
On Model-Based Regression Testing of Web-Services
Using Dependency Analysis of Visual Contracts

Tamim Ahmed Khan and Reiko Heckel

Department of Computer Sciences, Leicester University, UK
������� �	
���
�����	������

Abstract. Regression testing verifies if systems under evolution retain their ex-
isting functionality. Based on large test sets accumulated over time, this is a costly
process, especially if testing is manual or the system to be tested is remote or only
available for testing during a limited period. Often, changes made to a system are
local, arising from fixing bugs or specific additions or changes to the functional-
ity. Rerunning the entire test set in such cases is wasteful. Instead, we would like
to be able to identify the parts of the system that were a�ected by the changes
and select only those test cases for rerun which test functionality that could have
been a�ected.

This paper proposes a model-based approach to this problem, where service
interfaces are described by visual contracts, i.e., pre and post conditions expressed
as graph transformation rules. The analysis of conflicts and dependencies be-
tween these rules allows us to assess the impact of a change of the signature,
contract, or implementation of an operation on other operations, and thus to de-
cide which of the test cases is required for re-execution. Apart from discussing
the conceptual foundations and justifications of the approach, we illustrate and
evaluate it on a case study of a bug tracking service in several versions.

1 Introduction

Service-oriented systems pose new challenges to client-side testing [1]. Problems arise
from the lack of access to and control over the implementation (let alone the code),
which prohibit the use of white box techniques and may limit (due to the cost for using
a service or the limited time available) the number of tests that can be executed [2].

Evolution in software systems is inevitable to keep them abreast with the changing
needs of businesses. To assess and assure that there is no deviation of the existing func-
tionality, regression testing uses a comprehensive set of test cases to reevaluate every
new version. Such regression test suites are accumulated over time and can be large and
costly to run [3]. In many cases, however, the impact of a particular evolution step is
limited to a small part of the system, especially if maintenance is concerned with minor
corrections or additions. In such cases it would be beneficial to select only those test
cases for rerun which exercise parts of the system directly or indirectly a�ected by the
changes.

Following the classification in [4], a test case in a regression test suite can be ob-
solete (OB) if it is no longer applicable to the new version, reusable (RU) if it is still
applicable and required (RQ) if it tests functionality a�ected by the changes. Given

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 341–355, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

342 T.A. Khan and R. Heckel

two consecutive versions of the system V1 and V2 together with information about the
changes from one to the other, the problem is therefore to classify a set of test cases
executable over V1 into the three categories in such a way that any faults detected in
V2 by executing RU are also detected running RQ only. In this paper we will provide a
classification and argue for its correctness in the above sense both conceptually (based
on a formalisation of the problem in terms of graph transformation systems) and by an
evaluation through a small but non-trivial case study of a service in three versions.

Since code is not available, our treatment of the problem is based on model-based
service descriptions at the level of interfaces. In this way we also abstract from details
of the programming language, supporting the platform-independent nature of services.
Semantic information at the interface level is expressed by means of typed graph trans-
formation systems [5] presented as visual contracts [6]. This has the advantage of using
a visual specification in line with mainstream software modelling languages such as the
UML, while at the same time retaining a formal semantics and mathematical theory.
Based in particular on the theory of conflicts, causality and concurrency of graph trans-
formations we analyse data dependencies between and within test cases based on which
we determine the impact of change and thus the set of required test cases.

We perform an evaluation of our method based on three versions of a Bug Tracking
service adapted from an open source application in C#. Defining and classifying test
cases for the three versions, we are interested in both the number of test cases saved
by the classification and its continued ability to find all the faults. We use error seeding
techniques to assess the quality of both the complete and reduced test sets.

The paper is organised as follows. Section 2 introduces the basic concepts of our
approach, including the specification of visual contracts by graph transformation rules
and the use of trace theory to provide an observational semantics appropriate for testing.
Section 3 presents our evolution scenario and describes and applies our methodology.
The evaluation is reported on in Section 4 while related work is discussed in Section 5
before we conclude the paper.

