]∧t′[Y] �= t[Y].
If we already have several tuples in the tuples set of a given entity type, we gen-
erate problematic data samples for a given dependency by putting together pre-
viously provided data samples. Accepting such a generated data sample would
imply discarding the associated functional dependency and generate alternatives.
For instance, considering the functional dependency F23, we generate the prob-
lematic tuple illustrated in Fig. 6 from the composition of the second and third
data samples of Fig. 4.

Finally, potential unique constraints are again induced from validated and po-
tential functional dependencies, using the same principle than during the initial-
isation of the process, i.e. the left-hand side of a functional dependency involving
all the components of a given entity type is a potential identifier for that entity
type.

4.4 Acquiring Constraints and Dependencies

Another way to take advantage of user input is to directly acquire validated
or discarded constraints and dependencies, whenever they are trivial and easy
to express for the participants, and to invite them to arbitrate the potential
constraints and dependencies that could be suggested after the acquisition of
multiple data samples. The end-users should indeed be able to directly spec-
ify validated or discarded constraints and dependencies, even without look-
ing at possible suggestions. To be accepted as validated, a given constraint or

Interactively Eliciting Database Constraints and Dependencies 195

Fig. 6. A problematic data sample for the FD Title → National number, Last

name, First name, Birth date, Contact, given the valid data samples of Fig. 4

dependency must be satisfied by the existing set of tuples associated with the
considered entity type.

Alternatively, the participants can also take advantage of the potential con-
straints and dependencies to arbitrate them, i.e. to validate or discard them. The
advantages of this approach are that the participants do not have to imagine all
the possible constraints and dependencies for each entity type, and that we di-
rectly know that each candidate constraint or dependency is currently potential
for the given entity type. One can suspect that validating or discarding a con-
straint or a dependency may impact on the constraints or dependencies of other
types. Such a correlation actually exists between functional dependencies and
unique constraints. Indeed, discarding a potential functional dependency may
change the potential unique constraints, whereas validating a unique constraint
automatically validates its underlying functional dependency and discards oth-
ers. When these cases occur, the relevant sets must therefore be updated.

Besides, it obviously appears that the number of suggested constraints and
dependencies can eventually become very high. It is therefore crucial to organ-
ise these suggestions in an accessible fashion, so that the end-users do not feel
overwhelmed. Besides, this underlines the importance of the analyst to guide
the end-users through this collaborative process, by assessing the relevance of
these suggestions. This observation is especially true regarding the elicitation
of the functional dependencies, since the number of suggestions can increase
dramatically.

We therefore propose to filter the potential functional dependencies in or-
der to limit the number of relevant suggestions, while privileging the “stronger”
functional dependencies (i.e. the dependencies with smaller left-hand side and
larger right-hand side, as previously explained). For this purpose, we therefore
propose to “hide” dependencies that can be obtained from other potential de-
pendencies using Armstrong’s axioms, which are a set of inference rules used to
infer all the functional dependencies on a relation [19]. Hiding these functional

196 R. Ramdoyal and J.-L. Hainaut

dependencies does not mean discarding them. Indeed, they are still potential,
and may eventually become visible again with the progressive arbitration of the
other dependencies. Still, we observed that this filtering helps keeping the focus
of the end-users during this elicitation process.

5 Evaluation

To experiment and evaluate the RAINBOW approach, a validation protocol
was defined based on the Participant-Observer principles to monitor the use
of the RAINBOW approach, and the Brainstorming/Focus group principles to
analyse the resulting conceptual schemas, as defined in [20]. This protocol was
used for a first series of experiments where pairs of end-users and analysts were
asked to jointly define the conceptual schema of a future information system,
including constraints and dependencies, using the RAINBOW approach and its
tool support.

For each project, the first task consisted in preparing the experimentation
by defining the subject based on real-life concerns of the end-users, then train-
ing the participants to understand the method and to use the tools. Secondly,
the end-users and analysts were asked to apply the approach on their project
and focus on the five first phases, while observers took notes. In particular, for
the Nurture phase which dealt with the elicitation of constraints and depen-
dencies, the participants were asked to progressively provide data samples and
constraints, while arbitrating the candidate constraints suggestions. Thirdly, the
observations on the efficiency of the approach were analysed, and finally, the
quality of the produced schemas was debated, taking in account schemas that
were designed by the analysts independently of the approach.

The analysis of these experiments notably highlighted that the RAINBOW
approach and tool support did help end-users and analysts to communicate
static data requirements to each other, inclusive of constraints and dependen-
cies. Though all the requirements could not be expressed through the toolkit, the
latter did serve as a basis for discussion and modifications. Since the validation
aspect of the proposed approach cannot be addressed more extensively in this
paper, the interested reader may refer to [21] for further details on the validation
process and methodology.

