Affine Masking against Higher-Order Side
Channel Analysis

Guillaume Fumaroli', Ange Martinelli®,

Emmanuel Prouff?, and Matthieu Rivain?®

! Thales Communications
{guillaume.fumaroli, jean.martinelli}@fr.thalesgroup.com
2 Oberthur Technologies
e.prouff@oberthur.com
3 CryptoExperts
matthieu.rivain@cryptoexperts.com

Abstract. In the last decade, an effort has been made by the research
community to find efficient ways to thwart side channel analysis (SCA)
against physical implementations of cryptographic algorithms. A com-
mon countermeasure for implementations of block ciphers is Boolean
masking which randomizes the variables to be protected by the bitwise
addition of one or several random value(s). However, advanced techniques
called higher-order SCA attacks exist that overcome such a countermea-
sure. These attacks are greatly favored by the very nature of Boolean
masking. In this paper, we revisit the affine masking initially introduced
by Von Willich in 2001 as an alternative to Boolean masking. We show
how to apply it to AES at the cost of a small timing overhead compared to
Boolean masking. We then conduct an in-depth analysis pinpointing the
leakage reduction implied by affine masking. Our results clearly show that
the proposed scheme provides an excellent performance-security trade-off
to protect AES against higher-order SCA.

1 Introduction

Side Channel Analysisis a cryptanalytic technique that consists in analyzing the
side channel leakage (e.g. the power consumption, the electromagnetic emana-
tions) produced during the execution of a cryptographic algorithm embedded on
a physical device. SCA exploits the fact that this leakage is statistically depen-
dent on the intermediate variables that are processed. Some of these variables
are sensitive in the sense that they are related to secret data, and recovering
information on them therefore enables efficient key recovery attacks [I3I2I10].
A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques [312].
The principle is to add one or several random value(s) (called mask(s)) to every
sensitive variable occurring during the computation. Masks and masked vari-
ables propagate throughout the cipher in such a way that every intermediate
variable is independent of any sensitive variable. This strategy ensures that the

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 262 2011.
© Springer-Verlag Berlin Heidelberg 2011

Affine Masking against Higher-Order Side Channel Analysis 263

instantaneous leakage is independent of any sensitive variable, thus rendering
SCA difficult to perform. The masking can be characterized by the number of
random masks used per sensitive variable. A masking that involves d random
masks is called a d"-order masking. Such a masking can always be theoretically
broken by a (d + 1)"-order SCA, namely an SCA that targets d + 1 intermedi-
ate variables at the same time [16/24/20]. However, the noise effects imply that
the difficulty of carrying out a d*"-order SCA in practice increases exponentially
with d [3]. The d''-order SCA resistance (for a given d) is thus a good secu-
rity criterion for implementations of block ciphers. Unfortunately, only a few
higher-order masking schemes exist and they are costly in timings [24/521122].

Instead of looking for perfect security against d*P-order SCA, an alternative
approach consists in looking for practical resistance to these attacks. It may
for instance be observed that the efficiency of higher-order SCA is related to
the way the masks are introduced to randomize sensitive variables. Merely all
masking schemes proposed in the literature are based on Boolean masking where
masks are introduced by exclusive-or (XOR). This masking enables securing
implementations against first-order SCA quite efficiently, however it is especially
vulnerable to higher-order SCA [T6JI§] due to the intrinsic physical properties
of electronic devices.

A first work towards the direction of practical — instead of perfect — secu-
rity against d'"-order SCA has been published by von Willich [27]. It argues
that affine masking offers an improved SCA resistance compared to standard
first-order masking schemes. However, implementation issues are not taken into
account and the paper does not explain how to apply affine masking to usual
block ciphers such as AES or DES. Moreover, von Willich defines the affine
masking over the vector space GF(2)". When defined in such a way, it implies
the generation of an invertible n X n binary matrix, and n scalar products over
GF(2) each time a sensitive variable must be masked. Those steps, and espe-
cially the scalar products, are very costly when applied in software. A natural
idea to deal with this issue is to define the operations over the field GF(2") in
place of the vector space GF(2)™. The addition operation stays unchanged and
the field multiplication is a particular case of the matrix product (the security
analysis conducted in this paper shows that both operations offer similar SCA
resistance). The idea of masking sensitive data with a multiplicative mask in
a field structure was first proposed in [I] to protect an AES implementation.
However it was shown in [I1] that such a masking is insecure since, by nature,
it fails in masking the zero value. A similar zero-value first-order flaw was sub-
sequently exploited in [8] to break the linear masking proposed to protect DES
n [12]. These works clearly show that letting the zero value unmasked renders
a masking scheme insecure.

Our contribution. In this paper, we propose a practical application of affine
masking to AES. Namely, we present an implementation of the block cipher such
that every 8-bit intermediate result z € GF(256) is manipulated under the form
G(z) =11 2® 19, where (r1,r9) € GF(2")* x GF(2") is a pair of random val-
ues generated before each new execution of the algorithm. Our scheme is very

264 G. Fumaroli et al.

efficient as it maintains the same compatibility as Boolean masking (which is
a particular case of our scheme for r; = 1) with the linear transformations of
the algorithm. In the second part of the paper, we conduct an in-depth anal-
ysis which shows that the joint use of a multiplicative mask with a Boolean
mask greatly improves the resistance of the scheme to higher-order SCA. As we
argue, the multiplicative mask enables to complicate the relationship between
the unmasked data and the leakage while the Boolean mask prevents the zero-
value leakage. Our analysis pinpoints the leakage reduction resulting from affine
masking as well as its improved higher-order SCA resistance.

