
Efficient Non-interactive Secure Computation

Yuval Ishai1,�, Eyal Kushilevitz1,��, Rafail Ostrovsky2,� � �, Manoj Prabhakaran3,†,
and Amit Sahai2,‡

1 Dept. of Computer Science, Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.il

2 University of California, Los Angeles
{rafail,sahai}@cs.ucla.edu

3 University of Illinois, Urbana-Champaign
mmp@cs.uiuc.edu

Abstract. Suppose that a receiver R wishes to publish an encryption of her se-
cret input x so that every sender S, holding an input y, can reveal f(x, y) to R
by sending her a single message. This should be done while simultaneously pro-
tecting the secrecy of y against a corrupted R and preventing a corrupted S from
having an unfair influence on the output of R beyond what is allowed by f .

When the parties are semi-honest, practical solutions can be based on Yao’s
garbled circuit technique. However, for the general problem when the parties, or
even S alone, may be malicious, all known polynomial-time solutions are highly
inefficient. This is due in part to the fact that known solutions make a non-black-box
use of cryptographic primitives, e.g., for providing non-interactive zero-knowledge
proofs of statements involving cryptographic computations on secrets.

Motivated by the above question, we consider the problem of secure two-party
computation in a model that allows only parallel calls to an ideal oblivious trans-
fer (OT) oracle with no additional interaction. We obtain the following results.

– Feasibility. We present the first general protocols in this model which only
make a black-box use of a pseudorandom generator (PRG). All previous OT-
based protocols either make a non-black-box use of cryptographic primitives
or require multiple rounds of interaction.

– Efficiency. We also consider the question of minimizing the asymptotic num-
ber of PRG calls made by such protocols. We show that polylog(κ) calls are
sufficient for each gate in a (large) boolean circuit computing f , where κ
is a statistical security parameter guaranteeing at most 2−κ simulation er-
ror of a malicious sender. Furthermore, the number of PRG calls per gate
can be made constant by settling for a relaxed notion of security which al-
lows a malicious S to arbitrarily correlate the event that R detects cheating

� Work done in part while visiting UCLA. Supported by ERC Starting Grant 259426, ISF
grant 1361/10, and BSF grant 2008411.

�� Work done in part while visiting UCLA. Supported by ISF grant 1361/10 and BSF grant
2008411.

� � � Research supported in part from NSF grants 0830803 and 0916574, BSF grant 2008411, and
grants from Okawa Foundation, IBM, and Lockheed-Martin Corporation.

† Supported by NSF grant CNS 07-47027.
‡ Research supported in part from NSF grants 0916574, 0830803, 0716389, and 0627781,

BSF grant 2008411, a Google Research Award, a Xerox Foundation Grant, an equipment
grant from Intel, and an Okawa Foundation Research Grant.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 406–425, 2011.
c© International Association for Cryptologic Research 2011

Efficient Non-interactive Secure Computation 407

with the input of R. This improves over the state of the art also for inter-
active constant-round black-box protocols, which required Ω(κ) PRG calls
per gate, even with similar relaxations of the notion of security.

Combining the above results with 2-message (parallel) OT protocols in the CRS
model, we get the first solutions to the initial motivating question which only
make a black-box use of standard cryptographic primitives.

1 Introduction

This work is motivated by the following variant of the problem of computing on en-
crypted data [42,43]. Suppose that a receiverR wishes to publish a semantically secure
encryption of her secret input x so that any sender S, holding an input y, can reveal
f(x, y) to R by sending her a single message. (The message can be seen as an encryp-
tion of f(x, y) that the receiver can decrypt). We want this process to protect the secrecy
of y against a corruptedR and, at the same time, prevent a corrupted S from having an
unfair influence on the output of R beyond what is allowed by f . We refer to this flavor
of computing on encrypted data as non-interactive secure computation (NISC).

As a concrete motivating scenario for NISC, consider a receiver Roberta who wishes
to publish an encrypted version of her personal profile x on her public web page towards
finding a suitable partner for dating. A solution to our problem would allow an arbitrary
sender Sam, with personal profile y, to send an email message to Roberta which reveals
his verifiable contact information only if the two profiles match. (The matching criteria
can either be determined by a public algorithm which is embedded into f , or alterna-
tively specified in Roberta’s secret profile). In order to protect the secrecy of Roberta’s
profile x, its encryption should be semantically secure. In order to protect the secrecy of
Sam’s profile y, he should be ensured that no information is revealed to Roberta other
than what is implied by the output of f . Finally, to help protect Roberta against eager
senders who try to force a match, she should be ensured that every strategy of such a
sender corresponds to some valid profile y.

Standard techniques for secure computation and computing on encrypted data
perform quite well when the parties are guaranteed to be semi-honest. For instance,
practical NISC protocols in this setting can be obtained by combining Yao’s garbled
circuit technique [44,31] and any two-message oblivious transfer (OT) protocol [7,14].
Low-communication (but at this point less practical) solutions can be obtained using
homomorphic encryption for general functions [13] or for restricted classes of func-
tions [30,6,22,33].

For some of the above protocols, protecting S against a malicious R can come at a
relatively low cost. In protocols based on Yao’s construction this can be done (in the
CRS model) by using efficient 2-message UC-secure OT protocols [39] (see also [11]).
However, known techniques for protecting R against a malicious S either involve ad-
ditional rounds of interaction [32] or are highly inefficient. For instance, this is the
case if S is required to prove, using non-interactive zero-knowledge (NIZK), that he
constructed a valid garbled circuit [7,17]). Such proofs seem very costly even with the
best known NIZK techniques. Moreover, even from a qualitative point of view, such
NIZK-based solutions leave much to be desired in that they inherently require to make

408 Y. Ishai et al.

a non-black-box use of the underlying cryptographic primitives. For instance, while the
semi-honest version of Yao’s protocol can be implemented by making a black-box use
of (parallel) 2-message OT and a pseudorandom generator (PRG), this is not the case
for a NIZK-based variant which is secure against malicious senders.

The above state of affairs motivates the study of NISC protocols which only make a
black-box use of standard cryptographic primitives. We further simplify the problem by
allowing S and R to engage in parallel invocations of an ideal OT oracle, but without
allowing any additional interaction1. We refer to such a protocol as a NISC protocol
in the OT-hybrid model, or NISC/OT protocol for short. More formally, a NISC/OT
protocol for f(x, y) is a protocol which UC-securely realizes f using only parallel calls
to an ideal OT oracle.

Our main motivation for considering this a good model for NISC is the aforemen-
tioned existence of efficient UC-secure 2-message implementations of OT in the CRS
model. Indeed, using the UC composition theorem [8], NISC/OT protocols can be com-
bined with such 2-message OT protocols to yield NISC protocols in the CRS model that
have the same communication pattern as in the initial motivating example.

