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Abstract. Key-dependent message (KDM) secure encryption schemes
provide secrecy even when the attacker sees encryptions of messages
related to the secret-key sk. Namely, the scheme should remain secure
even when messages of the form f(sk) are encrypted, where f is taken
from some function class F. A KDM amplification procedure takes an
encryption scheme which satisfies F-KDM security and boost it into a
G-KDM secure scheme, where the function class G should be richer than
F. It was recently shown by Brakerski et al. (TCC 2011) and Barak et
al. (EUROCRYPT 2010), that a strong form of amplification is possible,
provided that the underlying encryption scheme satisfies some special
additional properties.

In this work, we prove the first generic KDM amplification theorem
which relies solely on the KDM security of the underlying scheme with-
out making any other assumptions. Specifically, we show that an ele-
mentary form of KDM security against functions in which each output
bit either copies or flips a single bit of the key (aka projections) can be
amplified into KDM security with respect to any function family that
can be computed in arbitrary fixed polynomial-time. Furthermore, our
amplification theorem and its proof are insensitive to the exact setting
of KDM security, and they hold in the presence of multiple-keys and in
the symmetric-key/public-key and the CPA/CCA cases. As a result, we
can amplify the security of all known KDM constructions, including ones
that could not be amplified before.

Finally, we study the minimal conditions under which full-KDM
security (with respect to all functions) can be achieved. We show that un-
der strong notion of KDM security, the existence of cyclic-secure fully-
homomorphic encryption is not only sufficient for fullKDM security, as
shown by Barak et al., but also necessary. On the other hand, we observe
that for standard KDM security, this condition can be relaxed by adopting
Gentry’s bootstrapping technique (STOC 2009) to the KDM setting.

1 Introduction

The study of secure encryption scheme is perhaps the most central subject in
cryptography. Since the discovery of semantic security [24] till the formulation
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of CCA-security [BTI33/18], modern cryptography has successfully developed in-
creasingly stronger notions of security providing secrecy in highly adversarial
settings. Still, all these strong notions of security guarantee secrecy only as long
as the encrypted messages are independent of the secret key. This limitation
dates back to the seminal work of Goldwasser and Micali [24] who observed that
semantic security may not hold if the adversary gets to see an encryption of the
secret key. For many years, such usage scenarios were considered as “security
bugs” that should be prevented by system designers.

A decade ago, the assumption of independency between the secret key and the
encrypted data was challenged by Camenisch and Lysyanskaya [16] and Black
et al. [11]. Specifically, Camenisch and Lysyanskaya considered schemes that
remain secure under a “key cycle” usage, where we have t keys organized in a
cycle and each key is encrypted under its left neighbor. A generalization of this
notion, called key-dependent message (KDM) security, was suggested by Black
et al. Informally, an encryption is KDM® secure with respect to a function class
F if security holds even when the adversary can ask for an encryption of the
message M = f(skq,...,sks) under the i-th public-key, where ski,...,sk; are
the secret keys present in the system and f is an arbitrary function in F. This
notion of security implies cyclic-security if F is expressive enough (e.g., contains
all “selector” functions), and it becomes strictly stronger when the function
class F grows. Hence, one would like to achieve KDM security while making the
function class F as large as possible.

The notion of KDM security was extensively studied in the past few years
in several flavors including the symmetric/public-key and the CPA/CCA set-
tings [T6TTI269UT2ITEIRI27255ITARITOITS]. These works were motivated by the
fundamental nature of the question as well as by concrete applications includ-
ing encrypted storage systems (e.g., BitLocker [12]), anonymous credentials [16],
and realization of security proofs at the framework of axiomatic security [IJITJ3].
(See [12] for more motivations and details.)

Although much is known today about KDM security both on the positive and
negative sides, it is still unclear whether a standard encryption scheme can be
transformed into a scheme which provides KDM® security, even with respect to
a single key (i.e., t = 1) and simple non-trivial function families (e.g., Selectors)El.
Hence, it is natural to move forward and explore the possibility of building strong
KDM security given a weak form of KDM security as a primitive. This makes
sense as today, following the seminal work of Boneh et al. [I2] and its follow-
ups [IBU5IT3], it is known that a basic form of KDM security (with respect to the
family of “affine functions”) can be achieved in several settings under various
concrete cryptographic assumptions. Therefore, following [14] we ask:

Is there a generic transformation which emplifies KDM security from a
weak family of functions F to a larger family of functions G 7

L It is known that KDM security with respect to sufficiently rich families of functions
cannot be based on standard assumptions via fully black-box reductions [25]. How-
ever, this impossibility result (and its extension in [I0]) does not hold for simple
function class (e.g., projections).
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The two main features of such a procedure are generality — the transformation
should work with any scheme which satisfies F-KDM security without relying
on any other additional property — and large amplification gap — ideally, F is
a very simple function class whereas G is as rich as possible. The question of
KDM amplification was recently addressed by Brakerski et al. [I4] and Barak et
al. [10], who made an important progress by showing how to amplify the KDM
security of several existing schemes. While these works achieve relatively large
amplification gap, they fall short of providing full generality as they strongly rely
on additional properties of the underlying scheme (i.e., simulatable-KDM secu-
rity and entropic-KDM security — to be defined later). As a concrete example,
it is unknown how to use any of these techniques to amplify the KDM-security
of the symmetric-key encryption scheme of [5] which is based on the Learning
Parity With Noise (LPN) assumption. (See Section for more details about
these works and their relation to our approach).

1.1 Owur Results

We give an affirmative answer to the above question by providing the first generic
KDM amplification procedure. In particular, we consider the projection function
class of all functions f : (ski,...,sk:) — v in which each output bit depends on
(at most) a single bit of the input. Namely, each output bit v, is either fixed to
a constant or copies/flips an original bit of one of the keys. We show that this
elementary function family is complete in the following sense:

Theorem 1 (Completeness of projections, Informal). Let G be any func-
tion family which can be computed in some fized polynomial time. Then, any
encryption scheme which satisfies KDM® security with respect to projections
can be transformed into a new encryption scheme which is KDM® _secure with
respect to G.

