
Modeling Design Patterns with Description Logics:
A Case Study

Yudistira Asnar, Elda Paja, and John Mylopoulos

Department of Information Engineering and Computer Science
University of Trento, Italy

{yudis.asnar,paja,jm}@disi.unitn.it

Abstract. Design Patterns constitute an effective way to model design knowl-
edge for future reuse. There has been much research on topics such as object-
oriented patterns, architectural styles, requirements patterns, security patterns,
and more. Typically, such patterns are specified informally in natural language,
and it is up to designers to determine if a pattern is applicable to a problem-at-
hand, and what solution that pattern offers. Of course, this activity does not scale
well, either with respect to a growing pattern library or a growing problem. In
this work, we propose to formalize such patterns in a formal modeling language,
thereby automating pattern matching for a given problem. The patterns and the
problem are formalized in a description logic. Our proposed framework is eval-
uated with a case study involving Security & Dependability patterns specified in
Tropos SI*. The paper presents the formalization of all concepts in SI* and the
modeling of problems using OWL-DL and SWRL. We then encode patterns as
SPARQL and SQWRL queries. To evaluate the scalability of our approach, we
present experimental results using models inspired by an industrial case study.

Keywords: design patterns, description logics, pattern matching.

1 Introduction

Design patterns represent recurring design problems and how to solve them. Design
patterns gained prominence initially in Architecture [1], and within Computer Science
with the widely-known and used design patterns for object-oriented design [2]. Today,
there are dozens of proposals for design patterns covering a range of design domains,
such as: requirements, software architectures, business processes, workflows etc.

Generally speaking, a design pattern consists of a triple (context, problem-to-solve,
solution-pattern) [1]. To use a pattern one needs to first match the design problem-at-
hand to the context, (if successful), match the problem-at-hand to the pattern context
(thereby creating mapping for pattern variables), and revise the problem at-hand by
using the solution-pattern. However, design patterns often are represented and docu-
mented informally in natural language (for an example [2]). This means that it is up to
users of a pattern library to determine which patterns are relevant, and also exactly how
they apply to the design problem-at-hand. Unfortunately, this approach does not scale
with respect to the size of the pattern library, the problem-at-hand, or the expertise of
the designer. Indeed, there is plenty of evidence that pattern libraries have low accept-
ability rates, especially so among non-expert users by now [3]. Some of the prominent

H. Mouratidis and C. Rolland (Eds.): CAiSE 2011, LNCS 6741, pp. 169–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

170 Y. Asnar, E. Paja, and J. Mylopoulos

reasons are (i) finding patterns relevant to the problem-at-hand is hard [3], often because
pattern libraries are unstructured; (ii) understanding patterns requires some expertise [4]
that users often do not have.

The main objective of this paper is to address this situation by formalizing design pat-
terns in a language that has a built-in matching operation, thereby offering automated
support for the identification of applicable patterns for a given design problem, also for
formulating a design solution. In this work, we formalize the pattern library as well
as the design problem as a knowledge base using description logics [5], and represent
the context of the patterns as a query to the knowledge base (SPARQL and SQWRL).
To evaluate the proposed framework, we use a case study coming from SERENITY
Security and Dependability (S&D) patterns [6]. Our evaluation is conducted along two
fronts. Firstly we want to see to what extent a description logic can accommodate pat-
terns expressed in an ontologically rich pattern language with built-in concepts such as
goal, agent, strategic dependencies among agents, and more. After all, description logics
are ontologically simple in the sense that they usually come only with two primitives:
concepts and roles (binary relationships). Secondly, we want to know if our proposed
solution scales as the size of the design problem to be matched against patterns in the
pattern library grow.

The rest of the paper is structured as follows. We outline the research baseline (de-
scription logic and OWL-DL) in Section 2. Section 3 presents the case study, while
Section 4 details the formalization of patterns. In Section 5, we explain the experimen-
tal setup we used and its results. We then offer a discussion of related work in Section 6
and concluding remarks in Section 7.

2 Baseline

Description Logics (DL). [5] are used to formalize design patterns and also the
problem-at-hand in terms of concepts, roles, individuals and their relations. In DL there
is no explicit use of variables. Instead, operators are exploited to define complex con-
cepts and roles starting from atomic ones. The set of operators is restricted to ensure
tractability for reasoning, such as deciding if a concept is a generalization (subsumes)
another concept. A DL knowledge base is composed of two components: 1) a termino-
logical box (TBox) consisting of definitions for concepts and roles, and 2) an assertional
box (ABox) consisting of individuals and true facts about them. For instance, if we con-
sider a knowledge base about persons, the TBox would contain concepts such as Person,
Male, Female, Parent, Child etc., and roles such as hasChild, and axioms of the form:

Person � Male � Female

Man ≡ Person � Male

Father � Man

Father ≡ Man � ∃hasChild.Person

The ABox, on the other hand, contains assertions regarding individuals, such as axioms
of the form: Father(Tom).