Additional advantages of OT-based protocols include the generality advantage of
being able to realize OT in a variety of models and under a variety of standard assump-
tions, as well as efficiency advantages such as the possibility of precomputing the neces-
sary OTs [4,2] and the possibility to amortize the cost of this precomputation [3,36,18].
See [24] for further discussion.

We turn to the feasibility question of minimizing the assumptions on which NISC/OT
protocols can be based. In the OT-hybrid model, any polynomial-time computable func-
tionality can be efficiently realized unconditionally [16,28,24]. However, it is wide open
whether the same is true for constant-round protocols. (This question is related to the
corresponding question in the honest-majority MPC setting [5], which in turn is re-
lated to other wide open questions [19]). Given the lack of progress on this front, a
second best alternative is to base general NISC/OT protocols on any one-way function,
or equivalently a PRG. As noted above, Yao’s protocol provides such a solution in the
semi-honest model. Moreover, it is shown in [24] (see Appendix B of [23]) how to get
a similar protocol in the malicious NISC/OT model; however, this protocol inherently
makes a non-black-box use of the PRG. This motivates the following main question:

Are there NISC/OT protocols for general functions which only make a black-
box use of a PRG?

A second goal of this work is to push the asymptotic efficiency limits of constant-
round black-box protocols by minimizing the number of calls to the underlying crypto-
graphic primitive. Existing constant-round black-box protocols in the OT-hybrid model
(such as [34,32] and their variants) require Ω(κ) calls to a PRG (or symmetric encryp-
tion) for each gate in the circuit, where κ is a statistical security parameter guaranteeing
at most 2−κ simulation error for a malicious sender2. This should be compared to the

1 It is also useful to allow a message from the sender to the receiver which is independent of the
receiver’s OT choices; such a message can be realized in the pure parallel-OT hybrid model at
the cost of one additional OT.

2 The “LEGO protocol” [38] reduces this overhead by a factor of log |C|, where |C| is the size
of the circuit, at the expense of employing a homomorphic commitment primitive.

Efficient Non-interactive Secure Computation 409

best protocols in the semi-honest model [44,31] which require onlyO(1) PRG calls per
gate.

1.1 Our Results

We obtain the following main results.

– Feasibility. We present the first general NISC/OT protocols which only make a
black-box use of a PRG. All previous protocols in the OT-hybrid model either make
a non-black-box use of cryptographic primitives [24] or require multiple rounds of
interaction (cf. [32]).

– Efficiency. We also consider the question of minimizing the asymptotic number of
PRG calls made by such protocols. We show that polylog(κ) calls are sufficient for
each gate in a (large) boolean circuit computing f , where κ is a statistical security
parameter guaranteeing at most 2−κ simulation error of a malicious sender3. Fur-
thermore, the number of PRG calls per gate can be made constant by settling for
a relaxed notion of security which allows a malicious S to arbitrarily correlate the
event that R detects cheating with the input of R.
This improves over the state of the art also for interactive constant-round black-box
protocols, which required Ω(κ) PRG calls per gate, even with similar relaxations
of the notion of security.

Combining the above results with 2-message (parallel) OT protocols in the CRS model,
we get the first solutions to the initial motivating question which only make a black-box
use of standard cryptographic primitives.

On re-using public keys. A standard security caveat that applies to many non-interactive
protocols in the public key model (cf. [29,27,12,9]) is that re-using the same receiver’s
public key for multiple sender messages may be problematic if the sender can learn
the receiver’s output on these messages. Indeed, the standard (UC-)security guarantee
of our protocols only applies when an independent receiver message is used in each
session. While the receiver’s output does not reveal additional information about the
receiver’s input (other than what is allowed by f), it may reveal information about
the secret randomness embedded in the public key, which may in turn compromise the
receiver’s security when leaking multiple outputs without refreshing the public key. Our
protocols are indeed susceptible to this type of attacks.

We stress that re-using the same public key for multiple sender messages is always
safe (in the sense of providing the natural “real-ideal” security guarantee) if the re-
ceiver refreshes the public key after revealing an output or using it in another protocol.
This seems to be a very mild requirement in many practical scenarios in which sender
messages are infrequent or can be aggregated before taking any action.

Similarly to [9], we can provide t-time reusable public keys (for which up to t out-
puts can be revealed before the key needs to be refreshed) at a much better cost than
publishing t independent public keys. We note, however, that (non-black-box) NIZK-
based NISC protocols are not susceptible at all to this type of attacks, and leave the

3 The simulation error of the receiver is close to the distinguishing advantage of the PRG (as in
Yao’s original protocol) and can be made 2−Ω(κ) by choosing a PRG with similar strength.

410 Y. Ishai et al.

possibility of obtaining a similar result using black-box constructions as an interesting
open question.

On asymptotic vs. practical efficiency. As is usual in theoretical work in cryptography,
we focus on optimizing asymptotic efficiency and do not try to optimize or even an-
alyze the underlying hidden constants. Moreover, in doing so we focus on the typical
case where the circuit size is much bigger than the input size which in turn is much
bigger than the security parameter, and sometimes ignore low-order additive terms that
depend on the smaller quantities. These optimization goals may conflict with practical
efficiency. The question of optimizing NISC protocols towards practical implementa-
tions is left for future work.

1.2 Overview of Techniques

At a high level, our NISC/OT protocols are obtained using the following modular steps:

1. Statistically secure NISC/OT protocols for NC0 functions. Here we can rely on a
previous protocol from [24] (see Appendix B of [23]). We also present an asymp-
totic efficiency improvement by applying “MPC in the head” techniques in the spirit
of [20]. This is presented in Section 3.

2. Computationally secure NISC protocols for general functions in the NC0-hybrid
model (allowing the parties a single call to an ideal NC0 functionality). Here we
combine a particular implementation of Yao’s garbled circuit construction with the
use of unconditional one-time MACs to guarantee that a malicious sender can ei-
ther deliver a correct output to the receiver or the receiver detects cheating and
aborts. However, these protocols allow a malicious sender to correlate the event of
the receiver aborting with the receiver’s input. We present two variants of the pro-
tocol: the first (Section 5) allows arbitrary correlations with the receiver’s inputs,
and is the most efficient protocol we obtain in this work. The second variant (Sec-
tion 6) is slightly less efficient but allows only correlations that can be expressed as
disjunctions of circuit wires and their negations.

3. Finally, we present (in Section 7) an efficient general reduction of full security
to security with the latter type of “correlated abort”. The idea is to transform the
original circuit into a new, randomized, circuit in which disjunctions of wires or
their negations provide essentially no information about the input. A special case
of this transformation is implicit in [25]. We reduce the general case to honest-
majority MPC in the semi-honest model and instantiate it using a recent efficient
protocol from [10].