6 Conclusion

In this paper, we extend the user-oriented RAINBOW approach presented in
[2], and describe how it can be used to interactively elicit database constraints
and dependencies, and more specifically domains of values, optionality, exis-
tence constraints, identifiers and functional dependencies. The process, inspired
by the principles of Armstrong relations, uses form-based interfaces that were
previously drawn by the end-users themselves in order to let them provide a
limited set of data samples that will restrict the potential implicit constraints of
the underlying conceptual schema. Conversely, end-users are invited to arbitrate

Interactively Eliciting Database Constraints and Dependencies 197

potential constraints that will in turn restrict the tuples that can be encoded.
Such a process prevents the development of unsatisfiable systems of constraints
and dependencies, since such set of constraints will never accept the introduction
of new tuples. Whereas usual dependency discovery approaches rely on extensive
data sets, this specific modus operandi is particularly adapted when engineering
information systems with no legacy data samples available, or when their re-
encoding would be too expensive. The application of this approach to different
case studies have proved that such intensive end-user involvement with inter-
active support is particularly fruitful and sustainable, while merely providing,
without support, significant amount of data samples is a particularly tedious and
time-consuming process, and in most situations, unrealistic. Besides, manipulat-
ing form-based interfaces to encode data samples leads to directly expressing
trivial constraints, while inducing further discussion and reflection on their un-
derlying conceptual schema. Though this approach relies on a set of pre-existing
form-based interfaces, its principles are easily generalisable to any given concep-
tual schema. Indeed, the constructs of the schema can first be transformed to
comply with the structures used in the RAINBOW approach [4]. Subsequently, a
set of form-based interfaces can then be generated from this transformed schema
[22], hence enabling the encoding of data samples and the application of the pro-
posed approach.

References

1. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development
of Human-Computer Interaction (Interactive Technologies). Morgan Kaufmann,
San Diego (2001)

2. Ramdoyal, R., Cleve, A., Hainaut, J.-L.: Reverse engineering user interfaces for
interactive database conceptual analysis. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 332–347. Springer, Heidelberg (2010)

3. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377–387 (1970)

4. Hainaut, J.-L.: The transformational approach to database engineering. In: Läm-
mel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143.
Springer, Heidelberg (2006)

5. Ram, S.: Deriving functional dependencies from the entity-relationship model.
Communications of the ACM 38(9), 95–107 (1995)

6. Lopes, S., Petit, J.-M., Lakhal, L.: Functional and approximate dependency min-
ing: database and FCA points of view. Journal of Experimental and Theoretical
Artificial Intelligence (JETAI) 14(2-3), 93–114 (2002)

7. Yao, H., Hamilton, H.J.: Mining functional dependencies from data. Data Mining
and Knowledge Discovery 16(2), 197–219 (2008)

8. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. Computer Jour-
nal 42(2), 100–111 (1999)

9. Novelli, N., Cicchetti, R.: FUN: An efficient algorithm for mining functional and
embedded dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001.
LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2000)

198 R. Ramdoyal and J.-L. Hainaut

10. Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies
and armstrong relations. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C.
(eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000)

11. Wyss, C.M., Giannella, C., Robertson, E.L.: Fastfds: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances. In: Kam-
bayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114,
pp. 101–110. Springer, Heidelberg (2001)

12. Priss, U.: Establishing connections between formal concept analysis and relational
databases. In: Common Semantics for Sharing Knowledge: Contributions to ICCS
2005, pp. 132–145 (2005)

13. Baixeries, J.: A formal concept analysis framework to mine functional dependencies.
In: Proceeding of Mathematical Methods for Learning 2004: Advances in Data
Mining and Knowledge Discovery (2004)

14. Correia, J.H.: Relational scaling and databases. In: Proceedings of the 10th Inter-
national Conference on Conceptual Structures (ICCS 2002), Borovets, Bulgaria,
July 15-19, pp. 62–76 (2002)

15. Rancz, K.T.J., Varga, V.: A method for mining functional dependencies in rela-
tional database design using FCA. Studia Universitatis Babes-Bolyai Cluj-Napoca,
Informatica LIII(1), 17–28 (2008)

16. Rancz, K.T.J., Varga, V., Puskas, J.: A software tool for data analysis based on
formal concept analysis. Studia Universitatis Babes-Bolyai Cluj-Napoca, Informat-
ica LIII(2), 67–78 (2008)

17. Flory, A.: Bases de données: conception et réalisation. In: ECONOMICA, Paris
(1982)

18. Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies
and armstrong relations. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C.
(eds.) EDBT 2000. LNCS, vol. 1777, pp. 350–364. Springer, Heidelberg (2000)

19. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

20. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for field
studies. In: Shull, F., Singer, J., Sjøberg, D.I. (eds.) Guide to Advanced Empirical
Software Engineering, pp. 9–34. Springer, Heidelberg (2008)

21. Ramdoyal, R.: Reverse Engineering User-Drawn Form-Based Interfaces for
Interactive Database Conceptual Analysis. PhD thesis, University of Na-
mur, Namur, Belgium, (December 2010) Electronic version available from
http://www.info.fundp.ac.be/libd/rainbow

22. Pizano, A., Shirota, Y., Iizawa, A.: Automatic generation of graphical user in-
terfaces for interactive database applications. In: CIKM 1993: Proceedings of the
Second International Conference on Information and Knowledge Management, pp.
344–355. ACM, New York (1993)

http://www.info.fundp.ac.be/libd/rainbow

	Interactively Eliciting Database Constraints and Dependencies
	Introduction
	Research Context
	The RAINBOW Approach
	Constraints and Dependencies in Conceptual Schemas

	State of the Art in Constraints and Functional Dependencies Mining
	An Interactive Process to Elicit Constraints and Functional Dependencies
	Overview
	Initialisation
	Analysing New Data Samples to Suggest Constraints and Dependencies
	Acquiring Constraints and Dependencies

	Evaluation
	Conclusion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