Length constraints do not permit us to give all proofs in details. They can be
found in the extended version [7] of this paper.

2 Securing AES with Affine Masking

The AES is an iterated block cipher algorithm. It is composed of several rounds
that operate on a 4 x 4 array of bytes denoted by s = (s; j)o<i,j<3 and termed
the state. At the beginning of AES in encryption mode, the state is initialized
with the plaintext.

Let us first briefly introduce the outlines of our method. Initially, both the
state s and the master key k = (k; j)o<i,j<3 are masked by applying a randomly
generated affine transformation G to each s;; and k; ;. Then, all the original
transformations of the cipher are adapted in order to process on and to return
affinely masked variables. Should the additive part of the mask cancel out within
the computation, a temporary additive mask is introduced in order to avoid any
potential zero-value first-order flaw. Eventually, the ciphertext (c; ;)o<i,j<s is
simply recovered by applying the inverse mapping G~ to each coordinate of the
final value of the masked state (which contains the values G(c; ;)).

In the following section, we explain how the AES implementation can be
adapted to securely operate on a state masked by an affine transformation G.

2.1 Affine Masking Applied to AES

A round of the AES is composed of the four following transformations whose
description can be found in [7, Section 2.1]: AddRoundKey, SubBytes, ShiftRows
and MixColumns. Each of them operates on the state s and updates it. To distin-
guish the updated state from the state at input of the transformation, we denote
it by s’ = (s} j)o<i,j<3-

To secure the state manipulations thanks to the affine masking counter-
measure every manipulation of s is replaced by a manipulation of G(s) =
(G(si,5))o<i,j<3- In the following, we assume that G is defined with respect to a
pair (r1,79) of random elements of GF(256)* x GF(256) as:

G:z € GF(256) — r1 - @ ro € GF(256) .

In the sequel, G(x) shall be called the G-representation of x and the variables 71
and r(shall be referred to as the multiplicative mask and and the additive mask
respectively.

Affine Masking against Higher-Order Side Channel Analysis 265

Let us now explain how the four main AES primitives can be easily adapted
to securely operate on a state masked by an affine transformation G. We shall
denote by G(s) = (G(si,j))o<i,j<3 the masked state at the input of each trans-
formation and by G(s’) = (G(s] ;))o<i,j<s the masked state at the output.

1. To securely compute the G-representation of the output of AddRoundKey
from the G-representations of the input state and the round key, each byte
G(s) of the state is XOR-ed with the corresponding round key byte G(k) as
follows:

G(s') = (((G(s)&r) @ G(k)) @mo) &7 .

where 7 is randomly chosen in GF(256). The method is essentially based on
the following observation: each masked output byte G(s’) can be computed
as G(s') = G(sd k) = G(s) ® G(k) ® ro. A temporary random mask has to
be introduced to ensure that the state bytes are always masked affinely and
not only linearly.

2. To process the s-box transformations, we propose to use a new look-up table
S that is recomputed at each new AES execution from both G and S such
that for every x € GF(256), we have:

S[G(x)] = G(Sz]) - (1)

It can be easily checked that processing S on the G-representation of a byte
s;,j results in the G-representation of s; ; = S[s; ;]. Securing the SubBytes
transformation with the affine masking thus simply consists in applying S to
each byte of the state: B
G(si ;) < S[G(si)] -

3. Since we have ShiftRows(G(s)) = G(ShiftRows(s)) and since ShiftRows op-
erates on each byte separately, it can be directly applied on G(s) without
introducing any flaw:

G(s') < ShiftRows(G(s)) .

4. Since each output byte of MixColumns can be expressed as a linear function
of the bytes of the input state over GF(256), it can be checked that we have:

MixColumns(G(so,c), G(S1,c); G(S2,c), G(83,c))
= (G(s0,c), G(51,c), G(52,0), G(85..)).-

This suggests to perform the following steps to securely process MixColumns
on the G-representation of the state columns.

tmp — 1 ® G(s0,c) B G(s1,c) D G(52,c) B G(83,¢)
G(80,.) < xtimes(G(so,c) © 1" © G(s1,c)) ® tmp © G(s0,c) © 7 © xtimes(r')
G(s]) « xtimes(G(s1,c) D" © G(s2,c)) © tmp & G(s1,c) © r @ xtimes(r’)
G(s5,.) « xtimes(G(s2,c) © 1" © G(s3,c)) © tmp © G(s2,c) © 7 S xtimes(r')
G(s5,) — 1@ G(s),) ©G(s,0) ©Gs5,.) O tmp

)

266 G. Fumaroli et al.

where xtimes denotes a look-up table for a multiplication by some constant in
the field GF(256) (see [0] for more details). To ensure that the state bytes are
always masked affinely and not only linearly, two temporary random masks
r,r’ € GF(256) have to be introduced. Moreover, the operations above must
be processed from left to right.

Finally, since the round key derivation is a composition of the previous transfor-
mations, it can be protected by the exact same methods as previously described.

2.2 Time-Memory Trade-Offs

Affine masking requires 32 computations of GG in order to mask both the plaintext
and the key, and eventually 16 computations of G~! in order to unmask the
ciphertext. Field multiplications and inversions involved in affine masking can
be efficiently implemented with the well-known log/alog tables technique as long
as conditional statements are avoided to thwart timing attacks (see Appendix A
in [7] for an example of such an implementation).