We also present (in Section 4) a direct ad-hoc construction of NISC protocols in the
NC0-hybrid model, which is asymptotically less efficient but is somewhat simpler than
that obtained by combining steps 2 and 3 above.

2 Preliminaries

Below we define a non-interactive secure computation scheme (NISC). NISC may in-
volve a trusted setup, an ideal implementation of some (non-reactive) functionality H.
We shall refer to such an NISC scheme as NISC/H.

Efficient Non-interactive Secure Computation 411

An NISC/H scheme for a function f : X × Y → Z is a 2-party protocol between
Receiver and Sender, of the following format:

– Receiver gets an input x ∈ X and Sender gets an input y ∈ Y .
– The two parties invoke an instance of H with inputs of their choice, and Receiver

obtains outputs from H.
– Sender may send an additional message to Receiver.
– Receiver carries out a local computation and outputs f(x, y) or an error message.

The correctness and secrecy requirements of an NISC scheme can be specified in terms
of UC security. We shall denote the security parameter by κ and require that for a
protocol to be considered secure, the simulation error be 2−Ω(κ). An NISC/H scheme
for f is required to be a UC-secure realization of the following functionality Ff in the
H-hybrid model.

– Ff accepts x ∈ X from Receiver and y ∈ Y from Sender, and outputs f(x, y)
to Receiver and an empty output to Sender. If y is a special input error, then the
output to Receiver is error.

In particular, we will be interested in NISC/OT schemes, where OT stands for a func-
tionality that provides (parallel) access to multiple instances of

(
2
1

)
Oblivious Transfer.

In this case, the additional message from the sender to the receiver can be implemented
using a single additional OT call.

We define a relaxed notion of security which is useful in the context of NISC, but
may also be of broader interest.

Security with input-dependent abort. Given an SFE functionality F , we define a func-
tionality F† which behaves as follows: first F† accepts a description of a predicate φ
from the adversary (e.g., in the form of a PPT algorithm); after receiving inputs from
all the parties, F† computes the outputs to the parties as F does; but before delivering
the outputs to the parties, F† runs φ with all the inputs; if φ outputs abort, then F†

replaces the output to the honest parties by the message abort. Otherwise F† delivers
the output from F to all the parties.

Though we defined security with input-dependent abort as a general security notion,
we shall exclusively focus on 2-party functionalities Ff as defined above.

Security with wire-disjunction triggered abort. For a 2-party SFE functionality F as
above, outputting f(x, y) to only Receiver, we define a functionality F‡ which is a
restriction of F† in which the algorithm φ for determining aborting is restricted to be
of the following form: φ includes a set W of pairs of the form (w, b), where w is a wire
in a fixed circuit C for computing the function f , and b ∈ {0, 1}; φ(x, y) = abort if
and only if there exists a pair (w, b) ∈ W such that when C is evaluated on (x, y), the
wire w takes the value b. We will also consider the stronger notion of input-disjunction
triggered abort where the disjunction can only involve input wires.

Protocol making a black-box use of a PRG. We are interested in NISC/OT schemes
that do not rely on any cryptographic assumption other than the security of a PRG.

412 Y. Ishai et al.

Further, the scheme should be able to use any PRG provided to it, in a black-box fashion.
Formally, we consider fully black-box reductions [41] from NISC/OT to PRG.

Towards a more concrete measure of efficiency, we require NISC/OT protocols to
be 2−Ω(κ) secure and measure complexity as a function of κ and the circuit size of f .
Security against corrupted senders will be statistical. To achieve the above goal against
a computationally bounded corrupted receiver, we need to use a PRG for which the ad-
vantage of any PPT adversary in distinguishing the output of the PRG from a random
string (of the appropriate length) is 2−Ω(κ). To this end a PRG can have a longer com-
putational security parameter, k, that defines the length of its seed (k is a function of
κ, but for simplicity we denote it as a separate parameter). The PRGs considered below
have input and output length Θ(k).

Efficiency: Communication and Cryptographic Overheads. The best known NISC/OT
scheme secure against passive corruption is provided by Yao’s garbled circuit construc-
tion (see below) and forms the benchmark for efficiency for us. There are three aspects
in which a NISC/H scheme can be more expensive compared to the garbled circuit
(over OT) scheme:

– The complexity of H. For instance, if H is the parallel OT functionality OT, then
the number of instances of

(
2
1

)
OTs and the total length of the OT strings provide

natural measures of complexity of H. (Note that a NISC/H scheme invokes a single
instance of H). If H is a more involved functionality, we shall be interested in
complexity measures related to securely realizing H.

– Communication overhead. We shall include in this any communication directly be-
tweenthetwopartiesandanycommunicationbetweenthepartiesandH.Wedefinethe
communication overhead of a NISC scheme as the ratio of total communication in the
NISC scheme and the total communication in Yao’s garbled circuit (overOT)scheme.

– Cryptographic overhead. Yao’s garbled circuit scheme makes a black-box use of
PRG. To evaluate a function that is computed by a circuit C, it uses Θ(|C|) calls to
a PRG (with input and output lengthsΘ(k)). The ratio between the number of such
calls made by a NISC scheme and Yao’s garbled circuit scheme can be defined as
the cryptographic overhead of the NISC scheme.

Garbled Circuit. There are two main variants of Yao’s garbled circuit construction in
the literature, one following the original construction of Yao [44,31] and one following
the presentation in [37,1]. The former allows a negligible probability of error while
evaluating the circuit (since a “wrong” key may decrypt a ciphertext encrypted using
different key, without being detected), whereas the latter includes pointers with the keys
indicating which ciphertexts they are intended for. In this work, we follow the latter
presentation (with a few simple changes). Below we describe the version of garbled
circuit we shall use.

Consistent with our use of garbled circuits, we shall refer to two parties Receiver
(with input x) and Sender (with input y) who wish to evaluate a function represented as
a boolean circuit C, with binary gates. Given such a circuit C and input y for Sender,
the garbled circuit YC for C is constructed as follows. For each (non-output) wire w
in C, two k-bit strings K0

w and K1
w are randomly chosen, as well as a random bit rw.

The random bit rw is used to mask the values on the wires during evaluation of the

Efficient Non-interactive Secure Computation 413

garbled circuit (if w is an output wire, or an input wire belonging to Receiver, then we
set rw = 0). The garbled circuit YC consists of the following:

– For each gate g (with input wires u, v and output wire w), for each a, b ∈ {0, 1},
an encryption

Encrg,a,b

Ka⊕ru
u ,Kb⊕rv

v
(Kc⊕rw

w , c)

where c = F̃g(a, b) := Fg(a⊕ ru, b⊕ rv) ⊕ rw where u, v are the input wires to
gate g and w its output wire,4 and Encr is a symmetric-key encryption scheme with
a mild one-time semantic security guarantee (see below).