Generality. Theorem [I] assumes nothing but KDM security regarding the un-
derlying scheme. Furthermore, the theorem (and its surprisingly simple proof)
is insensitive to the exact setting of KDM security: it holds for any number of
keys (t), and in both symmetric-key/public-key and CPA/CCA settings. In all
these cases, the new scheme is proven to be secure exactly in the same setting as
the original scheme. This allows us, for example, to amplify the security of the
affine-KDM secure scheme of [5], and obtain the first symmetric-key encryption
scheme with strong KDM security based on the LPN assumption.

Large gap. Theorem [ provides a large amplification gap. In fact, this gap can
be further expanded as follows. First, we can achieve length-dependent KDM
security [I0], which means that the target family G can be taken to be the
family of all polynomial-size circuits whose size grows with their input and output
lengths via a fixed polynomial rate (e.g., the circuit size is quadratic in the input
and output lengths). This family is very powerful and it was shown to be rich
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enough for most known applications of KDM security [I0P. (See Section B for
details.) In addition, in the case of CPA security (both in the public-key and
symmetric-key settings), we can weaken the requirement from the underlying
scheme and ask for KDM security with respect to projections with a single
output: namely, all Boolean functions f(ski,...,sk;) — b which output a single
bit of one of the keys, or its negation. This can be extended to the CCA setting
via the transformations of [9I5] (though in the public-key setting one has to
employ, in addition, non-interactive zero-knowledge proofs).

The relaxation to single-output projections also enables a liberal interface to
which we can easily plug previous constructions. For example, one can instantiate
our reduction with schemes that enjoy KDM security with respect to affine
functions, while almost ignoring technical details such as the underlying field
and its representation. (These details required some effort in previous works.
See the appendices in [T4UTO/T3].) This, together with the simple proof of our
main theorem, allows to simplify the proofs of [TOJI3] for the existence of length-
dependent KDM secure encryption scheme under the Decisional Diffie-Hellman
(DDH) assumption [12], the Learning With Errors assumptions (LWE) [5], and
the Quadratic Residuosity (QR) assumption [I3].

Given this completeness theorem, the current status of KDM security resem-
bles the status of other “complete” primitives in cryptography such as one-way
functions or oblivious transfer [32/19]: We do not know how to build these prim-
itives from generic weaker assumptions, however, any instantiation of them suf-
fices for an entire world of applications (i.e., all symmetric-key primitives in
the case of one-way functions, and generic secure-computation in the case of
oblivious transfer, cf. [22123]).

Beyond length-dependent security. Although length-dependent KDM security
seems to suffice for most applications, one can strive for an even stronger notion
of security in which the KDM function class contains all functions (or equiv-
alently all functions computable by circuits of arbitrary polynomial size). It is
somewhat likely that any length-dependent secure scheme actually achieves full-
KDM security (see the discussion in [10]). Still, one may want to construct such
a scheme in a provably secure way. As a basic feasibility result, it was shown
in [I0] that any fully homomorphic encryption scheme [20] which allows to en-
crypt the secret-key (i.e., “cyclic-secure”) is also fulll KDM secure. In light of the
small number of FHE candidates [20/I7], and our little understanding of this
notion, one may ask whether it is possible to relax this requirement and achieve
full- KDM security under weaker assumptions.

We make two simple observations regarding this question. First, we consider
the case of simulatable KDM security [I0], in which it should be possible to
simulate an encryption of f(sk) given only the corresponding public-key in a
way that remains indistinguishable even to someone who knows the secret-key.

2 Most of the statements in [TI0] refer to the slightly weaker notion of Bounded KDM
security in which the circuit size grows only as a function of the input via a fixed
polynomial rate. However, as observed in [I0, Sec. 6] their construction actually
satisfies the stronger definition of length-dependent KDM security.
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We show that in this setting the two notions: circular-secure FHE and full-KDM
are equivalent. Hence, achieving full-KDM security under a relaxed assumption
requires to use non-simulatable constructions.

Our second observation asserts that the bootstrapping technique of Gen-
try [20] can be used in the KDM setting as well (even for the case of non-
simulatable constructions). That is, if one can construct an encryption scheme
which guarantees KDM security with respect to circuits whose depth is only
slightly larger than the depth of the decryption algorithm, then this scheme is ac-
tually fully KDM secure. Unfortunately, all known amplification techniques [T0/14]
including the ones in this paper, amplify KDM security at the cost of making the
decryption algorithm “deeper”. Still, we view this observation as an interesting
direction for future research.

1.2 Our Techniques

To formalize the question of KDM amplification, we define the notion of reduction
between KDM function families G <xpm F which means that any scheme that
provides KDM security with respect to F can be transformed (via a fully black-
box reduction) to a new scheme that satisfies KDM security with respect to G.
We describe a novel way to derive such KDM reductions based on the machinery
of randomized encoding of functions [29I7]. Before we explain this notion, let us
start with the simpler case of deterministic encoding.

Say that a function f deterministically encodes a function g if for every x the
output of f(z) “encodes” the output of g(z) in the sense that g(x) can be effi-
ciently computed based on f(z) and vice versa. That is, there are two efficiently
computable mappings S and R such that S(g(z)) = f(z), and R(f(x)) = g(z).
Suppose that we are given a scheme which provides KDM security with respect
to the encoding f, and we would like to immunize it against the function g. This
can be easily achieved by modifying the encryption scheme as follows: to encrypt
a message M we first translate it into the f-encoding by computing S(M), and
then encrypt the result under the original encryption scheme. Decryption is
done by applying the original decryption algorithm, and then applying the re-
covery algorithm R to translate the result back to its original form. Observe
that an encryption of g(sk) in the new scheme is the same as an encryption of
S(g(sk)) = f(sk) under the original scheme. Hence, the KDM security of the new
scheme with respect to g reduces to the KDM security of the original scheme
with respect to f.

