
Barriers in Concurrent Separation Logic

Aquinas Hobor and Cristian Gherghina

National University of Singapore

Abstract. We develop and prove sound a concurrent separation logic
for Pthreads-style barriers. Although Pthreads barriers are widely used
in systems, and separation logic is widely used for verification, there
has not been any effort to combine the two. Unlike locks and critical
sections, Pthreads barriers enable simultaneous resource redistribution
between multiple threads and are inherently stateful, leading to signifi-
cant complications in the design of the logic and its soundness proof. We
show how our logic can be applied to a specific example program in a
modular way. Our proofs are machine-checked in Coq.

1 Introduction

In a shared-memory concurrent program, threads communicate via a common
memory. Programmers use synchronization mechanisms, such as critical sections
and locks, to avoid data races. In a data race, threads “step on each others’ toes”
by using the shared memory in an unsafe manner. Recently, concurrent separa-
tion logic has been used to formally reason about shared-memory programs that
use critical sections and (first-class) locks [18,15,13,14]. Programs verified with
concurrent separation logic are provably data-race free.

What about shared-memory programs that use other kinds of synchronization
mechanisms, such as semaphores? The general assumption is that other mech-
anisms can be implemented with locks, and that reasonable Hoare rules can be
derived by verifying their implementation. Indeed, the first published example of
concurrent separation logic was implementing semaphores using critical sections
[18]. Unfortunately, not all synchronization mechanisms can be easily reduced
to locks in a way that allows for a reasonable Hoare rule to be derived. In this
paper we introduce a Hoare rule that natively handles one such synchronization
mechanism, the Pthreads-style barrier.

Pthreads (POSIX Threads) is a widely-used API for concurrent program-
ming, and includes various procedures for thread creation/destruction and syn-
chronization [7]. When a thread issues a barrier call it waits until a specified
number (typically all) of other threads have also issued a barrier call; at that
point, all of the threads continue. Although barriers do not get much attention in
theory-oriented literature, they are very common in actual systems code. PAR-
SEC is the standard benchmarking suite for multicore architectures, and has
thirteen workloads selected to provide a realistic cross-section for how concur-
rency is used in practice today; a total of five (38%) of PARSEC’s workloads use
barriers, covering the application domains of financial analysis (blackscholes),

G. Barthe (Ed.): ESOP 2011, LNCS 6602, pp. 276–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Barriers in Concurrent Separation Logic 277

computer vision (bodytrack), engineering (canneal), animation (fluidanimate),
and data mining (streamcluster) [4]. A common use for barriers is to manage
large numbers of threads in a pipeline setting. For example, in a video-processing
algorithm, each thread might read from some shared common area containing
the most recently completed frame while writing to some private area that will
contain some fraction of the next frame. (A thread might need to know what
is happening in other areas of the previous frame to properly handle objects
entering or exiting its part of the current frame.) In the next iteration, the old
private areas become the new shared common area as the algorithm continues.

Our key insight is that a barrier is used to simultaneously redistribute own-
ership of resources (typically, permission to read/write memory cells) between
multiple threads. In the video-processing example, each thread starts out with
read-only access to the previous frame and write access to a portion of the
current frame. At the barrier call, each thread gives up its write access to its
portion of the (just-finished) frame, and receives back read-only access to the en-
tire frame. Separation logic (when combined with fractional permissions [5,11])
can elegantly model this kind of resource redistribution. Let Prei be the precon-
ditions held upon entering the barrier, and Post i be the postconditions that will
hold after being released; then the following equation is almost true:

∗
i

Prei = ∗
i

Post i (1)

Pipelined algorithms often operate in stages. Since barriers are used to ensure
that one computation has finished before the next can start, the barriers need
to have stages as well—a piece of ghost state associated with the barrier. We
model this by building a finite automata into the barrier definition. We then need
an assertion, written barrier(bn, π, cs), which says that barrier bn, owned with
fractional permission π, is currently in state cs . The state of a barrier changes
exactly as the threads are released from the barrier. We can correct equation (1)
by noting that barrier bn is transitioning from state cs (current state) to state
ns (next state), and that the other resources (frame F) are not modified:

∗
i

Prei = F ∗ barrier(bn, �, cs)

∗
i

Post i = F ∗ barrier(bn, �,ns)
(2)

We use the symbol � to denote the full (∼100%) permission, which we require
so that no thread has a “stale” view of the barrier state. Although the on-chip
(or erased) operational behavior of a barrier is conceptually simple1, it may be
already apparent that the verification can rapidly become quite complicated.

Contributions

1. We give a formal characterization for sound barrier definitions.
2. We design a natural Hoare rule in separation logic for verifying barrier calls.
1 Suspend each thread as it arrives; keep a counter of the number of arrived threads;

and when all of the threads have arrived, resume the suspended threads.

278 A. Hobor and C. Gherghina

3. We give a formal resource-aware unerased concurrent operational semantics
for barriers and prove our Hoare rules sound with respect to our semantics.

4. Our soundness results are machine-checked in Coq and are available at:

www.comp.nus.edu.sg/∼hobor/barrier

2 Syntax, Separation Algebras, Shares, and Assertions

Here we briefly introduce preliminaries: the syntax of our language, separation
algebras, share accounting, and the assertions of our separation logic.

2.1 Programming Language Syntax

To let us focus on the barriers, most of our programming language is pure vanilla.
We define four kinds of (tagged) values v: TRUE, FALSE, ADDR(N), and DATA(N).
We have two (tagged) expressions e: C(v) and V(x), where x are local variable
names (just N in Coq). To make the example more interesting we add the arith-
metical operations to e. We write bn for a barrier number, with bn ∈ N.

We have ten commands c: skip (do nothing), x := e (local variable assign-
ment), x := [e] (load from memory), [e1] := e2 (store to memory), x:= new e
(memory allocation), free e (memory deallocation), c1; c2 (instruction se-
quence), if e then c1 else c2 (if-then-else), while e {c} (loops), and barrier bn
(wait for barrier bn). To run commands c1 . . . cn in parallel (which, like O’Hearn,
we only allow at the top level [18]), we write c1|| . . . ||cn. To avoid clogging the
presentation, we elide a setup sequence before the parallel composition.