2 Visual Contracts and Trace Semantics

In model-based testing of services we are potentially concerned with three layers of ab-
straction: those of implementation, interface model, and observable behaviour. While
the implementation is hidden, we will require information about changes, such as for
which operations from the interface the implementation has been modified. The inter-
face model details operation signatures and accompanying data types as well as describ-
ing the semantics of operations in terms of pre- and post conditions. Such descriptions
may be available in diagrammatic form at design time, but also in machine-readable
form at run time. The observable behaviour is expressed in terms of sequences of mes-
sages representing invocations to service operations, e.g., as part of a test case being
executed. In order to define precise criteria for distinguishing di�erent categories of
test cases, we have to study the relation between interface models and observations.

Visual Contracts. We represent service interface models by typed graph transformation
systems (TGTS). A TGTS � � (TG� S ig� R) consists of a type graph TG modelling

On Model-Based Regression Testing of Web-Services 343

the public data types available at the interface, a set of rule signatures S ig provid-
ing operation names with parameter declarations p(x1 : s1� � � � � xn : sn). Here xi : si

represents a formal parameter xi of type si. A set of rules R is associated to these
signatures, describing the behaviour of the corresponding operations as visual con-
tracts [7,8], i.e., pre- and post conditions L � R shown as object diagrams. We write
p(x1 : s1� � � � � xn : sn) : L � R � � if there is a rule L � R associated with an operation
signature p(x1 : s1� � � � � xn : sn).

Example 1 (Bug Tracker service). In order to illustrate the use of these models we
present a case study of a Bug Tracker service, to be used as a running example through-
out this paper. Three consecutive versions of the service have been derived from an
open source desktop application1 by replacing its GUI by a service interface. Such a
service could be useful, for example, in order to allow automatic bug reports through
applications detecting faults or in order to integrate bug tracking data into higher level
functions.

In its basic version, bug tracking serves the communication between developers,
users, testing team, etc. Once a bug has been added by the user who discovered it,
its status can be updated by the developers and testers until the issue is resolved. In
addition to the interface provided to the user, we have also created an administrative
interface to add, update, or delete projects and users. Both interfaces are listed in Fig. 1.

Fig. 1. Bug Tracking interfaces for Admin and User

A conceptual data model for the service, limited to the data visible to its clients, is
presented in Fig. 2(a). Beside a top level class BugTracker, we find User and Project
data as well as Bug and Status information. A selection of rules representing visual
contracts are shown in Fig. 2(b). For example the addBug rule describes how a bug

1 Available at ������������������	����	��	��

http://btsys.sourceforge.net/

344 T.A. Khan and R. Heckel

Fig. 2. Type graph and rules

report is added to the database, assuming an existing project and adding Bug and Status
objects.

Observational Semantics. Graph transformation systems come with an execution se-
mantics, i.e., we can simulate the implementation at the interface level by means of
rule applications. Given a graph G representing a state of the system and an operation
p(x1 : s1� � � � � xn : sn) : L � R � �, we can attempt an invocation p(a1� � � � � an),
substituting formal parameters xi in p(x1 : s1� � � � � xn : sn) by actual data values ai

found in G0. If there exists a match m : L � G embedding L into G such that
m(xi) � ai, i.e., m is compatible with the instantiation of parameters, the rule can be

applied resulting in a transformation step G
p�m
�� H. The observation or label of this

step, Æ(G
p�m
�� H) � p(a1� � � � � an) is given by the rule name with actual parameters,

while the state and the actual rule remain hidden. The set of all possible observations
for the (implicit) signature S ig is denoted by O whereas the set of all possible sequences
provided by Kleene closure of O is denoted by O�.

Assuming a start state represented by graph G0, selecting rules and matches we can

produce a transformation sequence � � G0
p1 �m1
�� G1

p2 �m2
�� � � �

pn �mn
�� Gn. The set of all these

sequences is �er(�) and the observation function Æ extends to such sequences, i.e.,
Æ : �er(�) � O�. That means, Æ(�) is the sequence of labels obtained as observations
of the steps of �.

Example 2 (transformation sequence and observation). Consider the bug tracking sys-
tem whose interface is shown in Fig. 1 and the type graph and rules are shown in
Fig. 2 with a start state having only one project and one user as represented by graph

G0 in Fig. 3. Transformation sequence G0
addPro j�m1
�� G1

addUser�m2
�� G2

assignPro j�m3
�� G3

shown in Fig. 3 creates a new project and user and assigns the project to the user.