Essentially, the processing of G(s; ;), G~'(s; ;) and S(s; ;) may be conducted
on-the-fly or may involve pre-computations. Both strategies have different im-
pacts on time and storage costs.

The best time-memory trade-off consists in using two look-up tables for G
and S, and in processing one field multiplication and one addition each time
G~! must be performed on a state element. The different steps of the look-up
table generations of G and S are summarized in Algorithm [l

Algorithm 1
INPUT: 79 € GF(256), r1 € GF(256)", and the LUT S for the AES s-box
OutpuT: The LUTSs for G and S

1. for i =0 to 255 do
2. Gl]l<mr-i®ro
3. for i =0 to 255 do
1. S[G) — GIS]]
5. return (G,S)

As G~ is not stored as a look-up table, each byte 5 of the final output state
has to be unmasked using s « r; ' - (3@ o).

This way of implementing the affine masking requires the storage of 512 bytes
for the look-up tables G and S. It also involves 256 multiplications in the field
GF(256) and 256 XORs to generate G, while Sis generated using look-ups only.
The initial masking of the plaintext and the key only requires 32 table look-ups.
Unmasking implies a total of 16 inversions and 16 multiplications in the field
GF(256).

As an alternative to the previous algorithm, two variants can be proposed.

1. First variant. g, G and G~! are pre-computed using three look-up tables
in order to save on-the-fly computations. Masking both the plaintext and

Affine Masking against Higher-Order Side Channel Analysis 267

the key involves 32 table look-ups and unmasking the ciphertext involves 16
table look-ups. This method requires the storage of 3 x 256 bytes for these
look-up tables. It also involves 256 multiplications in the field GF(256) to
generate G.

2. Second variant. This variant involves a single look-up table for S and
performs every other operation on-the-fly. It requires the storage of 256 bytes
for this look-up table. It also involves 2 x 256 multiplications in the field
GF(256) to generate S, and 32 multiplications for the initial masking of the
plaintext and the key. Unmasking implies a total of 16 inversions and 16
multiplications in the field GF(256).

2.3 Implementation Results

In this section, we compare several AES implementations protected by affine
masking, first-order Boolean masking and second-order Boolean masking. The
codes are written in assembly language for an 8051-based 8-bit architecture.
More details about these countermeasures can be found in the respective papers
[1512T24]. Table[dllists the timing and memory performances of each implemen-
tation.

Table 1. Comparison of AES implementations

Method Reference Cycles RAM (bytes) ROM (bytes)
Unprotected Implementation
No Masking Na. 2 x 10° 32 1150
Provably Secure First-Order SCA Resistant Implementation
First-Order Boolean Masking [15] 9 x 10* 256 + 35 1744
Affine Masking (ref. implem.) This paper 29 x 103 512 4 37 2857
Affine Masking (1°° var.) This paper 28 x 10° 768 + 36 2985
Affine Masking (2°¢ var.) This paper 38 x 10° 256 + 37 3252
Provably Secure Second-Order SCA Resistant Implementation
Second-Order Boolean Masking [24] 594 x 10*> 512+ 90 2336
Second-Order Boolean Masking [21] 672 x 10° 256 + 86 2215

Table M shows that the implementation of AES protected by affine masking is
3.2 to 4.2 times slower than the one protected by first-order Boolean masking,
whereas the memory overhead is either +0% (2°¢ variant) or +100% (reference
implementation) or +200% (3rd variant). When compared to the second-order
Boolean masking proposed in [24] and [21], the affine masking of AES is 17.7 times
faster with the third variant and 20.5 times faster with the first variant.

As every intermediate variable of the computation is affinely masked, we keep a
perfect security with respect to first-order SCA. Moreover, as argued in the next sec-
tion, we significantly increase the resistance of the implementation against higher-
order SCA. In view of the implementation performances depicted in Table[d] this

268 G. Fumaroli et al.

rise in security has been obtained at the cost of a very small overhead when com-
pared to the overhead of provably secure second-order Boolean masking.

3 Resistance to Higher-Order SCA

Affine masking is not inherently perfectly secure against higher-order SCA. It can
for instance be checked that several pairs of intermediate variables of the scheme
proposed in Sect. [2] depend on sensitive variables. We however argue in this sec-
tion that affine masking is much more resistant than the widely-used Boolean
masking. To highlight this statement, we quantify the information leakage re-
duction provided by affine masking and we study the efficiency of higher-order
DPA [16120] against it. For comparison purposes, we apply the same analysis to
Boolean masking. We eventually give the results of several attack experiments in
order to check the reliability of our theoretical analysis with respect to practical
attack scenarios.

3.1 Leakage of Affine Masking

In what follows, we shall consider that an intermediate variable U; is associated
with a leakage variable L; representing the information leaking about U; through
side channel. We will assume that the leakage can be expressed as a deterministic
leakage function ¢ of the intermediate variable U; with an independent additive
noise B;. Namely, we will assume that the leakage variable L; satisfies:

In the following, we shall call d-order leakage a tuple of d leakage variables L;
corresponding to d different intermediate variables U; that jointly dependent on
some sensitive variable. As already argued in Sect. 2] when an implementation
is correctly protected by affine masking (i.e. when every sensitive variable is
affinely masked), no first-order leakage of sensitive information occurs. This is a
consequence of the action of the random additive mask Ry. However, as detailed
hereafter, second-order and third-order information leakages do occur in the
presence of affine masking.