Modeling Design Patterns with Description Logics: A Case Study 171

OWL-DL Among DLs, we chose OWL-DL because it is state-of-the-art as far as DL
go, it is part of W3C standard, and is readily available with several possible implemen-
tations to choose from. Our use of description logics is as follows: we formalize the
modeling language concepts using OWL-DL(creating the TBox), and we use this as a
basis for representing formally the context of the patterns. We perform matching at the
instance level (ABox), that is why we represent patterns as queries. However, the ex-
pressiveness of OWL-DL alone is weak to represent some constraints, such as the ones
related to individuals. We solved the problem by adopting the SWRL rule language [7].
This allows us to enrich the formal pattern description with inferred knowledge, thereby
ensuring better pattern matching for the problem-at-hand.

3 Case Study

Several works have been proposed in the literature on S&D patterns (e.g., fault-tolerant
patterns [8], security patterns [9], SERENITY patterns [6]). In this work, we use
SERENITY patterns, developed within the EU SERENITY project, it is state-of-the-
art for its intended application domain and we had expertise on both the patterns and
their uses.

SERENITY Patterns. [6] are represented using Alexander’s pattern language as
triples: 〈Context, S&D Requirements, S&D Solution〉 The Context defines the state-
of-affairs the problem/situation where the pattern could be applied, which is depicted
in terms of the minimum set of actors and relationships, where the S&D Requirements
are not fulfilled. S&D Requirements specify the required S&D Properties that must be
satisfied in the model (representing the problem). S&D Solution describes the modifica-
tions that need to be performed to the context in order to meet S&D Requirements. The
description of SERENITY patterns is enriched with additional description about when,
how, and for what the patterns are intended for.

In [6], patterns are identified in scenarios extracted from business cases (e.g., Air
Traffic Management, e-Business, Online-Tax, Smart-home) and then described in nat-
ural language. Patterns, then, are represented formally; Context and S&D Solution are
represented in terms of SI* models, whereas the S&D Requirements in ASP (answer
set programming - an extension of DATALOG). The pattern library is composed of 29
SERENITY patterns (4 legal, 3 privacy, 11 security and 11 dependability patterns) [6].
Table 1 presents some of the SERENITY patterns described in natural language. For
an illustrative example, we use pattern DP2.1 on Collaboration in Small Groups for
Risky Activities. In addition, the SERENITY pattern library was used for evaluating the
performance of our implementation (Section 5).

Tropos SI*. [10,11] is a modeling language for security requirements. The language
offers primitive concepts such as actor, goal, task, as well as various kinds of relation-
ships among actors. This modeling language is used for representing Context and S&D
Solution of SERENITY patterns.

Fig. 1 depicts one of the SERENITY scenarios (e.g., Air Traffic Management -
ATM). SI* considers intentional Actor as basic concept (e.g., Executive Controller,

172 Y. Asnar, E. Paja, and J. Mylopoulos

Table 1. SERENITY S&D Patterns in Natural Language

Pattern Name Natural Language Description

SP1. Proof of Fulfillment for
Ensuring Non-Repudiation

To prevent repudiation, the executor needs to provide evidence of
performing the action to the benefitor, in addition to performing the
action.

SP4. Artefact Generation as
an Audit Trail

To prevent repudiation of some actions upon a shared resource, a
group of agents needs to keep a common audit trail.

DP2.1. Collaboration in
Small Groups for Risky
Activities

To cope with an activity where a tight coordination among agents is
crucial, a failure on a risky sub-activity may compromise the team
goal. However, one team member might have a capability to mitigate
the risk of the risky sub-activity therefore that team member must
mitigate the risk for the team success.

DP6. Reinforcing Overlap-
ping Responsibilities for Ro-
bustness

A critical task must be completed successfully most of the time.
Therefore, several team members are responsible to perform the
task.

PP1. Sign an Agreement to
Address Lack of Trust on the
Use of Private Data

Sometime a customer does not trust an organization accessing its
data. Therefore a representative agent of the organization needs to
ask for customer consent before accessing customer’s data.

Supervisor, Alice) that wants to achieve goals (ensure traffic safety in its sector,
form team sectors). Actors are equipped with certain abilities (e.g., resolve traffic
conflict), have beliefs, etc. They are further specialized into roles (e.g., Supervisor,
Executive Controller, and Team sector) as abstract actors in an organization that are
played by agents (e.g., Bob, Alice, Dan), which are concrete actors.

Actors (e.g., executive controllers) intend to achieve/satisfy their business goals
(manage traffic in the sector) by relying on their capabilities and those of other actors
(e.g., resolve traffic conflict). The term Business Object refers to a goal, a task, or a
resource. Goal represents a state-of-affair that an actor intends to achieve (manage
traffic in sector). Task is a course of actions performed by an actor to achieve a desired
goal (give airway commands). Resource refers to physical or informational entities
required to achieve goals (flight progress strips) or to perform tasks (air situation
display). However, the fulfillment of these business objects is affected by uncertain
events. Events that can cause a goal failure are risks (overload traffic), while events
that can help in the fulfillment of a goal are treated as opportunities (deployment new
system for air conflict prediction).