On Model-Based Regression Testing of Web-Services 345

Fig. 3. Transformation sequence

The corresponding sequence of observations is 2 � addPro j(“FPS Repl��� “RND��);
2 � addUser(“D��� “Fim��� “ f im��� “d f im1��); assignPro j(2� 2) where return values are
2 in both addPro j(� � �) and addUser(� � �).

In order to ensure that labels carry enough information for observations to reflect faith-
fully the behaviour at the interface level, we have to make a number of assumptions.
First, we assume that all objects can be uniquely identified by their collection of at-
tributes, and that these attributes are always fully defined in the states of the system.
This is of course a requirement for the initial state, but also for the rules specifying the
operations, which have to preserve these properties. Second, operation signatures need
to carry enough parameters to identify uniquely the match of a transformation. This is
satisfied, for example, if each signature lists id attributes for all elements of its rule’s
left-and right-hand side as parameters, thus specifying completely the embedding of the
rule into graphs G and H. In most practical cases, however, parameters will only need
to identify some anchor elements, which will then determine the other elements in the
match and co-match. For example, as stated in the cardinality of 1 on the status_info
association, a Status object will always refer to a unique Bug, so identifying the Status
we implicitly know the Bug as well. These conditions are formalised in [9] in terms of
morphisms of attributed graphs. If they are satisfied, the observation function Æ is called
faithful.

Conflicts and Dependencies. In order to understand if two observations can be part
of the same invocation sequence, or if they can occur in that sequence in a given or-
der, we have to analyse causal dependencies and conflicts between transformations and
represent them at the level of labels. At the model level, we say that

– a competing transformation G
p2 �m2
�� H2 disables G

p1�m1
�� H1 if the match for p1 is

destroyed by the application of p2;

– a consecutive transformation G1
p2�m2
�� G2 requires G0

p1 �m1
�� G1 if the application of

p1 creates elements required for the application of p2.

These relations are essentially those of asymmetric event structures [10]. The asym-
metry arises from the interplay of deletion and preservation, which is typical to all
computational models distinguishing read and write access to resources.

346 T.A. Khan and R. Heckel

If two steps are not in conflict or dependent, they are independent. Two independent
consecutive steps can be swapped. The standard model of concurrency for graph trans-
formation systems, based on the so called shift-equivalence �sh� Der(�) 	 Der(�),
abstracts from the order in which independent steps are applied, considering all deriva-
tions equivalent that represent serialisations of the same concurrent process. The quo-
tient Der(�)��sh defines the set of concurrent derivations in the system.

In order derive a concurrent observational semantics, following [9] we lift the dis-
ables and requires relations to the level of labels. For two labels l1� l2 and transforma-
tions �1 and �2 such that li � Æ(�i), we write

– l1
 l2 if �2 disables �1;
– l1 � l2 if �2 requires �1;

If l1� l2 are unrelated by
 and �, they are independent, written l1 � l2.
In order to calculate conflicts and dependencies at the level of labels we make use

of the critical-pair analysis technique using AGG [11]. Critical-pair analysis provides
us with the minimal set of graphs, such that all possible overlapping situations between
the left- and the right-hand sides of the rules are recorded. It captures potential conflicts
and dependencies between rules, rather than (labels representing) transformation steps.
Therefore, the result is an over-approximation of the actual dependencies at the level of
the labels, specifically where more complex conditions on data values are used. Since
we are working at the level of signatures, we represent the overlapping of rules as a
relation between the parameters identifying those overlapping graph elements.

Example 3 (conflicts and dependencies on labels). For a small set of labels we have
illustrated these relations in Table 1. An entry in a row labelled by l1 and a column
labelled by l2 represents the relation between l1 and l2. Each cell can contain either
or both of
 or �, be empty or, in case the labels are completely unrelated in either
direction, contain �.

Referring to Table 1, addBug(� � �) depends on addPro j(� � �) since we require
a project identified by project_id in order to add a bug and therefore 1 �

addPro j(“ABC��� “ERP��) � 101 � addBug(1� “U ��� “V ��). Similarly delPro j(1)

assignPro j(1� 2) as delPro j(� � �) would disable the execution of assignPro j(� � �). Fi-
nally, 11 � addIssue(1� 2� D� E) � viewPro j(1) are independent.