Second-order leakage. To recover sensitive information when affine masking is
applied, one must at least consider the joint leakage of two different intermediate
variables U; and Us that share common masks. Those variables can thus be
assumed to satisfy:

{UlzG(Zl):R1'Z1@RQ (3)

UQZG(ZQ) =Ri-Zy® Ry ’

where R; and Ry are random variables defined over GF(2")* and over GF(2")
respectively and where Z; and Z, are sensitive variables. A particular case is
Z5 = 0 which amounts to target the pair (G(Z1), Rp).

In the following, we shall assume that R; and Ry are uniformly distributed
over GF(2™)* and over GF(2") respectively and that they are mutually indepen-
dent of the pair (Z7, Z2), and of each other. After denoting by Z the sensitive
variable Z1 @ Zs, we obtain the following lemma.

Affine Masking against Higher-Order Side Channel Analysis 269

Lemma 1. The pairs (Uy,Uz) and (G(Z), Ry) are identically distributed.

Lemma [lshows that the second-order leakage corresponding to a pair of sensitive
variables (Z1, Z2) both affinely masked is equivalent to the the second-order
leakage on a sensitive variable Z = Z; @& Z5 that is affinely masked and on the
corresponding additive mask Ry. For this reason, in the following, we shall only
consider a second-order leakage corresponding to a pair (G(Z), Ry), with Z being
possibly the sum of two sensitive variables. The analysis hereafter shall further
make use of the following lemma.

Lemma 2. The random pair ((L1, L2)|Z = z) is identically distributed for every
z € GF(2™)* and the random pair ((L1,L2)|Z = 0) has a distinct distribution.

Lemma [2] shows that the second-order leakage (L1, L2) only reveals information
about whether Z equals 0 or not (i.e. whether Z; equals Z; or not). Such a
leakage can be thought as a zero-value second-order leakage analogously to the
zero-value first-order leakage of multiplicative masking [IIT1]. Intuitively, we have
the following diagram where each arrow indicates an additional security level.

No countermeasure
1%t-order leakage

/ \
Boolean masking Multiplicative masking
2™ order leakage zero-value 1%-order leakage
\ /

Affine masking
zero-value 2™¢-order leakage

Third-order leakage. To get more information about Z, a natural idea is
to exploit (L1, Ls) together with the leakage Lz on the multiplicative mask
Us = R;. Indeed, while the pair (U, Us) only reveals whether Z equals 0 or not,
the triplet (Uy, Us, Us) does reveal the full value of Z by:

Z=U;' (&) =R (G(Z)) & G(Z,)). (4)

However, the information about the U;’s that leak through the L;’s does not
enable a simple recovery as in ([@l). In fact, we expect that extracting information
on Z through side channels is more difficult when affine masking is applied
in place of Boolean masking. Indeed, when the mask is introduced by bitwise
addition, then each bit of the mask acts on a single bit of the sensitive variable.
In this case, every bit of the masked variable depends on a single bit of the mask.
Since bits of processed variables usually contribute to the leakage independently,
the information leaking about the mask and the information leaking about the
masked variable can be efficiently combined to unmask the variable. This can
be illustrated in the Hamming weight leakage model (where ¢ = HW) by the
important correlation between HW(Z) and either [HW(Z & Ry) — HW(Ry)| or
(HW(Z @ Ro) —n/2)(HW(Ry) —n/2) [16/20]. When a further mask is introduced

270 G. Fumaroli et al.

by multiplication in GF(2™)*, the additive mask still prevents from a zero-value
first-order leakage (as for multiplicative masking [11]), and the new multiplicative
mask ensures that every bit of the masked variable depends on every bit of both
the sensitive variable and the multiplicative mask. In this case, it is legitimate
to expect that the information leaked by side channel is much more difficult to
exploit to recover information about Z. For instance, there is no evident way to
combine HW(Z - R;) and HW(R;) to construct a variable with high correlation
with HW(Z). In order to validate this intuition, we conduct in the next section
an information theoretic evaluation of the leakages resulting from affine masking
and different kinds of masking.

3.2 Information Theoretic Evaluation

In order to evaluate the information revealed by affine masking leakages
(first-order and second-order) we follow the information theoretic approach sug-
gested in [25]. Namely we compute the mutual information between the sensi-
tive variable Z and either the pair of leakages (L1, L2) or the triplet of leakages
(L1, Lo, L3). For comparison purposes, we proceed similarly for Boolean masking
and multiplicative masking. We list hereafter the leakages we consider and the
underlying leaking variables:

— 2" order leakage of 15t-order Boolean masking: (Z @ Ry, Ro)
3rd-order leakage of 2"%-order Boolean masking: (Z @ Ry ® R}, Ro, R})
— 1%t-order leakage of multiplicative masking: Ry - Z

— 2" order leakage of multiplicative masking: (R; - Z, Ry)

— 2" order leakage of affine masking: (Ry - Z @ Ry, Ro)

— 3" order leakage of affine masking: (Ry - Z @ Ry, Ry, R1)