2.2 Disjoint Multi-unit Separation Algebras

Separation algebras are mathematical structures used to model separation logic.
We use a variant described by Dockins et al. called a disjoint multi-unit sep-
aration algebra (hereafter just “DSA”) [11]. Briefly, a DSA is a set S and an
associated three-place partial join relation ⊕, written x ⊕ y = z, such that:

A function: x ⊕ y = z1 ⇒ x ⊕ y = z2 ⇒ z1 = z2

Commutative: x ⊕ y = y ⊕ x
Associative: x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
Cancellative: x1 ⊕ y = z ⇒ x2 ⊕ y = z ⇒ x1 = x2

Multiple units: ∀x. ∃ux. x ⊕ ux = x
Disjointness: x ⊕ x = y ⇒ x = y

A key concept is the idea of an identity: x is an identity if x ⊕ y = z implies
y = z. One fundamental property of identities is that x is an identity if and
only if x⊕ x = x. Dockins also develops a series of standard constructions (e.g.,
product, functions, etc.) for building complicated DSAs from simpler DSAs. We
make use of this idea to construct a variety of separation algebras as needed,
usually with the concept of share as the “foundational” DSA.

Barriers in Concurrent Separation Logic 279

2.3 Shares

Separation logic is a logic of resource ownership. Concurrent algorithms some-
times want to have threads share some common resources. Bornat et al. intro-
duced the concept of fractional share to handle the necessary accounting [5].
Shares form a DSA; a full share (complete ownership of a resource) can be bro-
ken into various partial shares; these shares can then be rejoined into the full
share. The empty share is the identity for shares. We often need non-empty
(strictly positive) shares, denoted by π. A critical invariant is that the sum of
each thread’s share of a given object is no more or less than the full share.

The semantic meaning of partial shares varies; here we use them in two distinct
ways. We require the full share to modify a memory location; in contrast, we only
require a positive share to read from one. There is no danger of a data race even
though we do not require the full share to read: if a thread has a positive share
of some location, no other thread can have a full share for the same location.
We use fractional permissions differently for barriers: each precondition includes
some positive share of the barrier itself and we require that the preconditions
combine to imply the full share of the barrier (plus a frame F).

In the Coq development we use a share model developed Dockins et al. that
supports sophisticated fractional ownership schemes [11]. Here we simplify this
model into four elements: the full share �; two distinct nonempty partial shares,
�and � , and the empty share �. The key point is that �⊕ � = �.

2.4 Assertion Language

We model the assertions of separation logic following Dockins et al. [11]. Our
states σ are triples of a stack, heap, and barrier map (σ = (s, h, b)). Local
variables live in stacks s (functions from variable names to values). In contrast, a
heap h contains the locations shared between threads; heaps are partial functions
from addresses to pairs of positive shares and values. We also equip our heaps
with a distinguished location, called the break, that tracks the boundary between
allocated and unallocated locations. The break lets us provide semantics for the
x:= new e instruction in a natural way by setting x equal to the current break
and then incrementing the break. Since threads share a common break, there is
a backdoor communication channel; however the existence of this channel is a
small price to pay for avoiding the necessity of a concurrent garbage collector.
We ensure that the threads see the same break by equipping our break with
ownership shares just as we equip normal memory locations with shares.

We denote the empty heap (which lacks ownership for both all memory loca-
tions and the distinguished break location) by h0. Of note, our expressions e are
evaluated only in the context of the stack; we write s 	 e ⇓ v to mean that e
evaluates to v in the context of the stack s. Finally, the barrier map b is a partial
function from barrier numbers to pairs of barrier states (represented as natural
numbers) and positive shares; we denote the empty barrier map by b0.

An assertion is a function from states to truth values (Prop in Coq). As is
common, we define the usual logical connectives via a straightforward embedding
into the metalogic; for example, the object-level conjunction P ∧Q is defined as

280 A. Hobor and C. Gherghina

λσ. (Pσ)∧(Qσ). We will adopt the convention of using the same symbol for both
the object-level operators and the meta-level operators to avoid symbol bloat;
it should be clear from the context which operator applies in a given situation.
We provide all of the standard connectives (�,⊥,∧,∨,⇒,¬, ∀, ∃).

We model the connectives of separation logic in the standard way2:

emp = λ(s, h, b). h = h0 ∧ b = b0

P ∗ Q = λσ. ∃σ1, σ2. σ1 ⊕ σ2 = σ ∧ P (σ1) ∧ Q(σ2)
e1

π�−→ e2 = λ(s, h, b). ∃a, v. (s 	 e1 ⇓ ADDR(a)) ∧ (s 	 e2 ⇓ v) ∧
b = b0 ∧ h(a) = (v, π) ∧ dom(h) = {a} ∧ break(h) = �

barrier(bn, π, s) = λ(s, h, b). h = h0 ∧ b(bn) = (s, π) ∧ dom(b) = {bn}

The fractional maps-to assertion, e1
π�−→ e2, means that the expression e1 is

pointing to an address a in memory; a is owned with positive share π, and
contains the evaluated value v of e2. The fractional maps-to assertion does not
include any ownership of the break. The barrier assertion, barrier(bn , π, s), means
that the barrier bn, owned with positive share π, is in state s.

We also lift program expressions into the logic: e ⇓ v, which evaluates e with
σ’s stack (i.e., λ(s, h, b). h = h0 ∧ b = b0 ∧ s 	 e ⇓ v); [e], equivalent to e ⇓ TRUE;
and x = v, equivalent to V(x) ⇓ v. These assertions have a “built-in” emp.

3 Example

We present a detailed example inspired by a video decompression algorithm. The
code and a detailed-but-informal description of the barrier definition is given in
Figure 1.3 Two threads cooperate to repeatedly compute the elements of two
size-two arrays x and y. In each iteration, each thread writes to a single cell of
the “current” array, and reads from both cells of the “previous” array.

In Figure 1 we give a pictorial representation of the state machine associated
with the barrier used in the code using the following specialized notation:

This notation is used to express the pre- and postconditions for a given barrier
transition. Each row is a pictorial representation (values, barrier states, and
shares) of a formula in separation logic as indicated above. The preconditions are
2 Our Coq definition for emp is different but equivalent to the definition given here.
3 In our Coq development we give the full formal description of the example barrier.

Barriers in Concurrent Separation Logic 281

0: {x1
��−→0 ∗ x2

��−→0 ∗ y1
��−→0 ∗ y2

��−→0 ∗ i
��−→0 ∗ barrier(bn, �, 0)}

0’: {x1

�

�−−→0 ∗ x2

�

�−−→0 ∗ y1

�

�−−→0 {x1

�

�−−→0 ∗ x2

�

�−−→0 ∗ y1

�

�−−→0

∗ y2

�

�−−→0 ∗ i
�

�−−→0 ∗ barrier(bn, �, 0)} ∗ y2

�

�−−→0 ∗ i
�

�−−→0 ∗ barrier(bn,� , 0)}
.