In addition to capturing the strategic rationale of an actor, SI* captures strategic inter-
dependencies among actors in an organization. Inter-dependencies can be either dele-
gation and trust relationships among actors. Delegations also come in two flavours: 1)
execution of business objects and 2) permission/entitlement on business objects. Del-
egation refers to the transfer of responsibilities (Delegation on Execution) or rights
(Delegation on Permission). In Fig. 1, team sector delegates the execution of man-
age inbound traffic to another actor - planning controller. Trust refers to the belief
and expectation of an actor that another actor (trustee) will fulfill its commitments (will
execute all assigned business objects) and will respect its permissions. For an example,
Alice trusts Bob to fulfill managing traffic in Sector SU1.

Modeling Design Patterns with Description Logics: A Case Study 173

Supervisor

Ensure safe
operations of a

team

Form team
sectors

Alice

Team Sector Ensure traffic
safety in its

sector

Manage traffic in
sector

Manage ibound
traffic

Executive
Controller

Resolve traffic
conflict

Manage traffic in
sector

Planning
Controller

Manage inbound
traffic

Overload Traffic

Bob

Dan

Manage traffic in
sector SU1

AND

++ D

Play

P

-

-

Play Play

AND

R

Is Part Of

Supervise

Is Part Of

Play

Te

Te

++ D

Fig. 1. A SI* Diagram from a fragment of the Air Traffic Management scenario

A SI* model captures relationships between concepts using several basic relations:
1) AND/OR-decomposition to refine a goal, 2) contribution to capture the effects of
a goal to another, 3) impact to model the impact of an uncertain event to a business
object. Fig. 1 depicts the goal ensure traffic safety in its sector is AND-decomposed
into manage traffic in sector and manage inbound traffic, where the achievement
of both subgoals are necessary to achieve the up-level goal. Moreover, the achievement
of the latter goal contributes positively to the success of the former one. In ATM, we
consider the effect of overload traffic event to the goal manage traffic in sector, and
it can be mitigated with the capability of an actor in resolve traffic conflict.

4 Formalizing Patterns

Our formalization process includes four steps: (i) Formalize the SI* language by defin-
ing non-overlapping OWL-DL concepts for all SI* primitives and one or more roles
for every primitive SI* relationship; (ii) Formalize the context of each pattern using
the concepts and roles introduced in step (i); (iii) Enrich the formal pattern descrip-
tions with implicit knowledge 1; (iv) Represent the problem-at-hand in the ABox by
instantiating the concepts and roles of step (i).

4.1 Formalizing SI* Primitives

In general, we represent nodes (e.g., goal, task, resource, event) in a SI* model as con-
cepts and binary relations (e.g., actor’s associations, contributions, decompositions, im-

1 Availability of a domain expert is essential here because this implicit knowledge (constraints,
alternatives, and more) is often missing from the informal pattern description.

174 Y. Asnar, E. Paja, and J. Mylopoulos

pacts) as roles. Moreover, inter-actor relations (e.g., delegation, trust, monitoring) are
encoded as concepts as well, since they are ternary relations. Later, we discuss some
considerations that underlie our formalization.

In the following, we discuss some issues that have arisen while formalizing concept-
s/relations of the language in terms of DL concepts/roles.

Role versus Subsumption. The relationship between a goal and its subgoals could
have been represented as a subsumption relationship or a role, say hasSubgoal:

Subgoal � Goal vs. hasSubgoal.Goal

But instances of a subgoal do not need to also be instances of the parent goal (for exam-
ple, consider goal “schedule meeting” and subgoal “collect timetables”). Accordingly,
we chose to go with the second option.

Ternary/n-ary relations. Since OWL-DL does not support N-ary relations, N ≥ 3,
we decided to represent such relationships in terms of a concept and several roles. For
example,

DelegationOnExecution ≡ DelegationOnExecution� (hasDelegator = 1) �
(hasDelegatum = 1) � (hasDelegatee = 1)

Consider Fig. 1, where Team Sector delegates execution of manage traffic in the
sector to Executive Controller. In the ABox, a delegation on execution in such a
setting is represented as follows:

DelegationOnExecution(Del-exec1)
hasDelegator(Del-exec1, Team Sector)

hasDelegater(Del-exec1, Executive Controller)
hasDelegatum(Del-exec1, Manage traffic in sector)

4.2 Understanding and Formalizing a Pattern as a Query

Once designers specify the pattern language in the DL TBox, the next step is under-
standing the essence of the pattern description and formalizes the context in terms of
OWL queries (i.e., using terms specified in the DL TBox). Designers need to be aware
that some patterns are very generic and sometimes vague, (e.g., patterns described in
natural language in [8]), and others are rather restrictive because of the limitation of
the pattern language (e.g., patterns described using a modeling language, such as [6]).
In this phase, we leave it in the hands of the designers to decide how much detail they
want to put into the patterns or how generic the pattern should be.