The variables Z, Ry, R}, and R; are assumed to be uniformly distributed (over
GF(256) for the former and over GF(256)* for R;) and mutually independent.
For each kind of leakage, we computed the mutual information between Z and
the tuple of leakages in the Hamming weight model with Gaussian noise: the
leakage L; related to a variable U; is distributed according to (@) with ¢ =
HW and B; ~ N(0,02) (the different B;’s are also assumed to be mutually
independent). In this context, the signal-to-noise ratio (SNR) of the leakage is
defined as Var [p(U;)] /Var [B;] = 2/0?. Fig. [l shows the mutual information
values obtained for each kind of leakage with respect to an increasing noise
standard deviation over [0.1,4.47] (i.e. a decreasing SNR over [}, 200]). These
results demonstrate the information leakage reduction implied by the use of affine
masking. As expected, affine masking leaks less information than multiplicative
masking and first-order Boolean masking for all SNRs. We further observe that
affine masking leaks less information than second-order Boolean masking when o
is lower than 2.36, that is when the SNR is greater than 0.36. This first analysis
allows us to conclude that affine masking is less leaky than 2"%-order Boolean
masking when the amount of noise in the leakage is small. On the other hand,
these results illustrate that a 2"d-order SCA security is asymptotically better
than a 1%%-order SCA security even if the masking relation is more complicated

Affine Masking against Higher-Order Side Channel Analysis 271

+= =110 Boolean
= =120 Boolean

N = = = Mult (10 Leak)
\

= = = Mult (20 Leak)
Affine (20 Leak)|
Affine (30 Leak)

Iogm(MI)

noise standard deviation ¢

Fig. 1. Mutual information (log,,) between the leakage and the sensitive variable over
an increasing noise standard deviation

in the latter case. Similarly, we see that for a low noise amount, multiplicative
masking is more resistant than 1%*-order Boolean masking although it does not
thwart 1%t-order SCA while Boolean masking does.

Fig. [also confirms our intuition regarding the information provided by the
leakage on the multiplicative mask. Observing the obtained mutual information
for affine masking and for multiplicative masking, we note that the information
gained from the leakage on the multiplicative mask is low. This phenomenon
amplifies when ¢ increases and, beyond ¢ ~ 2 the distance between the mutual
information curves almost vanishes for both kinds of masking. This means that
when the noise is sufficiently strong, the leakage on the multiplicative mask does
not provide useful information anymore and only the zero-value leakage reveals
sensitive information.

In this section, we have quantified the impact of affine masking on the reduc-
tion of the information leakage. We will now see to which extent this reduction
also applies to the efficiency of side channel attacks on affine masking.

3.3 Higher-Order DPA Evaluation

Let us assume that Z depends on the plaintext and of a subkey k*, and let
us denote by Z(k) the hypothetic value of Z for a guess k on k*. In a higher-
order DPA (HO-DPA) [16120], the attacker tests the guess k by estimating the
correlation coefficient p [¢(Z(k)),C(L)], where C is a combining function that
converts the multivariate leakage L into a univariate signal and where ¢ is a
prediction function chosen such that ¢(Z) is as much as possible correlated to
C(L). The guess k leading to the greatest correlation in absolute value is selected
as key-candidate. In [I4], the authors show that the number of traces required
to mount a successful DPA attack is roughly quadratic in p~! where p is the
correlation coefficient p [¢(Z),C(L)] (that is the expected correlation for the

272 G. Fumaroli et al.

correct key guess). The latter can therefore be used as a metric for the efficiency
of a (HO-)DPA attack.

The analysis conducted in [20] states that a good choice for C is the normalized
product combining:

C:L— H(L,- - E[L]). (5)

Although the effectiveness of the normalized product combining has been only
studied in [20] in the context of Boolean masking, this combining function stays
a natural choice against any kind of masking since p [¢(Z(k)),C(L)] is related
to the multivariate correlation] between @(Z(k)) and every coordinate of L [26].
Besides, in the presence of (even little) noise in the side-channel leakage, the
HO-DPA with normalized product combining is nowadays the most efficient
unprofiled attack against Boolean masking in the literature (see for instance
[2002622]). For those reasons, it is natural to study how efficient is a HO-DPA
with normalized product combining against affine masking compared to Boolean
masking.
In [20], it is also shown that the best choice for ¢ given C is:

p:z—E[CL)|Z =2]. (6)

As explained in [20], the attacker may not be able to evaluate ¢ without knowing
the exact distribution of L given Z (as in a profiled attack scenario). In a security
evaluation context, it however makes sense to assume that the attacker has
this ability. As proved in [7, Appendix B]|, the optimal prediction function ¢
computed according to (B)) for the zero-value 2"4-order leakage of affine masking
is an affine transformation of the dirac function &g defined a3

=10kt 20 g

Therefore, we have p [¢(Z(k)),C(L)] = £p[do(Z(k)),C(L)], that is, the attack
performs similarly with ¢ and dq.

Remark 1. Computing p [do(Z(k)),C(L)] amounts to performing a zero-value
DPA attack as in [I1] but on the combined leakage C(L). After assuming that
Z(k) is uniformly distributed over GF(2"), it can indeed be checked that the
covariance between do(Z(k)) and C(L) (which is the discriminating element in
the correlation) equals 27;;1E [C(L)|Z(k) # 0] — . E[C(L)| Z(k) = 0].

When the leakage satisfies () with ¢ = HW and B; ~ N(0,02) (i.e. when the
Hamming weight leakage model with Gaussian noise is assumed), it is shown in

! What we call multivariate correlation here is the straightforward generalization of
the correlation coefficient to more than two variables (see [26]).