1: barrier b; barrier b; // b transitions 0→1
2: n := 0; m := 0;
3: while n < 30 { while m < 30 {
4: a1 := [x1]; a1 := [x1];
5: a2 := [x2]; a2 := [x2];
6: [y1] := (a1+2∗a2); [y2] := (a1+3∗a2);
7: barrier b; barrier b; // b transitions 1→2
8: a1 := [y1]; a1 := [y1];
9: a2 := [y2]; a2 := [y2];
10: [x1] := (a1+2∗a2); [x2] := (a1+3∗a2);
11: n := (n+1);
12: [i] := n;
13: barrier b; barrier b; // b transitions 2→1
14: m := [i];
15: } }
16: barrier b; barrier b; // b transitions 1→3
17: [i] := 0;

.

Fig. 1. Example: Code and Barrier Diagram

282 A. Hobor and C. Gherghina

on top (one per row) and the postconditions below. Each row is associated with
a move; move 1 is a pair of the first precondition row and the first postcondition
row, etc. A barrier that is waiting for n threads will have n moves; n can be
fewer than the total number of threads. We do not require that a given thread
always takes the same move each time it reaches a given barrier transition.

Note that only the permissions on the memory cells change during a transition;
the contents (values) do not.4 The exception to this is the special column on the
right side, which denotes the assertion associated with the barrier itself. As the
barrier transitions, this value changes from the previous state to the next; we
require that the sum of the preconditions includes the full share of the barrier
assertion to guarantee that no thread has an out-of-date view of the barrier’s
state. Observe that all of the preconditions join together, and, except for the
state of the barrier itself, are exactly equal to the join of the postconditions.

The initial state of the machine is given as an assertion in line 0. The machine
starts with full ownership of the array cells x1, x2, y1, and y2, as well as an
additional cell i, used as a condition variable. The barrier b is fully-owned and is
in state 0. The initial state is then partitioned into two parts on line 0’, with the
left thread (A) and right thread (B) getting the shares �and � , respectively.

Not shown (between lines 0’ and 1) is thread-specific initialization code; per-
haps both threads read both arrays and perform consistency checks. The real
action starts with the barrier call on line 1, which ensures that this initializa-
tion code has completed. Thread A takes move 1 and thread B takes move 2.
Afterwards, thread A has full ownership over y1 and thread B has full ownership
over y2; the ownership of x1, x2, and i remains split between A and B. While
the ownership of the barrier is unchanged, it is now in state 1.

We then enter the main loop on line 3. On lines 4–5, both threads read from
the shared cells x1 and x2, and on line 6 both threads update their fully-owned
cell. The barrier call on line 7 ensures that these updates have been completed
before the threads continue. Since the value T at memory location i is less than
30, only the 1–2 transition is possible; the 1–3 transition requires T≥ 30. Thread
A takes move 1 and thread B takes move 25; afterwards, both threads have partial
shares of y1 and y2, thread A has the full share of x1 and the condition cell i,
and thread B has the full share of x2; the barrier is in state 2.

Lines 8–10 are mirrors of lines 4–6. On lines 11–12, thread A updates the
condition cell i. The barrier on line 13 ensures that the updates on lines 10 and
12 have completed before the threads continue; thread A takes move 2 while
thread B takes move 1. Afterwards, the threads have the same permissions they
had on entering the loop: A has full ownership of y1, B has full ownership of y2,
and they share ownership of x1, x2, and i; the barrier is again in state 1.

4 We use the same quantified variable names before and after the transition because
an outside observer can tell that the values are the same. A local verification can
use ghost state to prove the equality; alternatively we could add the ability to move
the quantifier to other parts of the diagram, e.g., over an entire pre-post pair.

5 In this example a given thread always takes the same move for a given transition;
however, this is not forced by the rules of our logic.

Barriers in Concurrent Separation Logic 283

BarDef ≡ { bd bn : Nat barrier id
(barrier definition) bd limit : Nat # of threads

bd states : list BarStateDef} state list

BarStateDef ≡ {bsd bn : Nat barrier id
(barrier state) bsd cs : Nat state id

bsd directions : list BarMoveList transition list
bsd limit : Nat} # of threads

BarMoveList ≡ {bml dest : Nat next state
(transition) bml bn : Nat barrier id

bml cs : Nat current state
bml limit : Nat # of threads
bml moves : list (assert × assert)} pre/post pairs

Fig. 2. Barrier Definitions

On line 14, thread B reads from the condition variable i, and then the program
loops back to line 3. After 30 iterations, the loop exits and control moves to the
barrier on line 16. Observe that since the (shared) value T at memory location
i is greater than or equal to 30, only the 1–3 transition is possible; the 1–2
transition requires T< 30. Thread A takes move 1 while thread B takes move
2; afterwards, both threads are sharing ownership of x1, x2, y1, and y2 (since
the transition from 1 to 3 does not mention y1 and y2 they are unchanged).
Thread A has full permission over the condition variable i; the barrier is in state
3. Finally, on line 17, thread A updates i; the barrier on line 16 ensures that
thread B’s read of i on line 14 has already occurred.

4 Barrier Definitions and Consistency Requirements

We present the type of a barrier definition in Figure 2 in the form of a data
structure. The definitions include numerous consistency requirements; in Coq
these are maintained with dependent types. From the top down, a barrier defi-
nition (BarDef) consists of a barrier identifier (i.e., barrier number), the number
of threads the barrier is synchronizing, and a list of barrier state definitions. For
programs that have more than one barrier, the individual barrier definitions will
be collected into a list and barrier number j will be in list slot j.

A barrier state definition (BarStateDef) consists of a barrier number, the num-
ber of threads synchronized, a state id, and a transition list; such that:

1. the barrier number matches the barrier number in the containing BarDef
2. the limit matches the limit of the containing BarDef6

3. the state identifier j indicates that this BarStateDef is the j element of the
containing BarDef’s list of state definitions

4. the directions are mutually exclusive

6 A command to dynamically alter the number of threads a barrier managed might
allow different states/transitions to wait for different numbers of threads.

284 A. Hobor and C. Gherghina

The first three are unexciting; we will discuss mutual exclusion shortly.
A transition (BarMoveList) contains a barrier number (bn), number of threads

synchronized, current state identifier (cs), next state identifier (ns), and list of
precondition/postcondition pairs (the move list). We require that:

1. bn matches the barrier number in the containing BarStateDef
2. the limit matches the limit in the containing BarStateDef
3. cs matches the state identifier in the containing BarStateDef
4. the length of list of moves (bml moves) is equal to the limit (bml limit)
5. all of the pre/postconditions in the movelist ignore the stack, focusing only

on the memory and barrier map. Since stacks are private to each thread (on
a processor these would be registers), it does not make sense for them to be
mentioned in the “public” pre/post conditions.

6. all of the preconditions in the movelist are precise. Precision is a technical
property involving the identifiability of states satisfying an assertion.7

7. each precondition P includes some positive share of the barrier assertion with
bn and cs, i.e., ∃π. P ⇒ � ∗ barrier(bn, π, cs).