Note that, for future reference, we have included on a gray background relations
with some labels to be added in the second version of the service. For the third version,
where the addBug operation is refined, new dependencies between existing operations
are underlined and the output of a label is shown by putting the output value before the
body of the label with an equal sign e.g. “11 � addIssue(1� 2� D� E)��. In the same way
we highlight new parameters added to the existing signatures.

Having lifted information about conflicts and dependencies to labels, we can use this
information in two di�erent ways, for filtering out invalid sequences and for defining
equivalence classes. If the observation function Æ is faithful, we are able to determine if
a sequence of labels s is a valid observation.

– If l1� l2 � s such that l1
 l2, then l1 precedes l2.
– If l1� l2 � O such that l1 � l2 then l1 precedes l2 in every sequence s containing l2.

On Model-Based Regression Testing of Web-Services 347

Table 1. Asymmetric conflicts and dependencies

First�Sec 1�addProj 2�addUser assignProj 101�addBug ... delProj 11�addIssue updtIssSt delIssStdelIssue
(���) (“ABC”,“ERP”) (“A”,“B”,“t”,“abc”) (1, 2) (1,2,“U”,“V”,2) ... (1) (1,2,“D”,“E”) (1, 11, 22, “XYZ”) (11, 22) (11)

1�addProj � � ... � �

(“ABC”,“ERP”)

2�addUser � � ... �

(“A”,“B”,“t”,“abc”)

assignProj � � ... �

(1, 2)

101�addBug2 � � ... � �

(1,2,“U”,“V”,2)

updateBugSt ... �

(“ABC”,“ERP”, 1)

delBugSt ... � �

(“ABC”,“ERP”, 1)

delBug � � ... �

(“ABC”,“ERP”, 1)

unassignProj � � ...
(“ABC”,“ERP”, 1)

unassignBug ... �

(“ABC”,“ERP”, 1)

delUser � � ...
viewUser � ... �

updtProj ...
(1,“DEF”,“ERP”)

updateUsr ...
(“ABC”,“ERP”, 1)

viewProj (1) � ... �

delProj (1) � � � ... � �

11�addIssue3 � � ... � � ��

(1,2,“D”,“E”)

updtIssSt ... � �

(1, 11, 2, “XYZ”)

delIssSt ... � � � � �

(11, 22)

delIssue (11) ... � � ��

In particular, l1
 l2 and l2
 l1 implies that there is no sequence containing both
labels. We denote the set of sequences satisfying these conditions by OÆ � O�. Given a
finite approximation of dependency and conflict relations, this feature could be used to
filter out test cases that are not executable according to the model.

Moreover, we can partition sequences of labels into equivalence classes, called
traces, by considering them equivalent if they di�er only for the order of independent
labels. The set Traces(�) is the quotient of OÆ under this equivalence. These traces are
a generalisation of the classical notion [12] taking into account asymmetric dependen-
cies. Since all sequences in a trace represent the same concurrent behaviour, we can
avoid running more than one test from each trace, thus potentially reducing the size of
our test suite. However, in this paper we are concerned with the evolution of observable
behaviour, not its reduction with respect to a single version of the system.

Example 4 (example of traces through example). With labels as given in Table. 1, a
trace [1 � addPro j(“X��� “Y��); 2 � addUser(“A��� “B��� “t��� “m��); assignPro j(1� 2);
viewPro j(1)] contains these additional sequences.

2 Label updated a�ecting dependencies.
3 Label updated without a�ecting dependencies.

348 T.A. Khan and R. Heckel

1�addPro j(“X��
� “Y ��); 2�addUser(“A��

� “B��
� “t��� “m��); assignPro j(1� 2); viewPro j(1)

1�addPro j(“X��

� “Y ��); 2�addUser(“A��

� “B��

� “t��� “m��); viewPro j(1); assignPro j(1� 2)
1�addPro j(“X��

� “Y ��); viewPro j(1); 2�addUser(“A��
� “B��

� “t��� “m��); assignPro j(1� 2)

In order to study the e�ect of evolution of the service on the observable behaviour, we
have to consider the changes to dependencies and conflicts on labels. For example, if
operations are extended by new features, this will result in more specific pre and post
conditions and therefore create new dependencies. But if we introduce new conflicts
or dependencies, we will potentially make illegal existing sequences or di�erentiate
between sequences that previously have been equivalent. Where we want to preserve
observable behaviour, dependencies and conflicts have to be reflected, i.e., each depen-
dency or conflict in the new version has to be matched by a corresponding one in the
old version. This condition for preservation of behaviour at the level of observations
has been studied in detail in [9]. In the following section we are going to use it to justify
our classification of test cases.