2 This is actually true whatever the leakage function and noise distribution as a direct
consequence of Lemma

Affine Masking against Higher-Order Side Channel Analysis 273

[7, Appendix B] that the coefficient p,g obtained for the zero-value second-order
leakage of affine masking satisfies:

n

(402 +n)y/2n — 1’ ®

Paff =
where n is the bit-size of Z.

We also computed the correlation coefficient corresponding to the 3"9-order
leakage of affine masking. We did not obtained explicit formulae for this coef-
ficient but we observed for several values of n and o that it was always lower
that pag. This suggests that HO-DPA with normalized product combining works
better against the 2°-order leakage of affine masking than against the 3*-order
one. From our analysis, we therefore concluded that p,g not only quantifies the
resistance of affine masking against 2°d-order DPA, but also that against HO-
DPA in general.

Regarding Boolean masking, it has been shown in [23] that the correlation
Pbool corresponding to HO-DPA with normalized product combining against
d*™®-order Boolean masking satisfies (in the Hamming weight model):

_(_1)d vn
pbool*(]-) (n+4g2)d;1 . (9)

Let us denote by Nug (resp. Npool) the number of leakage measurements for a
successful attack on affine masking (resp. Boolean masking). Since, according
to [14], Nag and Npoo are respectively roughly quadratic in the values of the

inverse of the correlation coefficients, the ratio]f,\:’ o satisfies:
Naff ~ Pbool 2 _ 2" —1 1 1d (10)
Nbool Paff n n+ 402 .
N 1-d
Let v denote the value > ! (nﬁw 2) . In view of (I0), affine masking is more

resistant to HO-DPA than d*"-order Boolean masking if and only if v > 1.
Comparing the resistance of Boolean masking and affine masking against HO-
DPA thus amounts to study when v > 1 is satisfied. Let us study this inequality
with respect to d:

— When d =1, we have v > 1 for all n > 1 whatever 0. We deduce that affine
masking is more resistant to HO-DPA than first-order Boolean masking for
all SNRs. Moreover, from (I0), we expect that HO-DPA against first-order
Boolean masking required around 32 times more leakage measurements than
against affine masking whatever o.

— For d =2, v > 1 if and only if 02 < (2" — n? — 1)/4n. This implies that for
the case of AES where n = 8, affine masking is more resistant to HO-DPA
than 2"d-order Boolean masking if ¢ < 2.44, which corresponds to a SNR
greater than 0.335.

— For d > 3, v is always smaller than 1 for every n > 1. Affine masking is hence
less resistant to HO-DPA than 3"d-order Boolean masking for all SNRs.

274 G. Fumaroli et al.

==+ 10 Boolean
‘‘‘‘‘ 20 Boolean
B R 30 Boolean

.o ——— Affine (20-DPA)
lme ~o Affine (30-DPA)

correlation

0 0.5 1 15 2 25 3 35 4 45
noise standard deviation ¢

Fig. 2. Correlation values with respect to o (logarithmic scale)

Eventually Fig. Rl plots the correlation values pyoo1 for d € {1,2,3}, pagr (20-DPA
against affine masking) as well as the correlation values obtained for the third-
order DPA against affine masking. It illustrates the fact that the correlation
corresponding to the 3'%-order leakage of affine masking is always lower than
that corresponding to the 2"d-order leakage of affine masking. Moreover and as
expected, it shows that the coefficient p,g is always lower than ppeo for d = 1,
always greater than ppeo for d = 3, and lower than pyoo d = 2 only when
o <2.44.

3.4 Attack Experiments

In order to confront the theoretical analyses conducted in the previous sections
to practice, we performed several attack experiments. In a first place, we applied
several side-channel distinguishers to leakage measurements simulated in the
Hamming weight model with Gaussian noise. We not only applied (HO)-DPA,
but also two other kinds of attacks, namely (higher-order) Mutual Information
Analysis (MIA) and Template Attacks (TA). We chose to test these three side-
channel distinguishers against the different kinds of masking firstly because they
are the most widely used in the literature, and secondly because they represent a
brand spectrum of adversary capabilities. As already mentioned, HO-DPA with
normalized product combining is the most efficient unprofiled attack against
Boolean masking. On the other hand HO-MIA does not rely on a specific com-
bining function, which is of interest for a fair comparison between Boolean and
affine masking. Eventually, assuming that the adversary’s templates are perfect,
template attacks are the best possible attacks and hence they give the maximal
security level reached by each kind of masking. Our methodology enabled us to
observe how the different attacks perform against affine masking and to com-
pare its resistance with that of the Boolean/multiplicative masking for different

Affine Masking against Higher-Order Side Channel Analysis 275

SNRs. Afterward, we performed some attacks against real power consumption
measurements of smart-card implementations in order to check our observations
in a real-world context.

Attack simulations. The leakage measurements have been simulated as sam-
ples of the random variables L; defined according to () with ¢ = HW and
B; ~ N(0,0?) (the different B;’s are also assumed independent). For all the
attacks, the sensitive variable Z was chosen to be an AES s-box output of the
form S(X @ k*) where X represents a varying plaintext byte and k* represents
the key byte to recover.