8. the sum of the preconditions must equal the sum of the postconditions,
except for the state of the barrier; moreover, the sum of the preconditions
must include the full share of the barrier (equation (2), repeated here):

∗
i

Prei = F ∗ barrier(bn, �, cs)

∗
i

Post i = F ∗ barrier(bn, �, ns)

Items 1–4 are simple bookkeeping; items 5–7 are similar to technical requirements
required in other variants of concurrent separation logic [18,14,13]. As previously
mentioned, the fundamental insight of this approach is property (8).

The function lookup move simplifies the lookup of a move in a BarDef:

lookup move(bd , cs , dir ,mv) = bd.bd states[cs].bsd directions[dir].bml moves[mv]

Using this notation, we can express the important requirement that all directions
in the barrier state cs of the barrier definition bd are mutually exclusive:

∀dir 1, dir 2,mv1,mv2, pre1, pre2. dir 1 �= dir2 ⇒
lookup move(bd , cs , dir1,mv1) = (pre1,) ⇒

lookup move(bd , cs , dir 2,mv2) = (pre2,) ⇒
(� ∗ pre1) ∧ (� ∗ pre2) ≡ ⊥

In other words, it is impossible for any of the preconditions of more than one
transition (of a given state) to be true at a time. The simplest way to understand
this is to consider the 1–2 and 1–3 transitions in the example program. The 1–2
transition requires that the value in memory cell i be strictly less than 30; in
contrast, the 1–3 transition requires that the same cell contains a value greater
7 Precision may not be required; another property (tentatively christened “token”)

that might serve would be if, for any precondition P , P ∗ P ≡ ⊥. Note that precision
in conjunction with item (6) implies P is a token.

Barriers in Concurrent Separation Logic 285

than or equal to 30. Plainly these are incompatible; but in fact the above property
is stronger: both of the moves on the 1–2 transition, and both of the moves on
the 1–3 transition include the incompatibility. Thus, if thread A takes transition
1–2, it knows for certain that thread B cannot take transition 1–3. This way we
ensure that both threads always agree on the barrier’s current state.

5 Hoare Logic

Our Hoare judgment has the form Γ 	 {P} c {Q}, where Γ is a list of barrier
definitions as given in §4, P and Q are assertions in separation logic, and c is a
command. Our Hoare rules come in three groups: standard Hoare logic (Skip, If,
Sequence, While, Assignment, Consequence); standard separation logic (Frame,
Store, Load, New, Free); and the barrier rule. We give groups two and three in
Figure 3; group one is standard and elided. We note four points for group two.

First, as explained in §2.4, the assertions e ⇓ v, [e] and x = v are bundled with
an assertion that the heap and barrier map are empty(i.e., e ⇓ v ⇒ emp);
thus, we use the separating conjunction when employing them. Second, the rules
are in “side-condition-free form”. Thus, instead of presenting the load rule as
Γ 	 {e1

π�−→e2} x := [e1] {x = e2 ∗ e1
π�−→e2}, which is aesthetically attractive but

untrue in the pesky case when e2 depends on x (e.g., x := [x]), we use a form that
is less visually pleasing but does not require side conditions.8 It is straightforward
to restore rules with side conditions via the Consequence rule. Third, our Store
and Free rules require the full share of location e1; in contrast, our Load rule
only requires some positive share; this is consistent with our use of fractional
permissions as explained in §2.3. Fourth, memory allocation and deallocation
are more complicated in concurrent settings than in sequential settings, and so
the New and Free rules cause nontrivial complications in the semantic model.

The Hoare rule for barriers is so simple that at first glance it may be hard
to understand. The variables for the current state cs , direction dir , and move

Γ � {P} c {Q} closed(F, c)

Γ � {F ∗ P} c {F ∗ Q} Frame
Γ � {e1

��−→ } [e1] := e2 {e1
��−→e2}

Store

Γ � {e1
π�−→e2 ∗ e1⇓v1 ∗ e2⇓v2} x := [e1] {C(v1)

π�−→C(v2) ∗ x = v2}
Load

Γ � {e⇓v} x:= new e {V(x)
��−→C(v)}

New

Γ � {e1
��−→e2} free e1 {emp}

Free

Γ [bn] = bd lookup move(bd , cs , dir ,mv) = (P, Q)

Γ � {P} barrier bn {Q} Barrier

Fig. 3. Hoare rules (not pictured: Skip, If, Sequence, While, Assign, and Consequence)

8 Recall from §2: V(x) and C(v) are expression constructors for locals and constants.
In addition, closed(F, c) means that F does not depend on locals modified by c.

286 A. Hobor and C. Gherghina

mv appear to be free in the lookup move! However, things are not quite as
unconstrained as they initially appear. Recall from §4 that one of the consistency
requirements for the precondition P is that P implies an assertion about the
barrier itself: P ⇒ Q ∗ barrier(bn, π, cs); thus at a given program point we can
only use directions and moves from the current state. Similarly, recall from §4
that since the directions are mutually exclusive, dir is uniquely determined.

This leaves the question of the uniqueness of mv . If a thread only satisfies a
single precondition, then the move mv is uniquely determined. Unfortunately, it
is simple to construct programs in which a thread enters a barrier while satisfying
the preconditions of multiple moves. What saves us is that we are developing a
logic of partial correctness. Since preconditions to moves must be precise and
nonempty (i.e., token), only one thread is able to satisfy a given precondition
at a time. The pigeonhole principle guarantees that if a thread holds multiple
preconditions then some other thread will not be able to enter the barrier; in this
case, the barrier call will never return and we can guarantee any postcondition.

We now apply the Barrier rule to the barrier calls in line 13 from our example
program; the lookup moves are direct from the barrier state diagram:

Thread A

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lookup move(b, 2, 1, 2) = (P, Q)

P = y1

�

�−−→vy1 ∗ y2

�

�−−→vy2 ∗ x1
��−→vx1 ∗ i

��−→vi∗barrier(bn , �, 2)

Q = y1
��−→vy1 ∗ x1

�

�−−→vx1 ∗ x2

�

�−−→vx2 ∗ i
�

�−−→vi∗barrier(bn , �, 1)

Γ 	 {P} barrier b {Q}

Thread B

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lookup move(b, 2, 1, 1) = (P, Q)

P = y1

�

�−−→vy1 ∗ y2

�

�−−→vy2 ∗ x2
��−→vx2∗barrier(bn ,� , 2)}

Q = y2
��−→vy2 ∗ x1

�

�−−→vx1 ∗ x2

�

�−−→vx2 ∗ i
�

�−−→vi∗barrier(bn ,� , 1)}
Γ 	 {P} barrier b {Q}

Note that in this line of the example program, the frame is emp in both threads.
Not shown in Figure 3 is a parallel composition rule. As in [14], each thread

is verified independently using the Hoare rules given; a top-level safety theorem
proves that the entire concurrent machine behaves as expected.