This simple idea provides a direct reduction with very nice structure: any KDM
query for the new scheme is translated into a single KDM query for the original
scheme. This simple single-query-to-single-query translation leads to high level of
generality: the transformation is insensitive to the exact KDM setting (symmetric-
key/public-key and CPA/CCA), to the number of keys, and it can be used with
respect to large function families G and F as long as every function in G is encoded
by some function in F via a pair of universal mappings S and R. On the down side,
one may complain that security was not really amplified, as the function g and its
encoding f are essentially equivalent. It turns out that this drawback can be easily
fixed by letting f be a randomized encoding of g.
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In the case of randomized encoding (RE), the function f(z;r) depends not
only on x but also on an additional random input r. For every fixed x, the
output of f(x;r) is now viewed as a distribution (induced by a random choice
of r) which should encode the value of g(z). Namely, there are two efficiently
computable randomized mappings S and R such that for every x: (1) the distri-
bution S(g(z)) is indistinguishable from f(x;r), and (2) with high probability
over the choice of r (or even with probability one) R(f(z;r)) = g(z). One can
view these conditions as saying that g(z) is encoded by a collection of functions
{fr(x)}rv where fr(x) = f(xv T)'

Now suppose that our scheme is KDM secure with respect to the family
{fr(x)},, then we can apply the above approach and get a scheme which satisfies
KDM security with respect to g. The only difference is that now the message
preprocessing step is randomized: To encrypt a message M first encode it by the
randomized mapping S(M), and then use the original encryption function. The
security reduction is essentially the same except that a KDM query for ¢ in the
new scheme is emulated by an old KDM query for a randomly chosen function
fr. This idea can be easily extended to the case where all functions in G are
encoded by functions in F:

Theorem 2 (Informal). If F is an RE of G, then G <kpm F.

The crux of this theorem, is that, unlike deterministic encoding, randomized
encoding can represent complicated functions by collections of very simple func-
tions [29J30J7/6]. Specifically, by combining the above theorem with the REs
of [6], which, in turn, are based on Yao’s garbled circuit [34], we obtain our main
results (Thm. [)).

1.3 Comparison with BGK and BHHI

Our techniques are inspired by both [I4] (BGK) and [10] (BHHI). We believe
that our approach inherits the positive features of each of these works, and sheds
new light on the way they relate to each other. Let us review the main ideas
behind these constructions and explain how they compare to our solution.

The BGK reduction. The starting point in [I4] is an encryption scheme which
satisfies entropic KDM security with respect to F. Roughly speaking, this means
that KDM security should hold not only when sk is chosen uniformly from the
key space K = {0,1}* but also when it is chosen uniformly from a smaller
domain K', e.g., K’ = {0,1}*". By relying on this notion, BGK shows that for
every efficiently computable injective mapping o : K’ — K, one can amplify
security from F to the class F o «, i.e., with respect to functions f(«(sk)) for
every f € F. The idea is to choose the key sk’ from X’ and employ the original
scheme with the key sk = a(sk’). This allows to translate a KDM query f(a(sk’))
for the new scheme into an entropic-KDM query f(sk) for the old scheme.

The deterministic encoding (DE) approach is inspired by the BGK approach,
and can be seen as a complementary solution. BGK extends a function f : £ —
Mto foa: K — M by shrinking the key space (from K to K'), whereas in the
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DE approach f : K — M is extended to Ro f : K — M’ by padding messages
which effectively shrinks the message space (from M to M’ = R(M)).

As a result BGK enjoys a similar attractive security reduction with single-
query-to-single-query translation. This leads to flexibility with respect to the
KDM setting. Indeed, although the BGK approach is not fully general due to
its use of entropic-KDM security (a notion which seems stronger than standard
KDM security), it immediately generalizes to the CCA and the symmetric-key
settings, as long as the underlying scheme provides entropic-KDM security.

It should be mentioned that in our approach the amplification is achieved by
modifying the encryption algorithm, rather than the key-generation algorithm
as in BGK. This minor difference turns to have a considerable effect on the
amplification-gap. First, it allows to use fresh randomness in every application of
the encryption algorithm, and so the linkage between functions in G to functions
in F can be randomized. Indeed, this is exactly what allows us to exploit the
power of randomized encoding. In contrast, the BGK approach tweaks the key-
generation algorithm and so the relation between G to F is bounded to be
deterministic. In addition, since our modification happens in the encryption (and
decryption) phases, we can let the function class G grow not only with the
security parameter but also with the size of the messages. This leads to the
strong notion of length-dependent security, and in addition allows to achieve
KDM® where the number of keys t grows both with the message length and the
security parameter.

In contrast, the family G of BGK cannot grow with the message length, and
it can only contain a polynomial number of functions. This limitation prevents
it from being used in applications which require KDM security wrt larger func-
tions classes (e.g., secure realization of symbolic protocols with axiomatic proofs
of security). Furthermore, amplification for large number of keys can be achieved
only at the expense of putting more restrictions on the underlying scheme (i.e.,
simulatable KDM security). On the other hand, assuming these additional prop-
erties, the BGK approach can get KDM® for arbitrary unbounded ¢ with respect
to some concrete function families (e.g., constant degree polynomials), whereas
in our approach ¢ is always bounded by some fixed polynomial (in the security
parameter and message length)ﬁ. Finally, it is important to mention that the
BGK reduction treats G in a black-box way, while the randomized encoding
approach treats this class in a non-black-box way.

The BHHI reduction. The BHHI approach relies on a novel connection be-
tween homomorphic encryptions and KDM security. First, it is observed that in
order to obtain KDM security with respect to G it suffices to construct a scheme

3 In fact, we can achieve a slightly stronger notion. Assuming that the underlying
scheme satisfies KDM® security for arbitrary t’s (as in [I2I5]), we get a KDM®
secure scheme where there exists an unbounded number of keys in the system, but
the arity of the KDM functions available to the adversary is polynomially bounded
(in the security parameter and message length). Still, these functions can be applied
to arbitrary subsets of the keys.
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which provides both cyclic-security (i.e., KDM security with respect to the iden-
tity function) and homomorphism with respect to a function family G, i.e., it
should be possible to convert a ciphertext C' = Epk(M) into C’' = Ep(g(M)) for
every g € G. Indeed, the homomorphism property can be used to convert a ci-
phertext Epi(sk) into the ciphertext Epk(g(sk)), and so cyclic-security is amplified
to G-KDM security.