In [6], the context of the patterns is modeled in terms of an “abstract” SI* model
that includes variables (denoted by identifiers with capitalized letters). For instance in

Modeling Design Patterns with Description Logics: A Case Study 175

Team

Goal

G1
G2

Agent 1
G1

Agent 2

G2

Mitigate Risk

Risk

AND

++ D

R

Is Part Of

Is Part Of

AND

De

De

++ D
-

P

-

Fig. 2. The “Collaboration in Small Groups for Risky Activities” pattern

Fig. 2, the pattern indicates TEAM delegates execution of G1 to AGENT1 will
match elements that involve two roles, where the first role delegates execution of a goal
to the second role. Moreover, in some patterns (e.g., GoF [2]) pattern contexts are left
implicit and designers need to fill the details. A pattern is applicable to the problem-at-
hand if all constructs in the pattern match corresponding elements of the problem. When
such a match is found, the reasoner returns not only true, but also mappings for pattern
variables. Patterns are formalized in two parts: (i) the mandatory part must be matched
in the problem-at-hand for the pattern match to succeed; (ii) the optional part can bring
about useful mappings for variables, but do not affect the outcome of a pattern match. In
our approach, matching is performed at the individual level (ABox) of the knowledge
base. Therefore, the reasoner checks for individuals present in the problem and the
relationships among them, and lists all individuals that match the pattern context. Note
that reasoners can return more than one resultset, since it is likely there are several parts
of the model that match a given pattern context.

In the context of security and dependability, the optional part is only used to define a
new actor (including its capabilities & responsibilities) that is not necessarily present in
the problem. For instance, A client needs to buy a house from Company A, but he does
not trust Company A. Based on [6], to ensure security, the designers can “patch” the
trust issue by having a contract arranged by a lawyer. However, in most cases the lawyer
does not exist in the “current” statement of the problem, hence the need for optional
elements during a pattern match. Application of the pattern basically introduces, a new
role - lawyer (i.e., a trusted 3rdparty).

OWL-DL models can be queried using two languages: SPARQL [12], and SQWRL
[13]. The SPARQL is a W3C Recommendation [12] for querying RDF. RDF essentially
offers directed labeled graph data format, built out of triples. Thus, SPARQL queries are
expressed in terms of triple patterns, consisting of a subject, predicate, and object. The

176 Y. Asnar, E. Paja, and J. Mylopoulos

p r e f i x t r o p o s : <h t t p : / / www. owl−o n t o l o g i e s . com / T r o p o s O n t o l o g y . owl#>
SELECT ? team ? g o a l ? a g e n t 1 ? a g e n t 2 ? s u b g o a l 1 ? s u b g o a l 2
WHERE {

? team t r o p o s : r e q u e s t ? g o a l .
? g o a l t r o p o s : i sAndDecompos i t ionOf ? g1 .
? g o a l t r o p o s : i sAndDecompos i t ionOf ? g2 .

FILTER (? s u b g o a l 1 != ? s u b g o a l 2) .
? a g e n t 1 t r o p o s : i s P a r t O f ? team .
? a g e n t 2 t r o p o s : i s P a r t O f ? team .

FILTER (? a g e n t 1 != ? a g e n t 2) .
? team t r o p o s : h a s D e l e g a t i o n ? d1 .
? d1 t r o p o s : h a s D e l e g a t e e ? a g e n t 1 .
? d1 t r o p o s : hasDelega tum ? g1 .
? team t r o p o s : h a s D e l e g a t i o n ? d2 .
? d2 t r o p o s : h a s D e l e g a t e e ? a g e n t 2 .
? d2 t r o p o s : hasDelega tum ? g2 .
? a g e n t 2 t r o p o s : p r o v i d e s ? m i t i g a t e R i s k .
? g1 t r o p o s : h a s N e g D C o n t r i b u t i o n ? g2 .
? t a s k t r o p o s : h a s N e g C o n t r i b u t i o n ? r i s k .
? r i s k t r o p o s : hasNegImpact ? g1 .

OPTIONAL{? a g e n t 2 t r o p o s : r e q u e s t s ? m i t i g a t e R i s k .}
}

Fig. 3. SPARQL representation of DP 2.1

Turtle data format 2 is used to represent triple patterns. The query attempts to match the
triples on the graph pattern against the model [14]. SPARQL just queries the model and
does not support inference [12], nor does it modify the RDF dataset. However, some
frameworks (e.g., JENA) and rule engines [15], have the capacity to perform inference
and update the dataset by performing OWL reasoning.

Alternatively, a more expressive query language that is founded on DL semantics
and supports comprehensive querying of OWL is SQWRL [13]. SQWRL is a SWRL-
based query language [7]. SQWRL provides SQL-like operations to retrieve knowledge
from an OWL ontology. Similarly to SPARQL, in SQWRL we try to capture all con-
cepts and relationships present in a pattern. Since SQWRL understands the semantics of
OWL and SWRL rules, it understands not only the explicit, but also the inferred knowl-
edge. For example, the DP2.1 of SERENITY pattern (Fig. 2 described in Table 1), can
be translated into a SPARQL Query (Fig. 3). Each node of the pattern context is a vari-
able in the query and each edge is an RDF triplet. For a SQWRL Query, the DP2.1
translational is shown in Fig. 4.