6 Semantic Models

Our operational semantics is divided into three parts: purely sequential, which
executes all of the instructions except for barrier in a thread-local manner; con-
current, which manages thread scheduling and handles the barrier instruction;
and oracular, which provides a pseudosequential view of the concurrent machine
to enable simple proofs of the sequential Hoare rules. Our setup follows Hobor
et al. very closely and we refer readers there for more detail [15,14].

Barriers in Concurrent Separation Logic 287

Purely sequential semantics. The purely sequential semantics executes the in-
structions skip, x := e, x := [e], [e1] := e2, x:= new e, free e, c1; c2, if e
then c1 else c2, and while e {c}. The form of the sequential step judgment is
(σ, c) �→ (σ′, c′). Here σ is a state (triple of stack, heap, barrier map), just as
in §2.4 and c is a command of our language. The semantics of the sequential
instructions is standard; the only “tricky” part is that the machine gets stuck if
one tries to write to a location for which one does not have full permission or
read from a location for which one has no permission; e.g., here is the store rule:

s 	 e1 ⇓ C(ADDR(n)) s 	 e2 ⇓ v
n < break(h) h(n) = (�, v′) h′ = [n �→ (�, v)]h

(
(s, h, b), [e1] := e2; c

) �→ (
(s, h′, b), c

) sstep − store

The test that n < break(h) ensures that the address for the store is “in bounds”—
that is, less than the current value of the break between allocated and unallocated
memory; since we are updating the memory we require that the permission
associated with the location n full (�). We say that this step relation is unerased
since these bounds and permission checks are virtual rather than on-chip.

We define the other cases of the step relation in a similar way. Observe that
if we were in a sequential setting the proof of the Hoare store rule would be
straightforward; this is likewise the case for the other cases of the sequential
step relation and their associated Hoare rules. If the sequential step relation
reaches a barrier call barrier bn then it simply gets stuck.

Concurrent semantics. We define the notion of a concurrent state in Figure 4. A
concurrent state contains a scheduler Ω (modeled as a list of natural numbers),
a distinguished heap called the allocation pool, a list of threads, and a barrier
pool9. The allocation pool is the owner of all of the unallocated memory cells
(plus the ownership of the break between allocated and unallocated cells); before
we run a thread we transfer the allocation pool into the local heap owned by
the thread so that new can transfer a cell from this pool into the local heap of a
thread when required. When we suspend the thread we remove (what is left of)
the allocation pool from its heap so that we can transfer it to the next thread.

A thread contains a (sequential) state (stack, heap, and barrier map) and a
concurrent control, which is either Running(c), meaning the thread is available to
run command c, or Waiting(bn, dir ,mv , c), meaning that the thread is currently
waiting on barrier bn to make move mv in direction dir ; after the barrier call
completes the thread will resume running with command c.

The barrier pool (Barpool) contains a list of dynamic barrier statuses (DBSes)
as well as a state which is the join of all of the states inside the DBSes. Each
DBS consists of a barrier number (which must be its index into the array of
its containing Barpool), a barrier definition (from §4), and a waitpool (WP). A
waitpool consists of a direction option (None before the first barrier call in a given

9 There is also a series of consistency requirements such as the fact that all of the
heaps in the threads and barrier pool join together with the allocation pool into one
consistent heap; in the mechanization this is carried around via a dependent type as
a fifth component of the concurrent state. We elide this proof from the presentation.

288 A. Hobor and C. Gherghina

Cstate ≡ { cs sched : list N schedule
cs allocpool : heap alloc pool
cs thds : list Thread thread pool
cs barpool : Barpool} barrier pool

Thread ≡ { th stk : stack
th hp : heap
th bs : BarrierMap local view of barrier states
th ctl : conc ctl} running or waiting

conc ctl ≡ | Running(c) executing code c
| Waiting(bn, dir, mv, c) waiting on bn

Barpool ≡ { bp bars : list DyBarStatus dynamic barrier status
bp st : stack × heap × BarrierMap} current state

DyBarStatus ≡ { dbs bn : N barrier id
dbs wp : Waitpool waiting thread pool
dbs bd : BarDef}

Waitpool ≡ { wp dir : N option direction id
wp slots : list slot option taken slots
wp limit : N

wp st : stack × heap × BarrierMap} current state

slot ≡ (thread id × heap × BarrierMap) waiting slot

Fig. 4. Concurrent state

state; thereafter the unique direction for the next state), a limit (the number
of threads synchronized by the barrier, and comes from the barrier definition in
the enclosing DBS), a slot list, and a state (which is the join of all of the states
in the slot list). A slot is a heap and barrier map (the stack is unneeded since
barrier pre/postconditions ignore it) as well as a thread id (whence the heap and
barrier map came as a precondition, and to which the postcondition will return).

The concurrent step relation is (Ω, ap, thds , bp) � (Ω′, ap′, thds ′, bp′), where
Ω, ap, thds , and bp are the scheduler, allocation pool, thread list, and barrier
pool respectively. The concurrent step relation has only four cases; the following
case CStep-Seq is used to run all of the sequential commands:

thds [i] = (s, h, b, Running(c)) h ⊕ ap = h′ (
(s, h′, b), c

) �→ (
(s′, h′′, b), c′

)

h′′′ ⊕ ap′ = h′′ isAllocPool(ap′) thds ′ = [i �→ (s′, h′′′, b, Running(c′))]thds

(i :: Ω, thds , ap, bp) � (i :: Ω, thds ′, ap′, bp) CStep-Seq

That is, we look up the thread whose thread id is at the head of the scheduler,
join in the allocation pool, and run the sequential step relation. If the command
c is a barrier call then the sequential relation will not be able to run and so
the CStep-Seq relation will not hold; otherwise the sequential step relation will
be able to handle any command. After we have taken a sequential step, we
subtract out the (possibly diminished) allocation pool, and reinsert the modified
sequential state into the thread list. Since we quantify over all schedulers and our
language does not have input/output, it is sufficient to utilize a non-preemptive
scheduler; for further justification on the use of such schedulers see [14].