BHHI construct such an encryption scheme by combining a two-party secure
computation protocol with two messages (i.e., based on Yao’s garbled circuit [34])
with a strong version of oblivious transfer which satisfies an additional cyclic-
security property. The latter primitive is referred to as targeted encryption (TE).
The basic idea is to view the homomorphic property as a secure-computation
task in which the first party holds the message M and the second party holds
the function g. The cyclic nature of the TE primitive allows to implement this
homomorphism even when the input M is the secret-key. Finally, BHHI show
that TE can be constructed based on affine-KDM secure encryption scheme
which satisfies a strong notion of simulation: There exists a simulator which
given the public-key pk can simulate a ciphertext Ey«(g(sk)) in a way which is
indistinguishable even for someone who holds the secret-key.

The BHHI construction seems conceptually different from our RE approach
(i-e., homomorphism vs. encoding). Moreover, the construction itself is not only
syntactically different, but also relies on different building blocks (e.g., TE). Still,
the RE construction shares an important idea with BHHI: The use of secure-
computation techniques. It is well known that REs are closely related to secure
multiparty-computation (MPC) protocols, and, indeed, the role of REs in our re-
duction resembles the role of MPC in BHHI. In both solutions at some point the
security reduction applies the RE/MPC to the function g in G. Furthermore,
both works achieve strong KDM security by instantiating the RE/MPC with
Yao’s garbled circuit (GC) — a tool which leads to both stand-alone RE con-
struction [6] and, when equipped with an OT, to a two-party secure-computation
protocol.

It should be emphasized, however, that the actual constructions differ in some
important aspects. While we essentially encrypt the whole GC-based encod-
ing under the underlying KDM encryption scheme, BHHI tweak the GC proto-
col with a cyclic-secure OT (i.e., TE). Pictorially, our underlying KDM-secure
scheme “wraps” the GC encoding, whereas in BHHI the KDM-secure primitive
is “planted inside” the GC protocol. This difference affects both generality and
simplicity as follows.

First, BHHI are forced to implement a KDM-secure OT, a primitive which
seems much stronger than standard KDM secure encryption schemes. For exam-
ple, KDM-secure symmetric-key encryption schemes can be constructed at the
presence of a random oracle [LT] while OT protocols cannot [28[]. Moreover, as
we already mentioned, although TE can be based on several known affine-secure
KDM schemes (i.e., ones which enable strong simulation), the LPN assumption

4 Tt seems that a similar statement holds even for public-key KDM-secure schemes.
See [TTI21].
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(with constant error-rate) is a concrete example under which symmetric-key en-
cryption scheme with KDM-security wrt affine functions exist, yet OT is not
known to exist. Furthermore, since BHHI send the garbled circuit in the clear,
it is not hard to show that the resulting scheme is not CCA-secure even if the
TE provides CCA security. Finally, the modification of the GC protocol leads to
a relatively complicated security proof.

2 Preliminaries

For a positive integer n € N, let [n] denote the set {1,...,n}, and U, denote
the uniform distribution over {0,1}™. A function e(n) is negligible if it tends
to zero faster than 1/n¢ for every constant ¢ > 0. The term efficient refers to
probabilistic machines that run in polynomial time in the security parameter.

Efficient functions and randomized functions. A randomized function f : {0,1}*x
{0,1}* — {0,1}* is a function whose second input is treated as a random input.
We write f(x;r) to denote the evaluation of f on deterministic input = and ran-
dom input 7, and typically assume length regularity and efficient evaluation as
follows: there are efficiently computable polynomials m(n) and ¢(n) and an effi-
ciently computable circuit family { f, : {0,1}" x {0,1}™(") — {0,1}¥"™} which
computes the restriction of f to n-bit deterministic inputs. If the function is not
length regular, we assume that the circuit family is indexed by a pair of input
and output parameters (n,¢), and require evaluation in time poly(n, £). Finally,
a deterministic function corresponds to the special case where m(n) = 0.

Function ensembles. A function ensemble is a collection of functions {f.},.,
indexed by an index set Z C {0,1}*, where for each z the function f, has a
finite domain {0,1}™*) and a finite range {0,1}*®*), where n,¢ : {0,1}* — N.
By default, we assume that ensembles are efficiently computable, that is, the
functions n(z),£(z), as well as the function F(z,2) = f.(x) are computable
in time poly(|z|). Hence n(z),¢(z) < poly(|z|). We also assume that |z] <

poly(n(z), £(z)).

Randomized encoding of functions. Intuitively, a randomized encoding of a func-
tion g(z) is a randomized mapping f(z;r) whose output distribution depends
only on the output of g. We formalize this intuition via the notion of
computationally private randomized encoding of [6], while adopting the orig-
inal definition from a non-uniform adversarial setting to the uniform setting
(i.e., adversaries are modeled by probabilistic polynomial-time Turing machines).
Consider a function g = {g, : {0,1}" — {0, 1}5(")} and a randomized function
= {fn:{0,1}" x {0, 1}y - {o, 1}5(”)}, which are both efficiently com-
putable. We say that f encodes g, if there exist an efficient recovery algorithms
Rec and an efficient simulator Sim that satisfy the following:
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— perfect correctness. For every x € 1™, the error probabilities

0,1
Pr[Rec(1”, f(2,Up(m)) # g()] and Pr[Rec(1", Sim(1",g(x))) # g(x)] are
both zerd.
— computational privacy. For every efficient adversary A we have that

Pr[Af GV (17) = 1] — Pr[AS™@O) (17) = 1] < neg(n),

where the oracles are defined as follows: Given x the first oracle returns
a sample from f(2;U,,(|5)) and the second oracle returns a sample from

Sim(11*1, g(x)).

This notion is naturally extended to functions g, ¢ which are not length-regular
and are indexed by both input and output lengths. However, we always assume
that privacy is parameterized only with the input length (i.e., the adversary’s
running-time/distinguishing-probability should be polynomial /negligible in the
input length.) Note that, without loss of generality, we can assume that the
relevant output length £ is always known to the decoder and simulator (i.e., it
can be always encoded as part of the output of f, ¢).