3 Model-Based Evolution

In this section, we first present an evolution scenario in two steps. Then we use the
scenario to illustrate our approach to regression test suite reduction.

Evolution Scenarios. In the first evolution step, the Bug Tracker service is extended in
order to record Issues with the projects, i.e., concerns raised by users that may not be
faults yet indicate deviations from their actual needs. The additional rules and extended
type graph are shown in Fig. 4.

In the second evolution step we include a feature to record, among other details, a
priority level while adding a bug. That means, the signature of addBug(� � �) is changed
as well as its specification by the rule. Not surprisingly therefore, the modified operation
will have additional dependencies, such as addUser(� � �) � addBug(� � �). A minor up-
date to addIssue(� � �) means that the description of the status is preset to “First Report”

Fig. 4. BugTracker, evolution to Version 2

On Model-Based Regression Testing of Web-Services 349

Fig. 5. BugTracker, evolution to Version 3

when the issue is initially reported. There is no change to the signature in this case, and
the dependencies and conflicts are not a�ected. The new version of the changed rule
along with the type graph are shown in Fig. 5.

Classification of Test Cases. Given a regression test suite RTS for one version S UT of
the system under test, we are going to provide a classification of test cases with respect
to an evolution of S UT into S UT � that will distinguish

– obsolete test cases OB, that are no longer executable in S UT �, either because sig-
natures have changed or because additional preconditions in the model prevent the
the execution of operations;

– reusable test cases RU, that are still executable in S UT �;
– required test cases RQ, that are still executable and test new or modified function-

ality in S UT �.

We will refer to the three versions of our model as V1� V2 and V3.
Traces may become obsolete because of changes in the operation signatures. In this

case, O
O� are labels that are valid for S UT , but invalid in S UT �, e.g., due to missing
or incorrectly typed parameters where O� represents the set of labels according to the
new version. All traces containing these labels are obsolete as well. In addition, traces
could become obsolete because of new dependencies or conflicts emerging in S UT �.
The total set of obsolete traces is OÆ
 O

�Æ. To see if a sequence s is obsolete in S UT �

we have to check (1) if there are any new dependencies l1 � l2 between labels l2 in s
and labels l1 not preceding l2 in s and (2) if there are new conflicts l1
 l2 between l2
in s and l1 occurring in s after l2. If this is not the case, the sequence remains valid and
reusable RU.

In the evolution step V1 � V2, all conflicts and dependencies are reflected be-
cause, while new rules were added, existing rules have not been changed. Hence
all traces are preserved and therefore OB � �. For V2 � V3, both signature
and dependencies have evolved. In particular, addBug(pro jId� bug_desc� status_desc)
is obsolete, so all traces containing labels based on this operation are obso-
lete as well. Instead there are new labels based on the extended signature
addBug(pro jId� userId� priority� bug_desc� status_desc). We notice that there are new

350 T.A. Khan and R. Heckel

dependencies shown underlined in Table. 1 which render some of the traces obsolete
e.g. addPro j(� � �); addBug(� � �); viewPro j(� � �) was possible in V2 but not in V3 owing
to additional dependency addUser(� � �) � addBug(� � �).

Test cases in RQ, which exercise operations that may have changed or are a�ected
by changes to other operations, are classified as required. Denote by M � O � O� the
set of labels such that either their specification or implementation has changed. The set
of labels directly and indirectly a�ected includes M and all labels l2 such that a label l1
is a�ected and l1 � l2 or l1
 l2. The set of required test cases is therefore given by the
set of all reusable ones RU which contain at least one a�ected label.

In evolution V1 � V2, RQ � � since there are no modifications to existing op-
erations. New test cases will be required to validate the newly added operations, but
this is out of the scope of regression testing. Considering V2 � V3, we find that
�addIssue(� � �)� � � �� have been modified and therefore any traces involving their labels
are required. Traces containing addPro ject(� � �) and addUser(� � �) are required as well
because they have dependency relation with addIssue(� � �).