Barriers in Concurrent Separation Logic 289

The second case of the concurrent step relation handles the case when a thread
has reached the last instruction, which must be a skip:

thds [i] = Running(skip)
(i :: Ω, thds , ap, bp) � (Ω, thds , ap, bp)

CStep-Exit

When we reach the end of a thread we simply context switch to the next thread.
The interesting cases occur when the instruction for the running thread is a

barrier call; here the CStep-Seq rule does not apply. The concurrent semantics
handles the barrier call directly via the last two cases of the step relation; before
presenting these cases we will first give a technical definition called fill barrier slot:

thds[i] = Thread(stk, hp, bs, (Running (barrier bn ; c)))
lookup move(bp.bp bars[bn], dir, mv) = (pre, post)

hp′ ⊕ hp′′ = hp bs′ ⊕ bs′′ = bs pre(stk, hp′, bs′)
bp inc waitpool (bp, bn, dir, mv, (i, (hp′, bs′))) = bp′

thds′ = [i → (Thread(stk, hp′′, bs′′, (Waiting (bn, dir, mv, c))))] thds

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)

The predicate fill barrier slot gives the details of removing the (sub)state satisfy-
ing the precondition of the barrier from the thread’s state, inserting it into the
barrier pool, and suspending the calling thread. The predicate bp inc waitpool
does the insertion into the barrier pool; the details of manipulating the data
structure are straightforward but lengthy to formalize10.

We are now ready to give the first case for the barrier, used when a thread
executes a barrier but is not the last thread to do so:

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)
¬ bp ready (bp′, bn)

((i :: Ω), ap, thds, bp) � (Ω, ap, thds′, bp′)
CStep-Suspend

After using fill barrier slot, CStep-Suspend checks to see if the barrier is full by
counting the number of slots that have been filled in the appropriate wait pool
by using the bp ready predicate, and then context switches.

If the barrier is ready then instead of using the CStep-Suspend case of the
concurrent step relation, we must use the CStep-Release case:

fill barrier slot (thds, bp, bn, i) = (thds′, bp′)
bp ready (bp′, bn)

bp transition (bp′, bn, out) = bp′′

transition threads (out, thds′) = thds′′

((i :: Ω), ap, thds, bp) � (Ω, ap, thds′′, bp′′)
CStep-Release

The first requirement of CStep-Release is exactly the same as CStep-Suspend:
we suspend the thread and transfer the appropriate resources to the barrier

10 In Coq things are trickier since we track some technical side conditions via dependent
types so this relation also ensures that these side conditions remain satisfied.

290 A. Hobor and C. Gherghina

pool. However, now all of the threads have arrived at the barrier and so it is
ready. We use the bp transition predicate to go through the barrier’s slots in the
waitpool, combine the associated heaps and barrier maps, redivide these resources
according to the barrier postconditions, and remove the associated resources
from the barrier pool into a list of slots called out. Finally, the states in out
are combined with the suspended threads, which are simultaneously resumed
by the transition threads predicate. The formal definitions of the bp transition
and transition threads predicates are extremely complex and very tedious and we
refer interested readers to the mechanization.

Oracle semantics. Following Hobor et al. [15,14], we define a third oracular
semantics : (σ, o, c) �→ (σ′, o′, c′). Here the sequential state σ and command c are
exactly the same as in the purely sequential step. The new parameter o is an
oracle, a kind of box containing “the rest” of the concurrent machine—that is,
o contains a scheduler, a list of other threads, and a barrier pool.

The oracle semantics behaves exactly the same way as the purely sequential
semantics on all of the instructions except for the barrier call, with the oracle o
being passed through unchanged. That is to say:

(
σ, c

) �→ (
σ′, c′

)

(
σ, o, c

) �→ (
σ′, o, c′

) os-seq

When the oracle semantics reaches a barrier instruction, it consults the oracle o
to determine the state of the machine after the barrier:

consult(h, b, o) = (h′, b′, o′)
(
(s, h, b), o,barrier bn; c

) �→ (
(s, h′, b′), o′, c

) os-consult

The formal definition of the consult relation is detailed in [15,14] but the idea
is simple. To consult the oracle, one unpacks the concurrent machine and runs
(classically) all of the other threads until control returns to the original thread;
consult then returns the current h′ and b′ (that resulted from the barrier call)
and repackages the concurrent machine into the new oracle o′. The final case of
the oracle semantics occurs when the concurrent machine never returns control
(because it got stuck or due to sheer perversion of the scheduler):

�∃r. consult(h, b, o) = r (i.e., consult diverges)
(
(s, h, b), o,barrier bn; c

) �→ (
(s, h, b), o,barrier bn; c

) os-diverge

When control will never return, it does not matter what this thread does as long
as it does not get stuck; accordingly we enter an (infinite) loop.

Soundness proof outline. Our soundness argument falls into several parts. We
define our Hoare tuple in terms of our oracle semantics using a definition by
Appel and Blazy [2]; this definition was designed for a sequential language and
we believe that other standard sequential definitions for Hoare tuples would
work as well11. We then prove (in Coq) all of the Hoare rules for the sequential

11 We change Appel and Blazy’s definition so that our Hoare tuple guarantees that the
allocation pool is available for verifying the Hoare rule for x:= new e.

Barriers in Concurrent Separation Logic 291

instructions; since the os-seq case of the oracle semantics provides a straight lift
into the purely sequential semantics this is straightforward12.

Next, we prove (in Coq) the soundness for the barrier rule. This turns out to
be much more complicated than a proof of the soundness of (non-first-class) locks
and took the bulk of the effort. There are two points of particular difficulty: first,
the excruciatingly painful accounting associated with tracking resources during
the barrier call as they move from a source thread (as a precondition), into the
barrier pool, and redistribution to the target thread(s) as postcondition(s). The
second difficulty is proving that a thread that enters a barrier while holding
more than one precondition will never wake up; the analogy is a door with n
keys distributed among n owners; if an owner has a second key in his pocket
when he enters then one of the remaining owners will not be able to get in.

After proving the Hoare rules from Figure 3 sound with respect to the oracle
semantics, the remaining task is to connect the oracle semantics to the concurrent
semantics—that is, oracle soundness. Oracle soundness says that if each of the
threads on a machine are safe with respect to the oracle semantics, then the entire
concurrent machine combining the threads together is safe. The (very rough)
analogy to this result in Brookes’ semantics is the parallel decomposition lemma.
Here we use a progress/preservation style proof closely following that given in
[14, pp.242–255]; the proof was straightforward and quite short to mechanize. A
technical advance over previous work is that the progress/preservation proofs do
not require that the concurrent semantics be deterministic. In fact, allowing the
semantics to be nondeterministic simplified the proofs significantly.

A direct consequence of oracle soundness is that if each thread is verified with
the Hoare rules, and is loaded onto a single concurrent machine, then if the
machine does not get stuck and if it halts then all of the postconditions hold.

Erasure. One can justly observe that our concurrent semantics is not espe-
cially realistic; e.g., we: explicitly track resource ownership permissions (i.e., our
semantics is unerased); have an unrealistic memory allocator/deallocator and
scheduler; ignore issues of byte-addressable memory; do not store code in the
heap; and so forth. We believe that we could connect our semantics to a more
realistic semantics that could handle each of these issues, but most of them are
orthogonal to barriers. For brevity we will comment only on erasing the resource
accounting since it forms the heart of our soundness result.