Encryption schemes (syntax). An encryption scheme consists of three efficient
algorithms (KG, E,D), where KG is a key generation algorithm which given a
security parameter 1% outputs a pair (sk, pk) of decryption and encryption keys;
E is an encryption algorithm that takes a message M € {0, 1}* and an encryption
key pk and outputs a ciphertext C; and D is a decryption algorithm that takes
a ciphertext C' and a decryption key sk and outputs a plaintext M’. We also
assume that both algorithms take the security parameter 1¥ as an additional
input, but typically omit this dependency for simplicity. Correctness requires
that the decryption error

max Pr [Dsk(Epk(M)) # M],
Me{0,1}* (sk,pk) ££KG(1F) o

should be negligible in k, where the probability is taken over the randomness
of KG, E and D. For security parameter k, let Kj denote the space from which
decryption keys are chosen. Without loss of generality, we always assume that
Kr =10, 1}k.

Following Goldreich [23], we note that the above definition corresponds to both
public-key and symmetric-key encryption schemes where the latter correspond
to the special case in which the decryption key sk and encryption key pk are
equal. As we will see, the difference between the two settings will be part of the
security definitions.

3 KDM-Security

Let £ = (KG,E,D) be an encryption scheme with key space K = {Kx}.
Let t : N — N be a function. A t-ary KDM function ensemble is an efficient

® Previous definitions require only that the first quantity is zero, however, all
known constructions (of perfectly-correct randomized encoding) satisfy the current
(stronger) definition.
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ensemble of functions F = {fk’z : ICZ(k) — {0, 1}*}( ) We let Fj, denote the

k,z
set {fk’z : ICZ(k) — {0, 1}*} . An F-KDM Chosen-Ciphertext Attack (CCA) in

the public-key setting is defined in Fig. [ as a game that takes place between a
challenger and an adversary A. The advantage of A when attacking a scheme £

is a(k) = Pr[A wins the KDM game] — ;.

— Initialization. The challenger randomly chooses a bit b & {0,1} and ¢t =
t(k) key-pairs (ski,pk,)..., (sks, pk,) by invoking KG(1¥) for ¢ times. The
adversary A can send a “public-key” query and get to see all the encryption
keys (pky, ..., pk;)-

— Queries. The adversary A may adaptively make polynomially-many queries
of the following types:

e Encryption queries of the form (i, M) where ¢ € [t] and M € {0,1}".
The challenger responds with C il E(pk,,M) if b = 1, and C &
E(pk,, 0'™1) if b = 0.

e KDM queries of the form (¢, f) where ¢ € [t] and f € Fj. The challenger
computes M = f(ski,...,sk:) and responds with C £ E(pk,, M) ifb=1,
and C & E(pk;,0™) if b = 0.

e Decryption queries of the form (¢,C') where ¢ € [t] and the string C
was not given as an answer of a previous encryption/KDM query. The
challenger responds with M = D, (C') regardless of the value of b.

— Final phase. The adversary outputs a bit ' € {0, 1} and wins if b = b'.

Fig. 1. The 7-KDM game is defined with respect to the function ensemble F = {F;}
and is indexed by the security parameter k. The presence (resp., absence) of public-key
query captures the public-key (resp., symmetric-key) setting.

By restricting the power of the adversary in the KDM game (Fig. ) we
get other KDM settings. Specifically, the symmetric-key setting corresponds to
adversaries of type sym who do not ask public-key queries, and the CPA setting
corresponds to adversaries of type CPA who do not make decryption queries.
Hence, we can classify KDM adversaries into one of the following four types:
(pub, CCA), (pub, CPA), (sym, CCA), and (sym, CPA). An adversary of type T that
conducts an F-KDM attack is denoted as (7', F)-adversary.

Definition 1. (KDM-secure encryption) Let Tbe a type, and F be a func-
tion ensemble. An encryption scheme is (T,F)-KDM secure if every efficient
(T, F) adversary has at most negligible advantage when attacking the scheme.

Interesting KDM functions ensembles. For every ¢ = t(k) and for every
type T we consider the following ensembles:

— Selectors and projections. If the ensemble Fj, contains all selector func-

tions {f; : (ski, ... ske) > skj}, . we get the notion of clique security [12]
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(which is stronger than circular security [16]), that is, the scheme is secure
even if the adversary sees encryptions of the form Epy, (sk;) for every 4,5 € [t].
Another elementary class that slightly generalizes the previous ones is the
class of all functions f : (sk) — v in which each output bit depends on (at
most) a single bit of the input sk = (ski,...,sk¢). Namely, the j-th output
bit v; is either fixed to a constant or copies/flips an original bit of one of
the keys, i.e., v; € {0,1,sk; 4,1 —sk; 4}, where sk; , is the g-th bit of the
i-th secret key. We refer to this class as the class of projections and let IT ,2’5
denote the restriction of this class to functions of input length kt and output
length ¢(k). Projections is a proper subclass of the class of affine functions
L:Fkt — F,

— Polynomial-size circuits [10]. For polynomials p(-) and £(-), let Cj ,,
denote the class of all circuits C' : {0,1}%* — {0,1}¥*) of size at most
p(k) + p(£). Security with respect to this class is denoted by (p, £)-bounded
circuit-size KDM security. A slightly stronger notion of security is p-length-
dependent KDM security which means that the scheme is KDM secure with
respect to C}Z’e’p for every polynomial ¢. While, ultimately one would like to
have KDM security with respect to all polynomial-size circuits (for arbitrary
polynomial), it seems that p-length-dependent security, say for quadratic p,
may be considered to be almost as powerful since it allows the adversary
to use larger circuits by encrypting longer messages. In particular, one can
represent essentially any polynomial-time computable function via padding.
That is, if a function f is not in the class since its circuit is too large, then a
“padded” version f’ of f in which the output is padded with zeroes does fall
into the ensemble. Furthermore, in [I0] it was shown that if p is sufficiently
large (e.g., the quadratic polynomial) then length-dependent security is suf-
ficient for axiomatic-security applications (i.e., it gives the ability to securely
instantiate symbolic protocols with axiomatic proofs of security).