– For each input-wire w for which the value is already fixed (i.e., w is an input wire
that belongs to Sender), the pair (Kyw

w , yw ⊕ rw), where yw is the value of that
input wire.

Note that if gate g has input wires u, v and output wire w, then for any values (α, β),
given (Kx

u , a) and (Ky
v , b) where a = α⊕ ru and b = β ⊕ rv , one can obtain (Kz

w, c),
where z = Fg(α, β) and c = z ⊕ rw. Hence, given YC and (Kxw

w , xw) for each input-
wire w belonging to Receiver (note that for such w, xw ⊕ rw = xw), one can evaluate
C(x, y) (note that an output wire w has rw = 0).

The privacy guarantee of a garbled circuit is that, given x and f(x, y), it is possible to
construct a simulation (ỸC , K̃1, . . . , K̃|x|) which is computationally indistinguishable
(with at most a distinguishing advantage 2−Ω(κ)) from (YC ,K1, . . . ,K|x|) where YC

is the garbled circuit constructed for Sender’s input y, andKi are keys of the formKxw
w

where w are the input wires for Receiver.
For the above security guarantee to hold, encryption Encr only needs to be one-time

semantically secure (even if one of the two keys is revealed) [1]. But it is convenient for
us to restrict ourselves to a concrete instantiation of an encryption scheme5. A particular
instance of an encryption scheme, that satisfies the requirements for a garbled circuit,
can be defined in terms of black-box access to a pseudorandom generator or, more
conveniently, in terms of a pseudorandom function. For each key K in {0, 1}k, let the
pseudorandom function initialized with the keyK be denoted byRK : [|C|] → {0, 1}k′

where [|C|] is the set of indices for the gates in the circuit C and k′ is the maximum
length of the messages to be encrypted (k + 1 above, but longer in the variants used in
some of our schemes)6. Then the encryption Encr is defined as follows:

EncrtK1,K2
(m) = m⊕RK1(t) ⊕RK2(t), (1)

where t = (g, a, b) is a “tag” that is used once with any key.

4 In fact, g may have more than one output wire; in such case, they are all assigned the same
keys K0

w and K1
w.

5 The construction and analysis in [1] admits any one-time semantically secure symmetric-
key encryption scheme. Our construction here is somewhat more streamlined since we use a
specific encryption scheme.

6 Note that the domain of the inputs for PRF is small, and hence a PRG with an appropriately
long output can be used to directly implement the PRF. In fact, the PRF will be invoked on
only as many inputs as the maximum fan-out of the circuit, and needs to be defined only
for the values on which it will be invoked. Nevertheless we shall use the PRF notation for
convenience and conceptual clarity.

414 Y. Ishai et al.

3 A Statistical NISC/OT Protocol for NC0

A central building block of our protocols for general functions f is a statistically secure
protocol for “simple” functions g in which each output bit depends on just a small
number of input bits. We say that g(x, y) is d-local if each of its output bits depends on
at most d input bits. Towards an asymptotic measure of efficiency, we will (implicitly)
consider an infinite family of finite functionalities gn : {0, 1}αn×{0, 1}βn → {0, 1}γn .
We say that such a family is in NC0 if there exists an absolute constant d such that each
gn is d-local. The precise locality d of the NC0 functions we will employ is small, and
will be hidden in the asymptotic analysis.

Our general protocols for evaluating a function f(x, y) will typically require the
evaluation of NC0 functions g(a, b) where the receiver’s input a is short (comparable in
length to x) but the sender’s input b and the output are long (comparable to the circuit
size of f). We would therefore like the number of OT invocations to be comparable to
the receiver’s input lengthα, and the total communication complexity (in the OT-hybrid
model) to be as close as possible to the output length γ.

The semi-honest model. In the semi-honest model, there are several known techniques
for obtaining perfectly secure protocols that meet these requirements (cf. [21] and refer-
ences therein): in such protocols the number of OTs is exactly α and the total commu-
nication complexity is O(γ) (with a hidden multiplicative constant depending at most
exponentially on d). Our goal is to get similar efficiency in the malicious model without
introducing additional interaction.

Previous results. A statistically secure NISC/OT protocol for NC0 functions in the ma-
licious model is implicit in [28]. (Via known reductions, this can be extended to func-
tions in low complexity classes such as NC1 with a polynomial complexity overhead).
A more efficient protocol was given in [24] (see Appendix B of [23]). The protocol
from [24] can also provide computational security for general functions, but this re-
quires a non-black-box use of a pseudorandom generator. From here on we focus on the
case of NC0 functions.

The protocol of [24] is based on a reduction to multi-party computation (MPC) in the
semi-honest model, in the spirit of the MPC-based zero-knowledge protocols of [20].
Instantiated with standard MPC protocols, and settling for a relaxed notion of security,
discussed in Section 3.2 below, its communication complexity is Θ(γ · κ), where γ is
the output length of f and κ is a statistical security parameter guaranteeing simulation
error of 2−κ. (Here and in the following we will assume that γ � α, κ and ignore low
order terms in the efficiency analysis for simplicity).

3.1 Overview of New Protocol

We present a different approach for NISC/OT that reduces the multiplicative overhead
from Θ(κ) to polylog(κ). Our general approach employs perfectly secure MPC proto-
cols for the malicious model. The efficiency improvement will be obtained by plugging
in the recent perfectly secure protocol from [10].

Given an NC0 function g(a, b), where g : {0, 1}α × {0, 1}β → {0, 1}γ, our con-
struction has a similar high level structure to that of [24,23]:

Efficient Non-interactive Secure Computation 415

1. Start with a perfectly secure NISC/OT protocol π for g in the semi-honest model
in which the receiver uses its original α input bits a as the sequence of OT choices.
Several such protocols with a constant overhead can be found in the literature
(see [21] and references therein).

2. Use the sender’s algorithm in π to define a “certified OT” functionality COT, which
is similar to parallel OT except that it verifies that the α pairs of strings (together
with an additional witness) provided by the sender satisfy a given global consis-
tency predicate. If this verification fails, a special error message ⊥ is delivered to
the receiver.

Concretely, we will employ a COT functionality in which the sender’s witness in-
cludesitsrandomnessanditsinputb,andthepredicateverifiesthat theαpairsofstrings
are as prescribed by the protocol. (Forefficiency reasons, it may be useful to include in
thewitness thevaluesof intermediatewires in thesender’scomputation.Thisstandard
technique can be used to transform an arbitrary predicate into one in NC0).

3. Take a perfectly secure MPC protocol ΠCOT for a multi-party functionality corre-
sponding to COT, and use it to obtain a statistically secure two-party NISC/OT
protocol πCOT for COT. This is the main novel contribution of the current section,
which will be described in detail below.