We have defined, in Coq, an erased sequential and concurrent semantics. An
erased memory is simply a pair of a break address and a total function from
addresses to values. The run-time state of an erased barrier is simply a pair of
naturals: the first tracking the number of threads currently waiting on the bar-
rier, and the second giving the final number of threads the barrier is waiting for.
We define a series of erase functions that take an unerased type (memory/barrier
status/thread/etc.) to an erased one by “forgetting” all permission information.

12 The Hoare rule for loops (While) is only proved on paper. The loop rule is known
to be painful to mechanize and so the mechanization was skipped due to time con-
straints. It has been proved in Coq for similar (indeed, more complicated from a
sequential control-flow perspective) settings in previous work [2,15].

292 A. Hobor and C. Gherghina

File LOC Time Description

SLB Base 1,182 2s Utility lemmas (largely list facts)
SLB Lang 1,240 11s States, program syntax, assertion model
SLB BarDefs 265 2s Barrier definitions
SLB CLang 3,230 1m7s Dynamic concurrent state
SLB SSem 415 17s Sequential semantics
SLB Sem 784 33s Concurrent semantics
SLB ESSem 230 5s Erased semantics
SLB ESEquiv 650 30s Erasure proofs
SLB OSem 1,942 2m10s Oracular semantics
SLB HRules 170 2s Definition of Hoare tuples
SLB OSound 426 30s Soundness of oracle semantics
SLB HRulesSound 1,664 1m14s Soundness proofs for Hoare rules
SLB Ex 2,700 48s Example of a barrier definition

Total 14,898 7m34s

Fig. 5. Proof structure, size and compilation times (2.66GHz, 8GB)

The sequential erased semantics is quite similar to the unerased one, with the
exception that we do not check if we have read/write permission before executing
a load/store. The concurrent erased semantics is much simpler than the com-
plicated accounting-enabled semantics explained above since all that is needed
to handle the barrier is incrementing/resetting a counter, plus some modest
management of the thread list to suspend/resume threads. Critically, our erased
semantics is a computable function, enabling program evaluation. Finally, we
have proved that our unerased semantics is a conservative approximation to our
erased one: that is, if our unerased concurrent machine can take a step from some
state Σ to Σ′, then our erased machine takes a step from erase(Σ) to erase(Σ′).

7 Coq Development

We detail our Coq development in Figure 5. We use the Mechanized Semantic
Library [1] for the definitions of share models, separation algebras, and various
utility lemmas/tactics. In addition to the standard Coq axioms, we use depen-
dent and propositional extensionality and the law of excluded middle.

Over 7,000 lines of the development is devoted to proving the soundness of
the Hoare rule for barriers, largely in the files SLB BarDefs.v, SLB CLang.v,
SLB Sem.v, SLB OSem.v, SLB HRules.v, and a small part of SLB HRulesSound.v.
The rest of the concurrent semantics, the oracle semantics, and the soundness of
the oracle semantics (∼the parallel decomposition lemma) require approximately
1,000 lines, largely in the files SLB Sem.v, SLB HRules.v, and SLB OSound. The
erased semantics requires 230 lines in the file SLB ESSem.v, while the associated
equivalence proofs require 650 lines in the file SLB ESEquiv.v.

The sequential semantics and proofs for the associated Hoare rules re-
quire approximately 2,000 lines drawn from the files SLB Lang.v, SLB SSem.v,

Barriers in Concurrent Separation Logic 293

SLB HRules.v, and SLB HRulesSound.v. We estimate that the proof of the loop
rule would require a further 2,000-3,000 lines. The model of our assertions and the
program syntax are both in SLB Lang.v. Utility lemmas/tactics (SLB Base.v)
and the example barrier (SLB Ex.v) complete the development.

8 Limitations and Future Work

We have two obvious directions for future work. First, we can extend the logic
by making the barriers first-class (i.e., dynamic barrier creation/destruction). In
the present work we thought we could simplify the proofs by having statically
declared barriers in the style of O’Hearn [18]. This turned out to be somewhat
of a mistake: since we were forced to track the barrier states (and partial shares)
explicitly in the Hoare logic, we estimate that 90% of the work required to make
the barriers first-class has already been done in the present work; moreover, a
further 8% (the intrinsic contravariant circularity) would be easy to handle via
indirection theory [16]. With perfect foresight (or if it were nontrivial to restart
a large mechanized proof), we would have certainly made the barriers first-class.

Second, we do not address the tricky problem of program analysis. One place
where we believe that automatic program verification could be easily applied
is in verifying that barrier definitions meet the various soundness requirements.
We would also like to investigate verifying program text containing barrier calls;
one place to begin is constructing a verifier for programs that use OpenMP [10].

9 Related Work

Calcagno et al. proposed separation algebras as models of separation logic [9];
fractional permissions were discussed by Bornat et al. [5]. In our work we use
the share model and separation algebra development of Dockins et al. [11,1].

O’Hearn’s concurrent separation logic focused on programs that used critical
regions [18,6]; subsequent work by Hobor et al. and Gotsman et al. added first-
class locks and threads [15,13,14]. Our basic soundness techniques (unerased
semantics tracks resource accounting; oracle semantics isolates sequential and
concurrent reasoning from each other; etc.) follow Hobor et al. Recently both
Villard et al. and Bell et al. extended concurrent separation logic to channels
[3,19]. The work on channels is similar to ours in that both Bell and Villard track
additional dynamic state in the logic and soundness proof. Bell tracks communi-
cation histories while Villard tracks the state of a finite state automata associated
with each communication channel. Of all of the previous soundness results, only
Hobor et al. had a machine-checked soundness proof; it was incomplete.

An interesting question is whether is it possible to reason about barriers in
a setting with locks or channels. The question has both an operational and a
logical flavor. Speaking operationally, in a practical sense the answer is no: for
performance reasons barriers are not implemented with channels or locks. If we
ignore performance, however, it is possible to implement barriers with channels
or locks13. The logical part of the question then becomes, are the program logics
13 Indeed, it is possible to implement channels and locks in terms of each other.

294 A. Hobor and C. Gherghina

defined by O’Hearn, Hobor, Gotsman, Villard, or Bell (including their coauthors)
strong enough to reason about the (implementation of) barriers in the style of the
logic we have presented? As far as we can tell each previous solution is missing
at least one required feature, so in a strict sense, the answer here is again no.