4.3 Enriching DL T-Box with Implicit Knowledge

Often details of the patterns are described in natural language, due to the expressivity
limitation of the pattern language. This was certainly the case with our case study.

Back to our example in DP2.1, in SI* the notion of “request” means that an actor
intends to achieve a particular goal. However, based on DP2.1’s description the intent

2 Turtle: http://www.w3.org/TeamSubmission/turtle/

http://www.w3.org/TeamSubmission/turtle/

Modeling Design Patterns with Description Logics: A Case Study 177

1 : requests(?team, ?goal) ∧ isPartOf(?agent1, ?team) ∧ isPartOf(?agent2, ?team) ∧
2 : hasSubgoal(?goal, ?g1) ∧ hasSubgoal(?goal, ?g2) ∧
3 : hasDelegation(?team, ?d1) ∧ hasDelegatee(?d1, ?agent1) ∧ hasDelegatum(?d1, ?g1) ∧
4 : hasDelegation(?team, ?d2) ∧ hasDelegatee(?d2, ?agent2) ∧ hasDelegatum(?d2, ?g2) ∧
5 : hasNegDContribution(?goal1, ?goal2) ∧ provides(?agent2, ?mitigateRisk) ∧
6 : hasNegImpact(?risk, ?g1) ∧ hasNegContribution(?mitigateRisk, ?risk) →
7 : sqwrl : select(?team, ?goal, ?agent1, ?g1, ?agent2, ?g2, ?risk, ?mitigateRisk) ∧
8 : sqwrl : columnNames(”team”, ”goal”, ”agent1”, ”g1”, ”agent2”, ”g2”, ”risk”, ”mitigateRisk”)

Fig. 4. SQWRL representation of DP 2.1

aim(?a, ?goal) ← requests(?a, ?goal)
aim(?a2, ?goal) ← requests(?a1, ?goal) ∧ hasDelegation(?a1, ?d)∧

hasDelegatee(?d, ?a2) ∧ hasDelegatum(?d, ?goal)
aim(?a2, ?goal) ← aim(?a1, ?goal) ∧ hasDelegation(?a1, ?d) ∧ hasDelegatee(?d, ?a2)∧

hasDelegatum(?d, ?goal)

Fig. 5. Relaxing “request” on SI* in SQWRL

of “request” is more relaxed – direct request (i.e., the actor “requests” fulfillment of a
goal) or indirect request (i.e., another actor delegates the execution of a goal to him/her,
to the actor). Accordingly, we decided to extent the DL TBox and revise the pattern
formalization using those new concepts/roles. However, this extension can only be done
when we use SQWRL and not SPARQL. In Fig. 5, we illustrate an example of the
extension of the “request” relation in SI*, namely “aim”. To be closer with the DP2.1’s
description one needs to replace line 3-4 of Fig. 4 with the following:

aim(?agent1, ?g1) ∧ aim(?agent2, ?g2)

4.4 Representing the Problem in the ABox

Finally, designers need to represent the problem-at-hand in terms of instances of con-
cepts and roles in the ABox.

Concept versus Individual. Individuals have a unique identity, and their description
can be modified by adding more assertions in the ABox. Conversely, the definition of
concepts cannot be modified [16].

The first alternative (i.e., subclasses of the DL TBox) allows us to reason whether a
pattern appears anywhere in the problem, but it cannot provide the mapping between
construct in the pattern’s solution and the problem-at-hand. The second alternative (i.e.,
individuals in the DL ABox) on the other hand can provide such mappings, but it will
not allow us to reason in a situation where the problem contains both abstract and con-
crete entities in the real world, because both entities will be encoded as individuals and
the reasoner will treat them equally. Since we deal with the problem at the design level
where mostly models capture the class level instead of the object one, we have chosen
the second alternative (i.e., as series of individuals) as the most suitable to our needs.

178 Y. Asnar, E. Paja, and J. Mylopoulos

Moreover, providing mapping between the pattern and the problem is a critical fea-
ture to support designers in applying the patterns to resolve their problem.