4. Use πCOT for obtaining an NISC/OT protocolπg for g with security in the malicious
model. This can be done in a straightforward way by using COT to emulate π while
ensuring that the sender does not deviate from its prescribed algorithm. Note that
the protocol makes a non-black-box use of π, and thus in our black-box setting we
cannot apply it to protocols π which make use of cryptographic primitives.

3.2 Relaxing Security

A (standard) technical subtlety that we need to address is that our direct implementation
of πCOT will not realize the functionality COT under the standard notion of security, but
rather under a relaxed notion of security that we refer to as security with “input-value
disjunction (IVD) abort”. This is similar to the notion of security with wire-value dis-
junction (WVD) abort from Section 6, except that here the disjunctive predicate applies
only to input values. That is, the ideal functionality is augmented by allowing a ma-
licious sender to specify a disjunctive predicate in the receiver’s input bits (such as
x2 ∨ x̄4 ∨ x7) which makes the functionality deliver ⊥ if the receiver’s input satisfies
the predicate. (Otherwise the output of the original functionality is delivered).

A standard method for upgrading security with IVD-abort into full security is by let-
ting the receiver “secret-share” its input (cf. [28,32]). Concretely, the receiver encodes
x into a longer input x′ in a way that ensures that every disjunctive predicate in x′ is
either satisfied with overwhelming probability, or alternatively is completely indepen-
dent of x. The original functionality g is then augmented to a functionality h that first
decodes the original input and then computes g. (To prevent cheating by a malicious
receiver, the decoding function should output a valid input x for any string x′).

One can now apply any protocol πh for h which is secure with IVD-abort in order to
obtain a fully secure protocol for the original functionality g. We note that the function-
ality h will not be in NC0; thus, the overhead for realizing it unconditionally (even in
the semi-honest model) will be too big for our purposes. Instead, we apply the security

416 Y. Ishai et al.

boosting reduction only at higher level protocols which offer computational security
and rely on Yao’s garbled circuit construction. For such protocols, we only pay an ad-
ditive price comparable to the circuit size of the decoder, which we can make linear in
the input length.

We finally suggest a concrete method to encode x into x′ as above. A simple method
suggested in [28,32] is to let x′ be an additive sharing of x into κ + 1 shares (over
Fα

2). This has the disadvantage of increasing the length of x by a factor of κ, which we
would like to avoid. Better alternatives were suggested in the literature (see, e.g., [40])
but these still increase the input length by a constant factor and significantly increase
the circuit size. Instead, we suggest the following encoding method. Let G : {0, 1}δ →
{0, 1}α be a κ-wise independent generator. That is, for a random r, the bits of G(r)
are κ-wise independent. Then the encoding is defined byEnc(x) = (r1, . . . , rκ+1, x⊕
G(r1 ⊕ · · · ⊕ rκ+1)) where the ri are uniformly random strings of length δ. The corre-
sponding decoder is defined by Dec(r1, . . . , rκ+1, z) = z ⊕G(r1 ⊕ · · · ⊕ rκ+1).

The following lemma is straightforward.

Lemma 1. For every disjunctive predicate P (x′), the following holds: (1) If P involves
at most κ literals, then Pr[P (Enc(x)) = 1] is completely independent of x. (2) Other-
wise, Pr[P (Enc(x)) = 1] ≥ 1 − 2−κ.

We note that efficient implementations of G can be based on expander graphs [35]. In
particular, for any constant 0 < c < 1 there is an NC0 implementation of G (with
circuit size O(α)) where δ = αc + poly(κ). Thus, in the typical case where α� κ, the
encoding size is α+ o(α).

The following corollary shows that, from an asymptotic point of view, boosting se-
curity with IVD-abort into full security comes essentially for free both in terms of the
circuit size and the receiver’s input length.

Corollary 1. Let f(x, y) be a functionality with circuit size s and receiver input size
α = |x|. Then, there exists a functionality h(x′, y) and a linear-time computable en-
coding function Enc such that:

– A fully secure protocol πf for f can be obtained from any protocol πh for hwhich is
secure with IVD-abort by letting the parties in πf run πh with inputs x′ = Enc(x)
and y.

– The circuit size of h is s+O(α) + poly(κ).
– The receiver’s input length in h is α+ o(α) + poly(κ).

3.3 Realizing COT via Robust MPC

It remains to describe an efficient protocol πCOT for COT which is secure with IVD-
abort. In this section, we reduce this task to perfectly robust MPC in the presence of an
honest majority.

We consider an MPC network which involves a sender S, n servers Pi, and 2α
receivers Ri,b, 1 ≤ i ≤ α, b ∈ {0, 1}; for simplicity, we assume that receivers do not
send, but only receive messages in the protocol. (We will later set n = O(κα)). All
parties are connected via secure point-to-point channels as well as a common broadcast
medium. Define the following multi-party version of COT: the sender’s input consists

Efficient Non-interactive Secure Computation 417

of α pairs of strings (yi,0, yi,1) and a witness w. The other players have no input. The
output of receiverRi,b is ⊥ if P ({yi,b}, w) = 0, and otherwise it is yi,b.

Now, assume we are given an MPC protocolΠCOT that realizes this multiparty COT
functionality and provides the following security guarantees. The adversary may attack
up to t = Ω(n) of the servers, as well as any number of the other players (sender and
receivers). For such an adversary, the protocol provides perfect correctness and, more-
over, if the adversary is semi-honest we are also guaranteed privacy. Such a protocol,
with the desired complexity, appears in [10]. We now use ΠCOT to construct a COT
protocol πCOT as follows.

1. Sender runs the MPC protocol ΠCOT “in his head” (a-la [20]), where its input (α
pairs of strings (yi,0, yi,1) and a witness w) serve as inputs for the sender S of
ΠCOT. It creates strings V1, . . . , Vn with the views of the n servers in this run, as
well as V1,0, V1,1, . . . , Vα,0, Vα,1 with the views of the 2α receivers.

2. Let u be an integer such that 1/u ∈ [t/2n, t/4n]. The sender and the receiver apply
one parallel call to an OT in which the receiver selects, for each i ∈ [n], a view
Vi,bi (where the n selection bits bi ∈ {0, 1} are the COT-receiver input) as well as
each of the n server views with probability 1/u7.

3. Receiver checks for inconsistencies among the views that it read (namely, for each
pair of views VA, VB , corresponding to players A,B, all messages from A to B
reported in VB should be consistent with what an honest A computes in ΠCOT

based on VA). If any such inconsistency is found or if any of the α selected receiver
views has a ⊥ output, then the receiver outputs ⊥; otherwise, the receiver outputs
the output of the α selected receivers.

To analyze the protocol above, first note that if both Sender and Receiver are honest
then the output of protocol πCOT is always correct (in particular, because so is ΠCOT).