For illustration we examine what seems to be the closest solution to ours:
the copyless message passing channels of Villard et al. Operationally speaking,
the best way to implement barriers seems to be by adding a central authority
that maintains a channel with each thread using a barrier. When a thread hits
a barrier, it sends “waiting” to the central authority, and then waits until it
receives “proceed”. In turn, the central authority waits for a “waiting” message
from each thread, and then sends each of them a “proceed” message. Fortunately
Villard allows the central authority to wait on multiple channels simultaneously.

The question then becomes a logical one. Although it should not pose any
fundamental difficulty, their logic would first need to enhanced with fractional
permissions; in fact we believe that Villard’s Heap-Hop tool already uses the
same fractional permission model (by Dockins et al.) that we do14. Since Villard
uses automata to track state, we think it probable, but not certain, that our
barrier state machines can be encoded as a series of his channel state machines.

There are some problems to solve. Villard requires certain side conditions on
his channels; we require other kinds of side conditions on our barriers; these con-
ditions do not seem fully compatible15. Assuming that we can weaken/strengthen
conditions appropriately, we reach a second problem with the side conditions:
some of our side conditions (e.g., mutual exclusion) are restrictions on the shape
of the entire diagram; in Villard’s setting the barrier state diagram has been
partitioned into numerous separate channel state machines. Verifying our side
conditions seems to require verification of the relationships that these channel
state machines have to each other; the exact process is unclear.

Once the matter of side conditions is settled, there remains the issue of ver-
ifying the individual threads and the central authority. Villard’s logic seems to
have all that is required for the individual threads; the question is how difficult
it would be to verify the central authority. Here we are less sure but suspect that
with enough ghost state/instructions it can be done.

There remains a question as to whether it is a good idea to reason about
barriers via channels (or locks). We suspect that it is not a good idea, even
ignoring the fact that actual implementations of barriers do not use channels.
The main problem seems to be a loss of intuition: by distributing the barrier state
machine across numerous channel state machines and the inclusion of necessary
ghost state, it becomes much harder to see what is going on. We believe that
one of the major contributions of our work is that our barrier rule is extremely
simple; with a quick reference to the barrier state diagram it is easy to determine
what is going on. There is a secondary problem: we believe that our barrier rule

14 To be precise, Heap-Hop uses the code extracted from the fractional permission Coq
proof development by Dockins et al.

15 For example, Villard requires determinacy whereas we do not; he would also require
that the postconditions of barriers be precise whereas we do not; etc.

Barriers in Concurrent Separation Logic 295

will look and behave essentially the same way in a setting with first-class barriers
in which it is possible to define functions that are polymorphic over the barrier
diagram; even assuming a channel logic enriched in a similar way, the verification
of a polymorphic central authority seems potentially formidable.

Finally, work on concurrent program analysis is in the early stages; Gotsman
et al., Calcagno et al., and Villard et al. give techniques that cover some use
cases involving locks and channels but much remains to be done [12,8,20].
Connection to an upcoming result by Jacobs and Piessens. We recently learned
that Jacobs and Piessens have an impressive upcoming result on modular fine-
grained concurrency [17]. Jacobs was able to reason about our example program
using his VeriFast tool by designing an implementation of barriers using locks
and reducing our barrier diagram to a large disjunction for a resource invariant.
However, there are some costs. First, VeriFast requires the user to add annota-
tions, such as function pre- and postconditions, loop invariants, folds/unfolds,
etc. In the case of our 30-line example program, more than 600 lines of anno-
tation were required, not including the code/annotiations for the barrier imple-
mentation itself; in contrast, using our logic, verifying the example program is
extremely simple. Second, it was harder to gain insight into the program from
the disjunction-form of the invariant; in contrast we find our barrier diagrams
straightforward. Finally, it is unclear to us whether the reduction is always pos-
sible or whether it was only enabled by the relative simplicity of our example
program. That said, Jacobs and Piessens have the only logic proven to be able
to reason about barriers as derived from a more general mechanism.

10 Conclusion

We have designed and proved sound a program logic for Pthreads-style barriers.
Our development includes a formal design for barrier definitions and a series
of soundness conditions to verify that a particular barrier can be used safely.
Our Hoare rules can verify threads independently, enabling a thread-modular
approach. Our soundness proof defines an operational semantics that explicitly
tracks permission accounting during barrier calls and is machine-checked in Coq.

Acknowledgements. We thank Christian Bienia for showcasing numerous exam-
ple programs containing barriers, Christopher Chak for help on an early version
of this work, Jules Villard for useful comments in general and in particular on
the relation of our logic to the logic of his Heap-Hop tool, and Bart Jacobs for
discovering how to verify our example program in his VeriFast tool.

References

1. Appel, A., Dockins, R., Hobor, A.: Mechanized Semantic Library (2009-2010),
http://msl.cs.princeton.edu

2. Appel, A.W., Blazy, S.: Separation logic for small-step C minor. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007)

http://msl.cs.princeton.edu

296 A. Hobor and C. Gherghina

3. Bell, C.J., Appel, A.W., Walker, D.: Concurrent separation logic for pipelined
parallelization. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp.
151–166. Springer, Heidelberg (2010)

4. Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity, Department of Computer Science, Princeton, NJ (December 2010)

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270 (2005)

6. Brookes, S.D.: A semantics for concurrent separation logic. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Hei-
delberg (2004)

7. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley, Reading
(1997)

8. Calcagno, C., Distefano, D., Vafeiadis, V.: Bi-abductive resource invariant syn-
thesis. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 259–274. Springer,
Heidelberg (2009)

9. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Symposium on Logic in Computer Science (2007)

10. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel
Programming in OpenMP. Morgan Kaufmann, San Francisco (2000)

11. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009)

12. Gotsman, A., Berdine, J., Cook, B.: Interprocedural Shape Analysis with Separated
Heap Abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.
Springer, Heidelberg (2006)

13. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for
storable locks and threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp.
19–37. Springer, Heidelberg (2007)

14. Hobor, A.: Oracle semantics. Technical Report TR-836-08, Princeton (2008)
15. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation

logic. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367. Springer,
Heidelberg (2008)

16. Hobor, A., Dockins, R., Appel, A.W.: A theory of indirection via approximation.
In: POPL 2010, pp. 171–185 (2010)

17. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: POPL (to appear, 2011)

18. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1), 271–307 (2007)

19. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.
(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009)

20. Villard, J., Lozes, É., Calcagno, C.: Tracking heaps that hop with heap-hop. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 275–279.
Springer, Heidelberg (2010)

	Barriers in Concurrent Separation Logic
	Introduction
	Syntax, Separation Algebras, Shares, and Assertions
	Programming Language Syntax
	Disjoint Multi-unit Separation Algebras
	Shares
	Assertion Language

	Example
	Barrier Definitions and Consistency Requirements
	Hoare Logic
	Semantic Models
	Coq Development
	Limitations and Future Work
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