Here is a fragment of the representation of the problem-at-hand in Fig. 1 in terms of
concept and role instances in the ABox:

– Role(Team Sector)
– Role(Executive Controller)
– Role(Planning Controller)
– Agent(Bob)
– Goal(Ensure traffic safety in its sector)
– Goal(Manage traffic in sector)
– Goal(Manage inbound traffic)
– Goal(Resolve traffic conflict)
– play(Bob, Executive Controller)
– play(Bob, Planning Controller)
– isPartOf(Executive Controller, Team Sector)
– isAndDecompositionOf(Ensure traffic safety in its sector, Manage traffic in sector)
– isAndDecompositionOf(Ensure traffic safety in its sector, Manage inbound traffic)
– hasPosContribution(Manage inbound traffic, Manage traffic in sector)
– provide(Executive Controller, Resolve traffic conflict)
– DelegationOnExecution(Del-exec1)
– hasDelegator(Del-exec1,Team Sector)
– hasDelegater(Del-exec1,Executive Controller)
– hasDelegatum(Del-exec1,Manage traffic in sector)

4.5 System Architecture

Fig. 6 depicts the architecture of our implemented system. Though this work supports
two types of queries (SPARQL and SQWRL), most system components and artifacts
are common for both inputs (normal line). The ones with thick lines refer to parts for
SPARQL, while dashed lines to SQWRL. In both cases, the implemented system re-
quires the same input SI* model representing the problem-at-hand and a set of SI* mod-
els representing patterns.

Since we need some inference capabilities to deduce implicit facts, we use a rule
engine (i.e., JESS) that is integrated in Protégé. Essentially, a rule engine takes an input
(rules and facts) and produces a model. In SQWRL setting, the input consists of the
TBox and ABox defined so far, patterns in SQWRL, and SWRL rules 3. In this sys-
tem, the model (produced by the rule engine) contains the resultset of the matching. In
SPARQL setting, the input to the rule engine only contains TBox, ABox, and SWRL
rules. The rule engine produces a model containing inferred knowledge from available
facts and rules. Using the Model-to-OWL library in Protégé, inferred knowledge is
added to the knowledge base (TBox and ABox). By means of the OWL-DL reasoner
(e.g., Pellet, JENA), we can query the revised knowledge base to find a match to a pat-
tern. In both settings, if the length of resultset is zero, then there is no match found in

3 available at:http://www.w3.org/Submission/SWRL/swrl.owl

http://www.w3.org/Submission/SWRL/swrl.owl

Modeling Design Patterns with Description Logics: A Case Study 179

Translator
SI* to OWLSI* model

Knowledge Base

Tropos SI*
Ontology

SI* Model
in OWL

SWRL
Rules

Pattern
Context in

SI*

Pattern in
SQWRL

Pattern in
SPARQL

Facts +
Rules

DL Reasoner

Model
Model to

OWL

KB'

Result Set

Rules
Engine

Translator
SI* to OWL Query

SI* --> SPARQL

SI* --> SQWRL

Fig. 6. System Architecture for Pattern Matching

the problem. The resultset will contain several sets when a pattern matches to several
parts of the problem. Moreover, each set will provide a mapping from a pattern’s con-
structs to the problem. We have implemented this approach using Java Platform v1.6
along some features from Protégé libraries.

5 Experimental Results

Design of experiments. To evaluate this approach and its implementation, we have
conducted experiments using a laptop Intel Core2 Duo T7300 2.0GHz, 2Gb DDR2 667.
Through these experiments we intend to assess the performance of our implementation,
and investigate how performance (i.e., execution time) is affected by an increase in
problem size. To make the experiment realistic, we consider the ATM Scenario [17] as
the problem-at-hand. First, the SI* model of the problem is translated to a corresponding
model in OWL-DL. Similarly, we translate SERENITY S&D patterns (21 patterns),
defined in [6], into OWL-DL queries in SPARQL and SQWRL. The model is then
queried using SPARQL and SQWRL queries to find matches to those patterns. Bigger
models are obtained by cloning the OWL-DL model of ATM scenario facilitated by
the “deep copy” feature of Protégé. Originally, the model of ATM scenario has the size
of 472 elements composed of 83 nodes and 389 relations 4. Cloning was performed on
the ATM model by cloning nodes and their respective relations. The cloning process
was not linear; as we could not control the number of relations a node participates in.
Seven models were obtained through this process, starting from a model size of 832
(136 nodes) up to the biggest model with size 6203 (941 nodes).

In the experiment, each pattern is matched against 8 different models. To ensure
stability of “execution time”, we perform 20 executions for each pair (pattern, model)
and used the average of each execution time. Moreover, a manual verification has been
performed to validate the correctness of each pattern match.

4 All datasets can be found at http://disi.unitn.it/˜yudis/lib/exe/fetch.
php?media=files:dataset.rar

http://disi.unitn.it/~yudis/lib/exe/fetch.php?media=files:dataset.rar
http://disi.unitn.it/~yudis/lib/exe/fetch.php?media=files:dataset.rar

180 Y. Asnar, E. Paja, and J. Mylopoulos

(a) Execution time in SPARQL (b) Execution time in SQWRL

Fig. 7. Performance of Pattern Matching

Results. After running the queries (patterns) over the ATM model we found that there
are four applicable patterns (e.g., SP1, SP8, DP2.1, DP6). In Fig. 7, we present the
performance in milliseconds, of our implementation for both: SPARQL and SQWRL.

In general, there are significant differences between the two query representations.
In particular, the worst performance in SPARQL (11.7ms) is much faster then the best
performance in SQWRL (713ms). The main reason is that in the case of SPARQL
queries, the inferred model is computed only once before the matching starts and used
throughout all the queries. Thus, the inference time is not taken into account in the
SPARQL execution time. In the SQWRL case, execution time is highly affected by the
inference time.