Next, consider the case of a dishonest Receiver (and honest Sender). Since, we use
ideal OTs the Receiver can only choose it’s selection bits which will yield exactly one of
Vi,0, Vi,1 (for each i ∈ [n]) and each of the n server views with probability 1/u. By the
choice of u, the expected number of server views that the receiver will obtain, denoted
�, is n/u ≤ t/2 and, moreover, only with a negligible probability � > t. Whenever
� ≤ t, the privacy property of ΠCOT assures that from (semi-honest) views of � servers
and any number of receivers, no additional information (other than what the output of
those receivers contain) is learned about the input of the Sender.

Finally, consider the case of a dishonest Sender (and honest Receiver). The COT sim-
ulator, given the Sender’s view (in particular, the views of the MPC players), constructs
the inconsistency graph G, whose nodes are the MPC players and an edge between
nodes A,B whenever the corresponding views are inconsistent. In addition, G′ is the
sub-graph induced by the n nodes corresponding to the servers. The simulator starts by

7 This is based on [24] which can be done non-interactively in our model. The observation is
that it is known that

(
u
1

)
-OT non-interactively reduces to u − 1 instances of

(
2
1

)
-OT. Now,

given
(

u
1

)
-OT, a string can be transferred with probability 1/u simply by letting the sender put

the string in a random location i of a u-entry array, and send to the receiver (independently
of the receiver’s selection) an additional message with i. Also note, that with our choice of
parameters u = O(1).

418 Y. Ishai et al.

running a polynomial-time 2-approximation (deterministic) algorithm for finding min-
imal vertex-cover in the graph G′; i.e, the algorithm outputs a vertex cover B whose
size is not more than twice the size of a minimal vertex-cover B∗. Consider two case,
according to the size of B.
Case 1: |B| > t. In this case the simulator outputs ⊥ with probability 1; we argue that
in the real COT protocol, the receiver outputs ⊥ with probability negligibly less than
1. This is because |B∗| ≥ |B|/2 > t/2 and so there must be a matching in G′ of size
larger than t/4 (the size of a minimal vertex-cover of a graph is at most twice the size of
a maximal matching). This, together with the choice t = Ω(n), implies that the proba-
bility that the � servers picked by the Receiver do not contain an edge of G′ is 2−Θ(n).
In all other cases, the Receiver outputs ⊥. (A similar argument was made in [20]; for
more details, see there).
Case 2: |B| ≤ t. In this case, the COT simulator passes the views of the MPC sender
and of all servers in B to the MPC simulator. The MPC simulator extracts an effective
sender input (i.e., α pairs of strings and a witness w). If this input does not satisfy the
predicate P then output ⊥ (by the perfect correctness of ΠCOT, on such input πCOT al-
ways outputs ⊥ as well). It remains to deal with the case where the predicate does hold.
For this, the COT simulator picks each server with probability 1/u (as does the honest
receiver in πCOT) and if there is any inconsistency among the set T of selected views
then the receiver outputs ⊥; otherwise, the simulator also compares the view of each
of the 2α receivers with each of the servers in T . It prepares a disjunctive predicate,
Pd, consisting of the literals corresponding to receivers which have at least one such
inconsistency (i.e., the predicate is satisfied exactly if the Receiver will select any of the
problematic views; in both cases this leads to a ⊥ output). It sends to the functionality
the input extracted by the simulator along with the predicate Pd.

To conclude, let us summarize the complexity of our construction and compare it
with the one in [23, Appendix B] (essentially the two constructions are incomparable
with advantages depending on the spectrum of parameters).

Theorem 1. The above protocol is a secure protocol with IVD abort for computing
any NC0 function g(a, b), where g : {0, 1}α × {0, 1}β → {0, 1}γ. Its communication
complexity is polylog(κ) · γ + poly(α, κ). (Recall that n = O(κα)). The number of OT
calls is O(ακ).

Theorem 2. [23] There exists a secure protocol with IVD abort for computing any
NC0 function g(a, b), where g : {0, 1}α × {0, 1}β → {0, 1}γ whose communication
complexity is O(κγ) and number of OT calls is O(α + κ).

4 A Direct Protocol for NISC/NC0

Our first construction follows a cut-and-choose approach in the spirit of previous
constant-round protocols making black-box access to cryptographic primitives [34,32].
The price we pay for this relatively simple solution is O(κ) cryptographic and commu-
nication overheads. In particular, we show the following.

Theorem 3. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality HC with

Efficient Non-interactive Secure Computation 419

O(κk|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an
NISC/HC scheme for FC that makes a black-box use of a PRG, invoking the PRG
O(κ|C|) times, and with O(κk|C|) total communication. (Recall that κ is a statistical
security parameter and k is a computational one).

We shall defer the proof of this theorem to Section 8, where a more general result is
presented (see Theorem 6).

5 A Lean NISC/NC0 Protocol with Input-Dependent Abort

In this section, we present a NISC scheme for F†
C , which allows input-dependent abort.

This scheme is very efficient: the communication overhead over the garbled circuit
scheme is (a small) constant and the cryptographic overhead is just 1 (allowing the
PRGs to output a slightly longer string). We shall present the scheme first as a NISC/HC

scheme, for an NC0 functionality HC , and then apply the result of Section 3 to obtain
an NISC/OT scheme.

Theorem 4. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality HC with
O(κ|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an
NISC/HC scheme for F†

C that makes a black-box use of a PRG, invoking the PRG
O(|C|) times, and with O(k|C|) total communication.

PROOF SKETCH: The details of the proof appears in the full version of this paper.
At a high-level, this scheme allows Receiver to verify that each pointer bit uncovered
in the garbled circuit is correct as follows: each pointer bit is tagged using a MAC
(with a key provided by Receiver). However since this bit should be kept secret until
the corresponding entry in the garbled circuit is decrypted, a share of the tag is kept
encrypted with the pointer bit, and the other share is provided to Receiver. Sender, who
does not know the MAC key, can create the one share that he must encrypt, and an NC0

functionality takes the MAC key from Receiver, computes the MAC tag and hands over
the other share to Receiver. Input dependent abort is obtained since, intuitively, the
sender can only use wrong MACs in some entries which will make the Receiver abort
in case those entries are decrypted. �

6 NISC/NC0 with Wire-Disjunction Triggered Abort

We extend the scheme in Section 5, to achieve the stronger security guarantee of secu-
rity with wire-disjunction triggered abort. Similar to the previous scheme, this scheme
ensures (partial) correctness of the garbled circuit via an NC0 functionality which pro-
vides the share of a MAC to Receiver. However, the MAC is not just on a single pointer
bit, but also on the key stored in the garbled circuit entry. This scheme has some fea-
tures of the scheme in Section 4 in that Sender provides a table of purported outputs
from a PRF, some of which will be verified by Receiver during decoding. However,
this construction avoids the O(κ) overhead, at the expense of settling for security with
wire-disjunction triggered abort.