Side-channel distinguishers. We applied higher-order DPA such as described in
Sect. B3land we also applied higher-order MIA (HO-MIA) and template attacks.
In a higher-order MIA [T99], the correlation coefficient is replaced by the mutual
information: the guess k is tested by estimating I(¢(Z(k)); L). Since the mutual
information is a multivariate operator, this approach does not involve a combin-
ing function. In a template attack [4/I7], the attacker owns some templates of the
leakage that he previously acquired during a profiling phase. More precisely, he
has some estimations of the probability distributions (¢, z) — Pr[L = ¢|Z = z].
Based on those estimations, the attacker tests a guess k by estimating the like-
lihood Pr[k* = k|L, X].

Target variables. Each attack was applied against the leakages of affine masking,
multiplicative masking and Boolean masking. The target variables are those
listed in Sect. for Z being S(X & k*).

Prediction functions. For each (HO-)DPA, we chose ¢ to be the optimal predic-
tion function ([@]). As explained in Sect. B3] this leads us to select the dirac func-
tion &g in the attacks against the zero-value 2"d-order leakage of affine masking
(resp. the zero-value 1%%-order leakage of multiplicative masking) and, according
to [23], to select the Hamming weight function in the attacks against Boolean
masking of any order.

For the (HO-)MIA attacks, we chose ¢ such that it maximizes the mutual
information I(¢(Z(k)); L) for k = k* while ensuring discrimination (i.e. the mu-
tual information must be lower for k # k*). As a direct consequence of Lemma[2]
we chose ¢ = & to attack the zero-value 2"d-order leakage. Naturally, we did the
same choice for the zero-value 1%t-order leakage of multiplicative masking. For
the third-order MIA on affine masking (and second-order MIA on multiplicative
masking), ¢ was chosen to be the identity function since it maximizes I(¢(Z); L).
However, for the attack to succeed with such a choice, the target sensitive vari-
able Z must be such that the function X — Z = fj+(X) (where X is the plain-
text part involved in Z) is not injective [I0/T9]. This constrained us to slightly
modify the target variables for these attacks. Against affine masking, we targeted
an affinely masked s-box output G(S(X & k*)) and an affinely masked plaintext
byte G(X') (together with the multiplicative mask R;), which by Lemmal[Ilyields
a non-injective function (X, X’) — Z = S(X & k*) @ X'. Against multiplicative

276 G. Fumaroli et al.

masking, we targeted the bitwise addition between two s-box outputs, which
yields a non-injective function (X, X’) — Z = S(X @ k*) ® S(X’ @ k*'). Even-
tually, every HO-MIA against Boolean masking was performed with ¢ = HW
since the distribution of (HW(Z @ Ry), HW(Ry)) only depends on HW(Z), and
therefore 1(Z; (HW(Z @ Ro), HW(Ry))) = I(HW(Z); (HW(Z & Ro), HW(Ry)))
(the same argument holds for every masking order).

Pdf estimation method. For the (HO-)MIA attacks, we used the histogram esti-
mation method with rule of [I0] for the bin-widths selection.

Leakage templates. For the template attacks, the attacker’s templates were as-
sumed to be perfect. In our context, this means that the attacker is aware of
¢ =HW and B; ~ N(0,0?) for every i, and he uses this knowledge to evaluate
the real probabilities Pr[L|Z].

Attack simulation results. Each attack simulation was performed 100 times for
various SNR values (+o00, 1,1/2,1/5 and 1/10), that is, for several noise standard
deviation values (0, V4 2, 2, V10 and 2/ 5). Table 2] summarizes the number of
leakage measurements required to observe a success rate of 90% in retrieving k*
for the different attacks.

The results presented in Table 2] show the significant gain of security induced
by affine masking compared to multiplicative and first-order Boolean masking.
Some more specific observations are reported hereafter.

— Affine masking versus multiplicative masking. In all scenarios, affine
masking is more resistant than multiplicative masking. When the SNR de-
creases, the resistance of affine masking increases faster than that of multi-
plicative masking. This is a consequence of the fact that affine masking is
perfectly secure against first-order attacks which is not the case of multi-
plicative masking.

— Affine masking versus Boolean masking. When compared to first-
order Boolean masking, a successful HO-DPA requires between 30 and 40
more leakage measurements against affine masking. For low noises (i.e. high
SNRs), HO-DPA is also less efficient against affine masking than against
second-order masking. The tide is turned when noise increases, which cor-
roborates that higher-order masking combined with noise provides good re-
sistance to SCA [3]. These results validate the theoretical analysis done in
Sect. B3] where it is expected that affine masking is around 32 times more
resistant than first-order Boolean masking and more resistant than second-
order Boolean masking only when the SNR is greater than 0.335. On the
other hand, the results of template attacks confirm that affine masking is
always more resistant than first-order Boolean masking, and that it is also
more resistant than second-order Boolean masking for high SNRs. It is in-
teresting to note the strong correlation between the information theoretic
evaluation of Sect. and the efficiency of template attacks. We see that
template attacks are more efficient against second-order Boolean masking

Affine Masking against Higher-Order Side Channel Analysis 277

Table 2. Number of leakage measurements for a 90% success rate

Attack \ SNR +00 1 1/2 1/5 1/10
Unprofiled Attacks against Boolean Masking
20-DPA on 10 Boolean Masking 150 500 1500 6000 20 000
20-MTIA on 10 Boolean Masking 100 5000 15000 50 000 160 000
30-DPA on 20 Boolean Masking 1500 9000 35000 280000 > 10°
30-MIA on 20 Boolean Masking 160 160 000 650 000 > 10® > 10°
Unprofiled Attacks against Multiplicative Masking
10-DPA on Multiplicative Masking 900 1500 2500 4000 7500
10-MIA on Multiplicative Masking 700 2500 3500 5500 15000
20-DPA on Multiplicative Masking 2500 7500 20 000 60 000 220 000
20-MTIA on Multiplicative Masking 4000 35000 55000 100 000 200 000
Unprofiled Attacks against Affine Masking
20-DPA on Affine Masking 6500 20 000 45000 170 000 650 000
20-MIA on Affine Masking 5500 100 000 600 000 > 10° > 10°
30-DPA on Affine Masking >10 >10° >10® >10° > 10°
30-MIA on Affine Masking 100 000 >10° >10° >10° > 10°
Profiled Attacks