Considering Fig. 7(b), it is an almost linear correlation between the size of the prob-
lem model and execution time. However, Fig. 7(a) indicates that the SPARQL perfor-
mance is constant after a certain model size (model size ≥ 2378) 5. Even though the
SPARQL case outperforms the SQWRL case, designers need to be aware on the fact
that SPARQL engine does not exploit the semantics of OWL-DL. Moreover, SPARQL
is meant to be used for querying RDF and OWL-DL needs to be serialized before it
can be queried. This serialization of OWL-DL to RDF is vendor specific therefore it
could be the case that the same OWL-DL has several representations in RDF and conse-
quently different SPARQL queries. However, this dilemma does not hold for SQWRL.

6 Related Work

The growing size of pattern libraries has spawned the following challenges: 1) finding
a relevant pattern in the pattern library, 2) selecting a pattern that is suited with the
problem-at-hand, and 3) applying a pattern. For the first challenge, though there is no
central index as mentioned in [3] several initiatives are trying to collect software design

5 We acknowledge some irregularities on the execution time for the 3 smallest models.

Modeling Design Patterns with Description Logics: A Case Study 181

patterns (e.g., Pattern Forge 6, Net Objectives 7, Portland Pattern Repository 8). In
comparison to our approach, such initiatives receive a pattern contribution in natural
language without formalizing it. In addition to disadvantages presented in Section 4.2,
users might have difficulties in finding relevant patterns in the library because textual
matching does poorly without domain knowledge.

To improve the finding and the selection phase, several works use (semi-)formal
languages for representing patterns and selection mechanisms of such representation.
In [18], Mens et al. use DL to detect inconsistencies between UML models in evolving
systems. In that work, the authors take advantage of the underlying DL representation
and reason about UML models exploiting the DL reasoning engine (e.g., Racer, Loom).
In a nutshell, this work takes a similar approach to ours where the TBox formalizes the
UML meta-model and the ABox represents instances in the designers’ model. In our
work, the query represents the context of a pattern, while in this work the query repre-
sents the rules characterizing model constraints. In [19], the authors describe how to use
a meta-model to obtain a representation of a pattern at the code level. The meta-model
consists of a set of entities and interaction rules between them, and defines pattern se-
mantics. The meta-model is further specialized by adding structural and behavioral con-
stituents, thereby obtaining an abstract representation of patterns. These are gathered in
a repository and used to generate code automatically.

Some works facilitate the selection phase by structuring the pattern library in a cer-
tain manner. In [20,21], the authors proposed a structure to organize patterns. Moreover,
other authors [22,23] provide systematic and automated reasoning to select a pattern. In
these works, the authors do not formalize the pattern itself, but rather formalizing the
structure and relationships among patterns. Conversely, our approach formalizes a pat-
tern and does not prescribe a particular structure on the pattern library. In our approach,
we aim to find an applicable pattern and provide a mapping, while these works intends
to limit the solution space so that the pattern users need only evaluate a small number
of patterns. In other words, these approaches require less efforts in contributing a new
pattern because they only require where a pattern should be categorized and its relation-
ships with other patterns, while in our approach “the formalization” of a pattern defines
the performance, in term of correctness, of the system. Note that these approaches does
not guarantee the resulted pattern will be applicable to the problem-at-hand, while ours

Some works concentrate on how to apply the patterns in the problem-at-hand. For
instance, Eden et al. [24] represent patterns as meta-programs that modify other code
(i.e., the problem-at-hand). The authors have implemented a prototype that supports de-
sign pattern specification and realization in a given program and this approach allows
programmers to edit the source code at any time in the process. In comparison to our ap-
proach, this work aims at modifying the problem before implementing a chosen pattern,
whereas ours aims to find the pattern(s) that are applicable to solve a given problem.

In the area of Model-Driven Engineering, several frameworks have been proposed to
support model transformations [25]. In comparison to ours, their approaches are more
expressive in describing how a pattern is to be applied. However, these frameworks

6 http://www.patternforge.net/
7 http://www.netobjectives.com/PatternRepository
8 http://c2.com/ppr/

http://www.patternforge.net/
http://www.netobjectives.com/PatternRepository
http://c2.com/ppr/

182 Y. Asnar, E. Paja, and J. Mylopoulos

have some limitations in finding a match because matching is based on graph similarity
techniques only, rather than inference in a DL. More generally, our framework can
leverage reasoning provided by DL to support pattern matching and pattern application.