420 Y. Ishai et al.

This construction involves a statistically secure, one-time MAC for k bit messages. It
will be important for us to implement this MAC scheme using NC0 circuits. This can be
done following [21], if the message is first encoded appropriately. Since the encoding
itself is not an NC0 functionality, we require Sender to provide the encoding, along with
values of all the wires in a circuit that computes the encoding. Then an NC0 circuit can
verify this encoding, and in parallel create the MAC tag.

In the full version we prove the following theorem.

Theorem 5. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality HC with
O(k|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an
NISC/HC scheme for F‡

C that makes a black-box use of a PRG, invoking the PRG
O(|C|) times, and with O(k|C|) total communication.

Compared to Theorem 4, this construction is asymptotically less efficient, since the
output of HC is longer (O(k|C|) instead of O(κ|C|), as HC will now be required to
deliver the entire garbled srcuit to Receiver).

7 From Security with WDT-Abort to Full Security

In this section, we discuss general methods for converting any NISC scheme satisfying
security with wire disjunction triggered (WDT) abort into an NISC with full security,
based on semi-honest secure MPC protocols. Our transformation formalizes and gen-
eralizes such a transformation that was given in the work of [25,26] (and our intuition
below follows their intuition) in the context of constructing stateful hardware circuits
that remain private even when an adversary can tamper with the values on wires. We
note that the construction of [25] also had to deal with multiple other issues that do not
concern us, which added complexity to their solution. Outlined below, our solution can
be seen as a simplification of their construction.

The benefit of the transformation outlined in this section over the simple majority-
based approach discussed earlier is the potential for greater efficiency. We will first
formalize the encoding notion that we use to deal with WDT attacks, then we present an
outline of our general transformation, and then show how to invoke this transformation
using known semi-honest MPC protocols from the literature to obtain higher levels of
efficiency.

Our transformation is captured by means of a new encoding, that we define below.
The details of realizing this transformation are presented in the full version.

Definition 1. (WDT-resilient encoding) A randomized circuit family C′ together with
an efficient randomized encoding algorithm family Enc and an efficient deterministic
decoding algorithm family Dec is a WDT-resilient encoding of a circuit C that takes
two inputs if the following properties hold8:

8 The entire tuple (C′, Enc, Dec) is parameterized by a statistical security parameter 1κ, which
is omitted here for simplicity of notation. Note also that this definition defines the notion of a
WDT-resilient encoding. In applications, we will require that there is an efficient deterministic
procedure that takes as input C and 1κ and outputs a tuple (C′, Enc, Dec) from such a family.

Efficient Non-interactive Secure Computation 421

(Correctness). For all (x, y) in the domain of C, we have that

Pr[Dec(C′(Enc(x), y)) = C(x, y)] = 1

(Malicious Receiver Security). There exists a randomized efficient machine RecSim
such that for every x′ in the range of Enc (but not necessarily in the image of
Enc), there exists x in the domain of Enc such that for every y such that (x, y) is
in the domain of C, the output distribution of RecSim(x′, C(x, y)) is identical to
the distribution C′(x′, y).

(WDT-Malicious Sender Security). For any set S of wires in C′ or their negations, let
DisjS [C′(Enc(x), y)] to be the event that the disjunction of the values specified
by S, when the input ofC′ is (Enc(x), y), is satisfied. The probability space is over
the random gates of C′ and the randomness used by Enc.
For any such S and for all x1, x2, and y such that (x1, y) and (x2, y) are in the
domain of C, we have:

|Pr[DisjS [C′(Enc(x1), y)]] − Pr[DisjS [C′(Enc(x2), y)]]| = 2−Ω(κ).

8 Public-Code NISC

So far we only considered NISC schemes which rely on an OT oracle that gets inputs
from both the sender and the receiver. As discussed in the introduction, this can be
combined with a 2-message implementation of OT to get a protocol which does not
require any active action from the receiver except publishing an encryption of her input.

In this section we discuss this variant of NISC, called Public-Code NISC or PC-NISC
for short. In more detail, this flavor of NISC allows Receiver to publish an encoding of
her input x, and later let one or more Senders compute on the encoding of x using
their private inputs y, and send it back to her; she can decode this message and recover
the value f(x, y) (and nothing more). There could be a setup like a common reference
string (CRS), or correlated random variables.

Formally, a PC-NISC scheme for a function f : X×Y → Z consists of the following
four PPT algorithms.

– Setup: takes only the security parameter as an input and outputs a pair of strings
(σR, σS). These strings are meant to be given to the two parties (Receiver and
Sender, respectively).

– Encode: takes an input x ∈ X , and a setup string σR, and outputs a string c
encoding x (or possibly an error message, if σR appears malformed).

– Compute: takes an encoding c, an input y ∈ Y and a setup string σS and outputs
an “encoded output” (or an error message if c appears malformed).

– Decode: takes an encoded output and a setup string σR, and outputs z ∈ Z (or an
error message if the encoded output appears malformed).

Ideally, in a PC-NISC scheme, a single published encoding can be used by Receiver to
carry out multiple computations. To define the security of a PC-NISC scheme, below
we define the functionality F (T)

f , which allows T invocations before letting a corrupt
Sender manipulate the outcome.

422 Y. Ishai et al.

– F (T)
f accepts an input x from Receiver.

– Then in each round, it accepts an input y from Sender. and outputs f(x, y) to Re-
ceiver (and an empty output to Sender). If y is a special command error, the output
to Receiver is error.

– There is a bound T on the number of inputs F (T)
f accepts from corrupt Senders

before correctness is compromised. More formally, a corrupt Sender is allowed to
include with its input a command (cheat, ψ) whereψ is an arbitrary PPT algorithm,

and after T such rounds, in each subsequent such round, F (T)
f outputs ψ(x) to

Receiver.

Now, given a PC-NISC scheme Σ consider the 2-party protocol ΠΣ (in a FΣ.Setup-
hybrid model, which simply makes a fresh pair (σR, σS) available to the two parties)
in which Receiver, on input x, sends c := Σ.Encode(x, σR) to Sender; on receiving
an input y reactively from the environment, Sender sends u = Σ.Compute(c, y, σS)
to Receiver, and Receiver outputs Σ.Decode(u). We say that Σ is a secure PC-NISC

scheme if the protocol Π
FΣ.Setup

Σ is a UC secure realization of the functionality F (T)
f .

We shall be interested in NISC schemes for F (T)
f , where T = Ω(κ).

Defining PC-NISC/H. The goal of PC-NISC was to avoid the live availability of Re-
ceiver, when Sender is executing the scheme. However it is still possible to consider
such a scheme in an H-hybrid model, if the functionality H itself allows Receiver to
send an input, and subsequently have multiple rounds of independent interactions with
Sender, delivering a separate output to Receiver in each round. We shall use this con-
vention as an intermediate step in achieving PC-NISC/OT and PC-NISC/CRS schemes,
which can be specified in the plain model (i.e., without reference to a hybrid-model) in
terms of the Setup algorithm. In PC-NISC/CRS, Setup sets σR = σS to be a randomly
generated string, according to some probability distribution that will be specified by the
scheme.