The above definitions become stronger when the arity ¢ grows. At one extreme,
one may consider a single scheme which satisfies any of the above definitions for
an arbitrary polynomial ¢(k), and at the other extreme one may consider the
case of t = 1, which is still non-trivial even for projection functions.

Reductions among KDM-ensembles. We say that a KDM function ensemble G
KDM-reduces to another KDM function ensemble F (in symbols G <kpm F) if
there exists a transformation which converts an encryption scheme & that is F-
KDM secure to an encryption scheme £ which is G-KDM secure. Formally, such
a (black-box) reduction is composed of (1) (construction) an encryption scheme
& which is given an oracle access to the scheme &; and (2) (security reduction)
an efficient algorithm B such that for any F-adversary A which attacks & with
advantage o, the G-adversary B¢ attacks the scheme £ with a similar advantage
(up to a negligible loss). This definition can be instantiated with respect to all
four different types. We say that the reduction is type-preserving if B4¢ is always
of the same type as A (i.e., B always ask the same type of queries that A asks in
the KDM game.) Type preserving reduction extends KDM-security while being
insensitive to the concrete setting which is being used. Formally,
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Lemma 1 (KDM-reductions). Suppose that the KDM function ensemble G
KDM-reduces to the ensemble F via a type-preserving reduction (éA’, B). For every
T € {pub,sym} x {CCA, CPA}, if the encryption scheme & is (T, F)-KDM secure
then the scheme E€ is (T, G)-KDM secure.

4 Reductions and Completeness Results
4.1 KDM Reductions via Randomized Encoding

Let F = {fi.} and G = {gxw} be a pair of KDM function ensembles with the
same arity t = t(k). We say that F encodes G if every function g(x) in G has a
randomized encoding f(x;7) such that for every fixing of the random string r, the
resulting function f,.(z) is in F. More formally, the evaluation function Gy(z, )
of G should have a randomized encoding Fj((z,z);r) such that for every fixing
of r and index z, the function Fj . ,(z) = F(k, z, ;) corresponds to a function
frw in F, where the mapping from (z, ) to w should be efficiently computable in
poly(k) time. Note that this means that the simulator and decoder are universal
for all indices z, and depend only on the value of k.

Theorem 3 (main theorem). Suppose that the KDM function ensemble F
encodes the KDM function ensemble G. Then, G KDM-reduces to F via a type-
preserving reduction.

To prove the theorem we need to describe a construction and a security reduction.
From now on, let Sim and Rec be the universal simulator and recovery algorithm
which establish the encoding of G by F.

Construction 4. Given oracle access to the encryption scheme & = (KG, E, D),
we define the scheme £ as follows

KG(1%) = KG(1*)  Epk(M) = En(Sim(M))  Dg(C) = Rec(Dg(C)),

where all algorithms (i.e., encryption, decryption, simulator and recovery) get
the security parameter 1% as an additional input.

It is not hard to see that the decryption error of the scheme & is the same as
the decryption error of £, as an improper decryption of Epx (M) happens only if
Eok (M) is improperly decrypted where M’ £ Sim(M).

We show that the security of £ can be based on that of £. Given an oracle

access to a (T,G) adversary A that attacks &, we define a (T, F ) adversary B
that attacks £ by randomly choosing one of two strategies By and Bj.

Reduction 5 (The adversary BA€). Toss a coin o & {0,1}. If 0 = 1 invoke
the following adversary By :

— Initialization: B invokes A. If A asks for the encryption keys then B makes
a similar query and passes the answer to A.
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— Encryption query: If A makes an encryption query (i, M), for i € [t] and
M € {0,1}*, then B samples M' = Sim(M), sends (i, M) as an encryption
query (wrt to £) and passes the answer of the challenger to A.

— KDM query: If A makes a KDM query (i,g), for i € [t] and g € G, then
the adversary B does the following: She uniformly chooses randomness r
for the randomized encoding f(-;r) of g(-), and asks the KDM query (i, f,)
where fr(-) = f(-;r) which, by our assumption, is in F. The answer of the
challenger is being sent to A.

— Decryption query: If A makes a decryption query (i,C), then B checks
that it is legal (by inspecting all previous encryption/KDM queries), and if
so, (1) passes the same decryption query to the challenger, (2) applies the
recovery algorithm Rec to the result, and (3) sends it back to A.

— Termination: B terminates with the same output of A.

If o = 0 then invoke the adversary By. This adversary is similar to By except that
encryption and KDM queries of A are both translated into encryption queries as
follows: given an encryption query of A of the form (i, M) (resp., KDM query
of the form (i,g)), the adversary By samples M’ = Sim(0°) and asks for the
ciphertext Ep, (M'), where £ is the length of M (resp., output length of gE. At
the end, By flips the output of A and terminates.

Note that the above reduction is indeed type-preserving. Let us first focus on the
adversary B;. If the challenge bit b is 1 (i.e., when the challenger is in the “real-
mode”), then the difference between the emulated view of A and the view of A in
the actual KDM game, is only due to the difference in the way KDM queries are
answered. In the real game answers to KDM queries are computed properly as
Epk, (9(sk)) = Epk, (Sim(g(sk))), whereas in the emulated game they are computed
by Epk, (f(sk;U)). However, this difference should not be noticeable due to the
privacy of the randomized encoding. Formally, let ap(k) (resp., Bs5(k)) denote
the probability that A (resp., B,) guesses the challenge bit when it takes the
value b. Then,

Lemma 2. |51 1(k) — a1(k)| < neg(k).