4 Evaluation

In this section we evaluate, on a small but real example, both the correctness of our
method and the reduction in the set of test cases obtained. That means, we will answer
the questions: Do the smaller sets of required test cases RQ find the same faults as the
larger sets of reusable test cases RU? What is the di�erence in size between RQ and
RU and what would be the smallest test set able to find the faults seeded?

For each evolution step the evaluation is performed in four steps that are outlined
below and explained in more detail throughout the section.

1. Generation of test cases.
2. Validation of the quality of the entire test suite.
3. Classification of test cases into OB, RU, and RQ.
4. Validation of the quality and required size of RQ by comparing the results of exe-

cuting RQ and RU.

We generated test cases manually, based on the information in the model, but without
applying a formal notion of coverage. The completeness of the test set is evaluated
instead trough fault seeding, i.e., deliberate introduction of faults to be detected by
the execution of test cases. The percentage of the seeded faults detected provides a
statistical measure of the capability of the test set to find similar errors in the system,
i.e., a measure of confidence in our test suite [13]. In order to decide which faults to
introduce we identified suitable fault types, and then developed rules for seeding them
automatically. After applying the rules to the code of the system, we execute the entire
test suite to assess its quality. In an iterative process we add test cases until all of the
seeded errors were detected.

After applying to the resulting test set the classification described in Section 3,
we validate the completeness of RQ against RU by seeding errors into the classes of
our service implementation that were modified in the recent evolution step. We then
run the tests in both RQ and RU, comparing their results. The evaluation is based on

On Model-Based Regression Testing of Web-Services 351

Fig. 6. Fault seeding with L-Care

implementations in C# of the the three versions of the Bug Tracker service. The pro-
gramming environment Pex4 has been used for automated unit testing of individual
classes. Pex is able to generate test cases based on analysing the source code, with the
aim of detecting faults that could lead to runtime errors such as inappropriate exception
handling. In our report below we do not include these tests because unit testing is part
of the coding at the provider’s site while we are concerned with service-level accep-
tance testing by the client. Therefore, test cases we have generated are concerned with
deviations from the public specification of the service interface. We have generated 66
test cases for version V1, 83 test cases for version V2 and 101 test cases for version V3.

Faults are classified by [14], into domain and computation faults. A domain fault
results from control flow errors, where programs follow the wrong path, while a com-
putation fault occurs when the programme delivers incorrect results while following a
correct path (usually due to errors in assignments or invocations). More specifically,
we have followed the fault types discussed in [15], which also supports calculating a
measure of confidence in a test suite. Rules for seeding faults according to these types
are implemented in the source code transformation tool L-Care5, which allows to de-
fine markers based on XPath queries as shown in Fig. 6(a) on an XML representation

4 ��������	�	������
������������	���������	�����	��
5 A product of ������� �����	�������
	��������

http://research.microsoft.com/en-us/projects/pex/
http://www.atxtechnologies.co.uk/

352 T.A. Khan and R. Heckel

Table 2. Distribution of seeded faults

Fault Type # of Seeded Faults Code Examples
V1 V1 V2 Correct Statement Mutant Statement

Wrong declaration 6 8 9 new object[6] new object[0]
Wrong assignment 23 34 35 args[0] � DateTime.Now; args[0] � “ ”;
Wrong proc. handling 27 32 35 throw ex ��throw ex
Control faults 22 27 29 if (conn.Open �� ...) if (conn.Open !� ...)
I�O faults 27 32 35 conn.Open() conn.Close()
Total 105 133 143

of the code. A sketch of this XML in tree form is shown in Fig. 6(b). Examples of the
original and the fault-seeded code are shown in Fig. 6 (c) and (d) respectively. Table. 2
shows the total number of faults seeded for each version as well as a breakdown into
the di�erent types along with typical representatives.

We tested all the three versions, extending our test suites until all the seeded faults
were detected. Our test cases classification was based on computing a conservative
(over-)approximation of the actual dependencies and conflicts between labels using the
AGG tool [11]. . Disregarding the data content, we keep track only of the fact that two
parameters in two labels are instantiated with the same value. This reduction is safe
because it leads to more, rather than less dependencies and conflicts between concrete
labels, and thus to more test cases in RQ. In the last step of the evaluation we seed
faults in the modified classes of V2 and V3 only and execute the two sets of required
test cases RQ to determine if all of the seeded faults are discovered and how many test
cases are actually required to discover them. We have seeded 28 and 18 faults in V2
and V3, respectively, the smaller numbers owing to the size of the changed classes in
comparison to the entire code base. The results are reported in Table. 3.