7 Final Remarks

We have presented an approach to formalize problems and patterns using Description
Logics, so that, given a problem, we can find applicable patterns from a pattern library.
Moreover, when a pattern match succeeds, it provides mapping between elements of the
problem and variables in the pattern. These mapping are useful in determining how to
apply the pattern to a given problem. Our proposal has been evaluated in terms of a case
study using the SERENITY pattern library. Our experiences suggest that description
logics do constitute a viable solution to formalize patterns, and the problem represented
by a rich modeling language such as SI* can be accommodated in a description logic
using its concept definition facilities. A corollary of our case study is that there is an
important trade-off in formalizing patterns between making them too generic or too spe-
cific. Generic patterns match in many contexts but offer vanilla solutions. Conversely,
specific ones match few concepts but offer insightful solutions. Pattern designers need
to tread carefully as they navigate between these alternatives.

Our future work includes applying our framework to other pattern libraries. In ad-
dition, we propose to conduct a controlled experiment to empirically evaluate our ap-
proach with pattern designers and pattern users.

Acknowledgments

The research leading to these results has received funding from the EU FP7 under grants
no. 216917 MASTER, no. 256980 NESSoS, and no. 257930 ANIKETOS.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language. Oxford Press (1977)
2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Reading (1995)
3. Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J.: The growing divide in the patterns

world. IEEE Software 24(4), 61–67 (2007)
4. Sommerville, I.: Software Engineering, 7th edn. Addison Wesley, Reading (May 2004)
5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The

description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York (2003)

6. Asnar, Y., Bryl, V., Dalpiaz, F., El-Khoury, P., Felici, M., Halas, H., Krausová, A., Li, K.,
Riccucci, C., Saidane, A., Séguran, M., Yautsiukhin, A.: Final set of S&D Patterns at Orga-
nizational Level. Project Deliverable A1.D3.3, SERENITY Consortium (January 2009)

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML (May 2004), http://www.
w3.org/Submission/2004/SUBM-SWRL-20040521/

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

Modeling Design Patterns with Description Logics: A Case Study 183

8. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley, Chichester (2007)
9. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns: Integrating Security and Systems Engineering, 1st edn. Wiley, Chichester
(2006)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements Engineering for Trust
Management: Model, Methodology, and Reasoning. IJIS 5(4), 257–274 (2006)

11. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements engi-
neering. REJ, 1–16 (2010)

12. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (February 2004),
http://www.w3.org/TR/rdf-sparql-query/ (lastchecked: March 7, 2010)

13. O’Connor, M., Das, A.: SQWRL: a query language for OWL. In: Proc. of OWLED 2009
(2009)

14. McCarthy, P.: Search RDF data with SPARQL: SPARQL and the Jena Toolkit open up the
semantic Web (May 2005), http://www.ibm.com/developerworks/library/
j-sparql/ (lastchecked: March 1, 2010)

15. Friedman-Hill, E.: Jess Rule Engine, http://www.jessrules.com/ (lastchecked: De-
cember 2009)

16. Görz, G.: Description Logics, Knowledge Bases, Formal Ontologies and Data Bases: Con-
tent. Lecture Notes (2008)

17. Asnar, Y., Giorgini, P., Massacci, F., Saidane, A., Bonato, R., Meduri, V., Riccucci, C.: Secure
and Dependable Patterns in Organizations: An Empirical Approach. In: Proc. of RE 2007
(2007)

18. Mens, T., Van Der Straeten, R., Simmonds, J.: Maintaining consistency between UML mod-
els with description logic tools. In: Proc. of UML 2003, Workshop on Consistency Problems
in UML-based Software Development II (2003)

19. Albin-amiot, H., gaël Guéhéneuc, Y., Kastler, R.A.: Meta-modeling design patterns: Applica-
tion to pattern detection and code synthesis. In: Proc. of ECOOP 2001 Workshop Automating
Object-Oriented Software Development Methods, pp. 1–35 (2001)

20. Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J.: The growing divide in the patterns
world. IEEE Software 24(4), 61–67 (2007)

21. Zdun, U.: Systematic pattern selection using pattern language grammars and design space
analysis. Software: Practice and Experience 37(9), 983–1016 (2007)

22. Gross, D., Yu, E.: From Non-Functional requirements to design through patterns. Require-
ments Engineering 6(1), 18–36 (2001)

23. Weiss, M., Mouratidis, H.: Selecting security patterns that fulfill security requirements. In:
16th IEEE International Requirements Engineering, RE 2008, pp. 169–172 (2008)

24. Eden, A.H., Yehudai, A., Gil, J.: Precise specification and automatic application of design
patterns. In: Proc. of ASE 1997, pp. 143–152 (1997)

25. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: Proc. of
OOPSLA 2003 Workshop on Generative Techniques in the Context of the MDA (2003)

http://www.w3.org/TR/rdf-sparql-query/
http://www.ibm.com/developerworks/library/j-sparql/
http://www.ibm.com/developerworks/library/j-sparql/
http://www.jessrules.com/

	Modeling Design Patterns with Description Logics: A Case Study
	Introduction
	Baseline
	Case Study
	Formalizing Patterns
	Formalizing SI* Primitives
	Understanding and Formalizing a Pattern as a Query
	Enriching DL T-Box with Implicit Knowledge
	Representing the Problem in the ABox
	System Architecture

	Experimental Results
	Related Work
	Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