Proof. We define the following distinguisher D which, given an oracle access to
either F(-;U) or to Sim(G(+)), attempts to distinguish between the two. The
adversary D emulates the challenger with challenge bit b = 1. It generates a
key vector (sk;, pk;);c[y by executing the key-generation algorithm KG(1*) for ¢
times. Then D invokes A. If A asks a KDM query (i, g.) then D calls its oracle
with the value G(z,sky,...,sk:). Let M denote the answer of the oracle. The dis-
tinguisher computes the ciphertext C' = Ep, (M) and sends the ciphertext C' to
A. If A asks other types of queries such as public-key queries, encryption queries,
and decryption queries, the distinguisher D answers them properly exactly as
the real challenger does when it’s in the real mode b = 1. (For the case of a
decryption query (i,C), the distinguisher checks that it is legal by inspecting all

5 Recall that the output length of g € G is given as part of its description.
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previous KDM/encryption queries, and if so, sends Dg, (C).) The distinguisher
halts with output 1 if and only if A outputs 1.

Note that: (1) If D gets an oracle access to Sim(G(+)) then the view of A is
distributed exactly as in the real game and so in this case D outputs 1 with
probability aq (k); (2) If D gets an oracle access to F(-; U) then the view of A is
distributed exactly as in the above reduction when B; emulates the game with
b =1, and so in this case D outputs 1 with probability £1,1(k). Hence, by the
privacy of the encoding, it follows that |51,1(k) — a1 (k)| < neg(k). |

We would like to argue now that a similar thing happens in the “fake” mode
when b = 0; namely, that (31 is close to ag. However, in this case real-game
KDM queries are answered with /E\pki (0%) = Epk, (Sim(0)), whereas in the game
emulated by B; these queries are answered by Epy, (0°), where £ = [g(sky, ..., sks)]
and s = |f(skq, ..., sk U)|. Although the privacy of the encoding ensures that
the plaintexts are of the same length, i.e., s = |Sim(0%)], the actual distributions
of the plaintexts may differ, and so it may be the case that the two views are
distinguishable. For this reason we need the adversary By which breaks the
standard (non-KDM) security of £ whenever such a gap exists. Formally, we
will show that the average success probability of By and By is roughly half the
success probability of A. To this aim we prove the following

Lemma 3. ﬁoJ(k‘) = Oéo(k‘) and ﬁo,o(k‘) + BL()(]{)) =1.

Proof. First, we note that when the challenge bit b = 1, the view of A as em-
ulated by By is identical to the view of A in the fake mode of the real game
(b = 0). Indeed, in both cases a KDM query (4,g) (resp., an encryption query
(i, M)) is answered with Epki (011) = Epk, (Sim(0%)) where £ is the output length
of g (resp., £ = |M]). Hence, (o1, the probability that By outputs 1 when the
challenger is in the real mode, is exactly the probability that A outputs 0 in
the real game when the challenger is in the fake mode. (Recall that B flips the
output of A). The first equation follows.

To prove the second equality we first claim that when the challenge bit b is
0, the view of A when emulated by By is identical to the view of A as emulated
by Bj. Indeed, the only difference is that in the first case KDM queries (i, g) are
answered by E(01S™(9(kDI) "while in the second case the answer is E(0l/(kmI),
The output lengths of f and Sim(g(-)) are fixed (for any g € G) and therefore
should be equal (otherwise the privacy of the encoding is violated), and so the
claim follows. The claim implies that Go0(k) + f1,0(k) = 1, as By outputs the
outcome of A, and By flips it. O

By combining the two lemmas (2 and B]), it follows that the advantage § =
(51,1+51,0+50,0+50’1)/47é of B is at least éafneg(k) where o = ;(al +a0)fé

is the advantage of A. Hence, we established the correctness of the reduction.

Remark 1. Thm. [3 holds even if the encoding itself makes use of the underlying
encryption scheme £ as long as this usage is done in a fully black-box way
(the same holds for any cryptographic primitive which can be based on £ via a
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black-box reduction e.g., one-way function). More precisely, our results hold (i.e.,
lead to black-box KDM reduction/construction) as long as the security of the
encoding reduces to the security of the underlying primitive (i.e., £) via a black-
box reduction, and as long as the simulator and decoder can be implemented
given a black-box access to the underlying primitive. Similarly, such a black box
access can be given to the algorithm which maps fixed index/randomness pairs
(z,7) to the index w of the function g = G 2 r(2).

4.2 Completeness of Projections

In [6] it is shown that Yao’s garbled circuit technique allows to encode any
efficiently computable function by a decomposable encoding in which every bit
depends on at most a single bit of the deterministic input. By combining this
fact with Thm. [3] we get the following:

Proposition 1 (Completeness of projections). For every polynomials p(-),
t(-) and £(-), there exists a polynomial q(-) for which

¢ ¢ ¢ ¢
Chop <xkom I} 4, Ck,p <xbm I, (1)

where C}, op U8 the t-ary ensemble of p-bounded circuits of output length ¢, H}é’q
is the t-ary ensemble of projections of output length q, C,tw = Usen C,tc7ka7p, and
I} = Usen Hli,k@' Moreover, the reductions are type preserving.

Hence, one can upgrade KDM security from (almost) the weakest KDM function
ensemble to the very powerful notion of p-length-dependent KDM security.

Proof. By [0] any efficiently computable circuit family {gx(x)} of circuit com-
plexity a(k) can be encoded by a uniform computationally-private perfectly-
correct encoding {gi(x;r)} with the following properties: (1) The simulator
and decoder use a black-box access to a symmetric encryption (equivalently,
to a one-way function); (2) For every fixed randomness 7, the resulting function
Gr.r(z) = gr(x;7) is a projection function of output length a(k)'*¢, where ¢ > 0
is an arbitrary small constant. (3) The mapping from the circuit of g to the
circuit of gy, is efficiently computable given a black-box access to the symmetric
encryption scheme.

Let {F;} be the universal (and uniform) circuit family for the mapping (z, z) —
y where z € ({0,1}*), the string z is a description of a circuit C, : ({0, 1}*)t —
{0, 1}4R) of size p(k)+p(£(k)), and the string y € {0, 1} is C,(z). By applying
the encoding from [6] to {Fy} it follows that Cj, , , is encoded by IT}, , where g is
polynomial in the circuit size of Fj. The first part of the pl‘OpOSlthIl now follows
from Thm. 3]

The second part follows similarly, except that now we consider the (non-
regular) function {Gy, ¢} which computes the same mapping of F, but for circuits
C, whose output length ¢ is given as an additional index, and not as a fixed
polynomial in k. Again, by applying the encoding from [6] to {Gy} it follows
that Cj, , is encoded by IT}, and the claim follows from Thm. 3 ]
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In the case of CPA KDM security, one can actually derive KDM-security with
respect to projections of arbitrary output length (i.e., ITf) from single-output
projections IT} ;.