Table 3. Test case classification and success rate

V1� V2 V2� V3
Test cases produced successful produced successful
Obsolete (OB) 0 0 12 0
Reusable (RU) 66 0 45 12
Required (RQ) 0 0 26 12
New (NT) – 17 – 18

We record the number of test cases in each category produced by our classification as
well as the number of test cases actually successful in finding faults. Of step V1 � V2
we recall that OB � RQ � � because none of the existing operations were modified.
Unsurprising, therefore, none of the remaining test cases in RU found any fault, but 17
new test cases NT had to be produced to detect faults seeded into newly added oper-
ations. With the second evolution step, 26 out of 45 existing test cases were classified
as required RQ, of which 12 where successful in finding faults. Again, 18 new test
cases where added to cover features not addressed by existing test cases. That means,
our reduction in the size of test suites has not resulted in missing any faults, i.e., the

On Model-Based Regression Testing of Web-Services 353

numbers of faults discovered using RU and RQ are the same. The reduction in size is
significant, but probably still not optimal, because a smaller set of 12 rather than 26 test
cases would have been suÆcient. This is despite an exhaustive error seeding strategy,
which produced faults of the designated types wherever this was possible in the code.
The reason could be in over approximation of dependencies and conflicts which, like in
many static analysis approaches, leads us to err on the captious side.

To conclude the evaluation, let us discuss a possible threat to the validity of these
results. When using the the set of reusable test cases RU as a benchmark for the required
ones RQ, the assessment depends on the quality of the original test suite, which was
evaluated by fault seeding. But fault seeding will only deliver relevant results for the
types of faults actually sown, while unexpected or unusual faults are not considered.
Our approach here was to use approaches to fault classification from the literature, but
in order to gather relevant statistics about the costs savings possible we would require
data on error distributions from real projects.

5 Related Work

Several techniques [16,17,18] have been using model level information for regression
testing. Extended finite state machine (EFSM) are considered in [16], where interaction
patterns between functional elements represented by transitions are used for test set
reduction. Two tests are considered equivalent if they represent the same interaction
pattern. Therefore, whenever a transition is added or deleted, the e�ect of the model on
the transition, the e�ect of the transition on the model and any side e�ects are tested
for. That means test cases are selected with respect to elementary modifications of the
state machine model .

EFSM are also considered in [17] where a set of elementary modifications EM is
identified. Two types of dependencies, data dependencies DD and control dependencies
CD are discussed. A state dependence graph SDG represents DD and CD visually and
a change in the SDG leads to a regression testing requirement to verify the e�ect of the
modification.

The technique presented in [18] uses UML use case and class diagrams with op-
erations described by pre and post conditions in OCL. A unique sequence diagram is
associated with a use case to specify all possible object interactions realising the use
case. Changes in the model are identified by comparing their XMI representations.

An approach to regression testing of web services suggested by [2] makes use of
unit tests based on JUnit. Test cases are produced by the developer, who generates QoS
assertions and XML-encoded test suites and monitors I�O data of previous test logs to
see if the behaviour is changed.

[19] constructs a global control flow graph CFG and defines special call nodes for
each remote service invocation. A CFG containing a call node, referred to as non-
terminal graph, is converted to a terminal graph by inserting the CFG corresponding
to that call node. Whenever an operation is modified, the previous and the resulting call
graphs are compared to find the di�erences and all downstream edges are marked as
“dangerous” once a modified node is marked.

We make use of semantic information in service interfaces and lift dependencies and
conflicts derived to the level of observable actions as they would be seen by a user

354 T.A. Khan and R. Heckel

of the service. Apart from di�erences in the models used (visual contracts instead of
state machines, sequence diagrams or OCL) we employ (asymmetric) dependencies
as well as conflicts to characterise admissible sequences of observations. The use of
asymmetric relations is due to our richer notion of model, which accounts for data
transformation rather than automata-like protocols the order or frequency of method
invocations. Dependency information used, e.g., in [16,17] is instead derived from state
machines. Pre and post conditions on application data are also used with [18]. While
conceptually close, our visual contracts are more easily usable than a textual encoding
in OCL and provide a formal operational semantics with a well-established theory of
concurrency as a basis for verifying formally the correctness of our approach.