In PC-NISC/OTvar, Setup outputs several instances of correlated random variables:
in each instance, Receiver gets two random bits (a0, a1) and Sender gets random bits
(b0, b1) such that a0b0 = a1 ⊕ b1

9. They can be readily used in a PC-NISC scheme Σ0

for evaluating the OT function, in which Receiver has a choice bit c, Sender has two
inputs x0 and x1, and Receiver obtains xc. Hence a NISC/OT scheme for a function f
can be easily turned into a PC-NISC/OTvar scheme for f if the number of sessions to be
supported T = 1: the Encode and Compute algorithms will incorporate Σ0.Encode
and Σ0.Compute; further, Compute will include the message sent by Sender in the
NISC/OT scheme; Decode involves first applying Σ0.Decode to obtain the outcome
of OT, before carrying out the local computation of the NISC/OT scheme.

The main challenge in constructing a PC-NISC scheme, beyond that already present
in constructing NISC schemes, is to be able to support a larger number of computations
for the same input encoding.

First, we observe that the NISC/OT scheme for NC0 functionalities from Section 3
can be extended into a PC-NISC/OTvar supporting T adding a poly(κ, T) amount to
communication and cryptographic complexities. This is done by increasing the number
of servers in the underlying MPC used in this scheme.

9 There are several equivalent formulations of such a pair of correlated random variables.

Efficient Non-interactive Secure Computation 423

In the full version we prove the feasibility result below, analogous to – indeed ex-
tending – Theorem 3.

Theorem 6. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality H(T)

C with
O(κk|C|)-bit long output and n+O(κ)-bit input from Receiver, supporting T compu-

tations, such that there is a NISC/H(T)
C scheme for F (T)

f that makes a black-box use
of a PRG, invoking the PRG O((κ + T)|C|) times, and with O((κ + T)k|C|) total
communication.

Note that the above NISC scheme is already for F (T)
f , and can be translated to a PC-

NISC scheme for f supporting T executions, as described earlier. Thus, given this
scheme, we can combine it with a PC-NISC/OTvar for H(T)

C (also described above) to

obtain a PC-NISC/OTvar for F (T)
f . A proof of Theorem 6 is given in the full

version.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. In: IEEE Conference on Computational Complexity, pp. 260–274.
IEEE Computer Society, Los Alamitos (2005)

2. Beaver, D.: Precomputing Oblivious Transfer. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

3. Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In:
Proc. 28th STOC, pp. 479–488. ACM, New York (1996)

4. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 589–590. Springer, Heidelberg (1990)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended
abstract). In: STOC, pp. 503–513. ACM, New York (1990)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J.
(ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

7. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-Round Secure Computation and Secure
Autonomous Mobile Agents. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016 (2001), Previous
version “A unified framework for analyzing security of protocols” availabe at the ECCC
archive TR01-016. Extended abstract in FOCS 2001 (2001)

9. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation using fully ho-
momorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501.
Springer, Heidelberg (2010)

10. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computation and the
Computational Overhead of Cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

11. Damgård, I., Nielsen, J.B., Orlandi, C.: Essentially Optimal Universally Composable Obliv-
ious Transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 318–335.
Springer, Heidelberg (2009)

424 Y. Ishai et al.

12. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–
482. Springer, Heidelberg (2010)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178.
ACM, New York (2009)

14. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomiz-
able yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer,
Heidelberg (2010)

15. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University
Press, Cambridge (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM (ed.)
Proc.19th STOC, pp. 218–229. ACM, New York (1987), See [15, ch. 7] for more details

17. Horvitz, O., Katz, J.: Universally-Composable Two-Party Computation in Two Rounds. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg
(2007)

18. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)

19. Ishai, Y., Kushilevitz, E.: On the Hardness of Information-Theoretic Multiparty Computa-
tion. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 439–
455. Springer, Heidelberg (2004)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: STOC, pp. 21–30. ACM, New York (2007)

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computa-
tional overhead. In: STOC, pp. 433–442. ACM, New York (2008)

22. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

23. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - effi-
ciently, Preliminary full version on http://www.cs.uiuc.edu/˜mmp/

24. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Ef-
ficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer,
Heidelberg (2008)

25. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private Circuits II: Keeping Secrets in
Tamperable Circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–
327. Springer, Heidelberg (2006)

26. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing At-
tacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidel-
berg (2003)

27. Kalai, Y.T., Raz, R.: Succinct non-interactive zero-knowledge proofs with preprocessing for
logsnp. In: FOCS, pp. 355–366. IEEE, Los Alamitos (2006)

28. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM, New
York (1988)

29. Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs (extended
abstract). In: FOCS, pp. 474–479. IEEE, Los Alamitos (1989)

30. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-
private information retrieval. In: FOCS, pp. 364–373. IEEE, Los Alamitos (1997)

31. Lindell, Y., Pinkas, B.: A proof of yao’s protocol for secure two-party computation. Elec-
tronic Colloquium on Computational Complexity (ECCC) (063) (2004)

32. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Pres-
ence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
52–78. Springer, Heidelberg (2007)

http://www.cs.uiuc.edu/~mmp/

Efficient Non-interactive Secure Computation 425

33. Melchor, C.A., Gaborit, P., Herranz, J.: Additively homomorphic encryption with d-operand
multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 138–154. Springer,
Heidelberg (2010)

34. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–
473. Springer, Heidelberg (2006)

35. Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in nc0. Random Struct.
Algorithms 29(1), 56–81 (2006)

36. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)
37. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:

ACM Conference on Electronic Commerce, pp. 129–139 (1999)
38. Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.)

TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)
39. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable

Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571.
Springer, Heidelberg (2008)

40. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is
Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer,
Heidelberg (2009)

41. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryptographic
Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg
(2004)

42. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In:
Foundations of Secure Computation (Workshop, Georgia Inst. Tech., Atlanta, Ga., 1977), pp.
169–179. Academic, New York (1978)

43. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In: FOCS, pp.
554–567 (1999)

44. Yao, A.C.-C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167.
IEEE, Los Alamitos (1986)

	Efficient Non-interactive Secure Computation
	Introduction
	Our Results
	Overview of Techniques

	Preliminaries
	A Statistical NISC/OT Protocol for NC0
	Overview of New Protocol
	Relaxing Security
	Realizing COT via Robust MPC

	A Direct Protocol for NISC/NC0
	A Lean NISC/NC0 Protocol with Input-Dependent Abort
	NISC/NC0 with Wire-Disjunction Triggered Abort
	From Security with WDT-Abort to Full Security
	Public-Code NISC
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