Lemma 4 (Completeness of single-output projections for CPA-KDM).
For every polynomial t(-), we have II}, <kpm H,i’l, where the reduction holds for
both (sym, CPA) and (pub, CPA) types.

Proof. The proof follows by simple concatenation: the new encryption/decryption
algorithms encrypts/decrypts the message/ciphertext by applying the original
encryption/decryption algorithm in a bit by bit manner. Hence, a KDM query
in IT} ;.. for the new scheme can be emulated by k* KDM queries in [T} ; for
the original scheme. m]

As shown in [J], we can use the standard encrypt-then-MAC transformation to
upgrade the security of a scheme that satisfies (sym, CPA)-KDM security into a
scheme that satisfies (sym, CCA)-security with respect to the same KDM class.
A similar result was proven for the public-key setting by [15] via the Naor-Yung
double-encryption paradigm (which relies on the existence of NIZK). Hence, by
Proposition [[l and Lemma M we have:

Corollary 1 (KDM Collapse). For every polynomials t and p, there exists a
H,i’l-KDM secure scheme if and only if there exists a t-ary p-length-dependent
KDM secure encryption scheme. This holds unconditionally for the KDM types
(sym, CPA), (sym, CCA), and (pub, CPA)}, and it holds for (pub, CCA) assuming
the existence of non-interactive zero-knowledge proof system for NP.

We remark that all the known constructions of affine-KDM secure encryption
schemes [T2513] can be adapted to yield KDM security with respect to single-
output projections (see the Appendix of the full version of this paper [4]). Hence,
we get p-length-dependent (pub, CPA)-KDM (resp., (sym, CCA)) based on the
DDH, LWE, or QR assumptions (resp., LPN assumption), which can be boosted
into (pub, CCA)}-KDM assuming the existence of NIZK for NP.

5 On Full KDM Security

In this section, we study the possibility of constructing a scheme which satisfies
KDM security for the class of all functions. In [I0] it was shown that such a
scheme can be constructed based on the existence of cyclic-secure fully homo-
morphic encryption (FHE) [20]. We show that a similar assumption is inherently
required for full KDM security which is also simulatable. For simplicity, we focus
on the case of arity ¢t = 1 and single-query adversaries.

A public-key encryption scheme & = (KG,E,D) is simulatable F-KDM se-
cure if there exists a polynomial-time simulator S such that for every (sk, pk) €
KG(1%), and every circuit family fx € Fy of size poly(k), the ensemble S(pk, fi)
is indistinguishable from Epk(fr(sk)). (Note that this means that the distin-
guisher holds the secret-key sk.) The notions of simulatable circular-security and
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simulatable full-KDM security correspond to the two extreme cases where F con-
tains only the identity function, and F contains all functions.

An FHE allows to translate encryptions of a message M into an encryption of
a related message h(M) for any polynomial-size circuit h. More formally, we say
that £ is fully homomorphic if there exists an efficient algorithm Eval such that
for every (sk, pk) € KG(1¥), every circuit family {h;} of size poly(k), and every
sequence of messages M, € {0,1}P°Y(*) the ensemble Eval(pk, hy, Epk(My)) is
computationally indistinguishable from the ensemble Epy(hy(My)).

In [10], it was shown that if an encryption scheme is both simulatable circular-
secure and fully-homomorphic then it is also simulatable fully-KDM secure. We
show that the other direction holds as well, and so the two notions are equivalent.

Proposition 2. Any simulatable fully-KDM secure encryption scheme is also
Sfully-homomorphic circular-secure.

Proof. Given a simulatable fully-KDM secure encryption scheme (KG, E, D) with
simulator S, we define Eval(pk, h, C) by invoking S on the pair (pk, f,,c) where
fn,c is the mapping sk — h(Ds(C)). Note that the circuit size of f ¢ is poly-
nomial in the circuit size of h (since D is efficient). Also, by definition, we have
for every (sk, pk) € KG(1%), sequence {M},} and sequence {hy},

Eval(pk, A, Epk(My)) = S(pk, fh, Ep(re))

Epk (7k (Dsk (Epk(Mk))))
Epk (A (My)),

lle 1l

where = (=) denotes statistical (computational) indistinguishability. |
Next, we show that if one removes the simultability requirement then any encryp-
tion scheme (KG, E, D) which provides KDM security with respect to a function
which is slightly stronger than its decryption algorithm D, is actually fully-KDM
secure. This is done by observing that Gentry’s “bootstrapping technique” can
be adapted to the KDM setting.

Proposition 3. Let T € {(pub, CPA), (sym, CPA)}, and let £ = (KG, E, D) be T-
KDM secure encryption with respect to single-output projections and with respect
to the function family Fr, = {fc,,c, : sk — NAND(Dg(C1), Dsk(C2))}, where
C4, Cy ranges over {0,1}%) and p(k) is the length of an encryption of one-bit
message under secret-key of length k. Then, & is fully KDM secure of type T

Proof (Sketch). In the CPA setting it suffices to prove full KDM security with
respect to all circuits of single output. We show how to convert an attacker which
sends arbitrary KDM queries into one which uses only queries from F. Let h be
a circuit of size ¢, which is wlog composed of NAND gates, and let h; denote the
function computed by the i-th gate of h, where gates are ordered under some
topological ordering. We translate a KDM query for h into ¢t KDM calls to F by
traversing the circuit from bottom to top in a gate by gate manner preserving
the following invariant: The i-th query will be answered by a ciphertext C; such
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that, if the oracle is in the real mode C; = Eyk(hi(sk)) and if it is in the fake
mode C; = En(0). For an input gate, this can be achieved directly by making
a single KDM query with a single-output projection. To do this for an internal
gate hy whose input wires are connected to h; and h; for some i,j < ¢, we use
a KDM query to fo;,c;- a
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