6 Conclusion and Outlook

In this paper we have presented a method to reduce the size of a regression test suite
based on an analysis of the dependencies and conflicts between visual contracts specify-
ing the preconditions and e�ects of operations. The method is applicable to all software
systems that have interfaces specified in this way, but is particularly relevant for services
because of the lack of access to implementation code and the potential cost involved in
running a large number of tests through a remote and potentially payable provider. The
method is backed up conceptually and formally by a related paper [9] providing an ob-
servational view of the concurrent behaviour of graph transformation systems. In the
present paper we have evaluated the approach through the development of a case study
showing that (1) the reduced test sets could find all the faults detected by the larger sets
while (2) being significantly smaller.

As future work we are aiming to automate the generation of dependencies and con-
flicts on labels, formalising the over approximation required to represent finitely a rela-
tion on an infinite set of labels. We are also working on coverage criteria for test suites
based on contract dependencies as well as on a solution to reduce test suites by omitting
(the generation of) equivalent test sequences.

References

1. Canfora, G., Penta, M.D.: Testing services and service-centric systems: Challenges and op-
portunities. IT Professional 8, 10–17 (2006)

2. Penta, M., Bruno, M., Esposito, G., Mazza, V., Canfora, G.: Web services regression testing.
Test and Analysis of Web Services, 205–234 (2007)

3. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE Transac-
tions on Software Engineering 22 (1996)

4. Leung, H., White, L.: Insights into regression testing [software testing]. In: Proc. Conference
on Software Maintenance, pp. 60–69 (October 1989)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transforma-
tion. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2006)

6. Heckel, R.: Graph transformation in a nutshell. In: Electr. Notes Theor. Comput. Sci., pp.
187–198. Elsevier, Amsterdam (2006)

On Model-Based Regression Testing of Web-Services 355

7. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In: VLHCC 2005: Proceed-
ings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
63–70. IEEE Computer Society, Washington, DC, USA (2005)

8. Lohmann, M., Mariani, L., Heckel, R.: A model-driven approach to discovery, testing and
monitoring of web services. Test and Analysis of Web Services, 173–204 (2007)

9. Khan, T., Machado, R., Heckel, R.: On the observable behavior of graph transformation
systems. Technical Report CS-10-003, Department of Computer Sciences (August 2010),
������� �����	��������	���	����������	�!���	��"�

10. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event structures,
and processes. Information and Computation 171(1), 1–49 (2001)

11. AGG: AGG - Attributed Graph Grammar System Environment (2007),
������������������	��
��"	����

12. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co., Inc., River
Edge (1995)

13. Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice Hall PTR, Upper Saddle
River (2001)

14. Howden, W.: Reliability of the path analysis testing strategy. IEEE Transactions on Software
Engineering SE-2(3), 208–215 (1976)

15. Pasquini, A., Agostino, E.D.: Fault seeding for software reliability model validation. Control
Engineering Practice 3(7), 993–999 (1995)

16. Korel, B., Tahat, L., Vaysburg, B.: Model based regression test reduction using dependence
analysis. In: Proc. Conference on Software Maintenance, pp. 214–223 (2002)

17. Chen, Y., Probert, R.L., Ural, H.: Model-based regression test suite generation using depen-
dence analysis. In: A-MOST 2007: Proc. of the 3rd Intl. Workshop on Advances in Model-
based Testing, pp. 54–62. ACM, New York (2007)

18. Briand, L.C., Labiche, Y., He, S.: Automating regression test selection based on UML de-
signs. Inf. Softw. Technol. 51(1), 16–30 (2009)

19. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards automatic
regression test selection for web services. In: COMPSAC 2007: Proceedings of the 31st
Annual International Computer Software and Applications Conference, pp. 729–736. IEEE
Computer Society, Washington, DC, USA (2007)

http://www.cs.le.ac.uk/people/tak12/observable.pdf
http://tfs.cs.tu-berlin.de/agg

	On Model-Based Regression Testing ofWeb-Services Using Dependency Analysis of Visual Contracts
	Introduction
	Visual Contracts and Trace Semantics
	Model-Based Evolution
	Evaluation
	Related Work
	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