20-TA on Boolean Masking 20 500 1200 7000 20 000
30-TA on 20 Boolean Masking 20 8000 35000 300000 > 10°
10-TA on Multiplicative Masking 500 1300 1900 4000 7000
20-TA on Multiplicative Masking 60 900 1400 4000 8000
20-TA on Affine Masking 1300 15000 45000 200 000 > 10°
30-TA on Affine Masking 260 15000 35000 200 000 10°

than against affine masking when the SNR is greater than 1/2 (i.e. 0 < 2)
which corresponds to the situation where the information leakage of affine
masking is lower than that of second-order Boolean masking according to
Fig.[Il This observation is in accordance with the argumentation of [25] that
the mutual information metric is related to the efficiency of template attacks.
3rd.order attacks against affine masking. It can be observed that tar-
geting the multiplicative mask to mount a third-order attack against affine
masking does not improve the efficiency of unprofiled attacks. On the con-
trary, they become clearly inefficient. This is quite natural for the third-order
DPA using the product combining since unlike for an additive mask, such a
combination is not suitable to remove a multiplicative mask. Therefore, the
contribution of the third leakage to the combined leakage mainly acts as a
noise, which renders the attack inefficient. For third-order MIA, the efficiency
loss may result from the fact that precise estimations of 3-variate densities
require significantly more samples than for bivariate densities which slows
down the attack efficiency convergence. For template attacks, targeting the
multiplicative mask improves the attack efficiency for high SNRs. However
when the noise increases the efficiency of 20-TA and 30-TA against affine

278 G. Fumaroli et al.

masking become similar. Once again, this corroborates the information the-
oretic evaluation of Sect. which shows that the information provided by
the third-order leakage of affine masking get closer to that provided by the
second-order leakage as the noise increases.

— (HO-)MIA wversus (HO-)DPA. (HO-)MIA attacks are always less effi-
cient than the corresponding (HO-)DPA. A possible explanation is that the
measurements are simulated in the Hamming weight model which is a situa-
tion more favorable to DPA attacks than to MIA attacks. A second possible
explanation is that the rule proposed in [10] for the bin-widths selection in
the MIA is not suitable when targeting affine masking. This point is let for
further research.

Practical attacks. In order to confirm our simulation results, we performed
several attacks against software implementations of the AES s-box executed on
a 8051 microcontroller. Results of these attacks are reported in [7, Figure 5] and
corroborate quite well the attack simulations we performed for an SNR equal to
1/2 (which was approximately the observed SNR on the test device).

4 Conclusion

In this paper, we introduced affine masking as an alternative to the commonly
used Boolean masking to protect implementations of block ciphers against side
channel analysis. The principle is to mask each sensitive variable both additively
and multiplicatively in order to complicate the masking relation and therefore
achieve better higher-order resistance in practice. We described an affine masking
scheme for AES and we provided some implementation results for our scheme.
Moreover, we conducted an in-depth analysis which demonstrates that affine
masking significantly improves the resistance to higher-order SCA compared to
Boolean masking. This analysis together with our implementation tests clearly
show that the proposed scheme provides a good performance-security trade-off
compared to existing countermeasures.

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Kog, C.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309-318. Springer, Heidelberg (2001)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16-29.
Springer, Heidelberg (2004)

3. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
398-412. Springer, Heidelberg (1999)

4. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Kog, C.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13-28. Springer, Heidelberg
(2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Affine Masking against Higher-Order Side Channel Analysis 279

. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-

der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28-44. Springer, Heidelberg (2007)

. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-

order side channel analysis (extended version). Cryptology ePrint Archive, Report
2010/523 (2010), http://eprint.iacr.org/

. Fumaroli, G., Mayer, E., Dubois, R.: First-Order Differential Power Analysis

on the Duplication Method. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 210-223. Springer, Heidelberg (2007)

. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order

DPA Attacks: Multivariate Mutual Information Analysis. Cryptology ePrint
Archive, Report 2009/228 (2009), http://eprint.iacr.org/

Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426-442. Springer,
Heidelberg (2008)

Goli¢, J., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Kog, C., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198-
212. Springer, Heidelberg (2003)

Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Kog, C.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158-172. Springer, Heidelberg (1999)
Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999)
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks — Revealing the Secrets
of Smartcards. Springer, Heidelberg (2007)

Messerges, T.: Securing the AES Finalists against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150-164. Springer, Heidelberg
(2001)

Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In: Paar, C., Kog, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238-251.
Springer, Heidelberg (2000)

Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance is Futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243-256. Springer, Heidelberg
(2006)

Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192-207. Springer, Heidelberg (2006)
Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499-518. Springer, Heidel-
berg (2009)

Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Comput. 58(6), 799-811 (2009)

Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 127-143. Springer, Heidelberg (2008)

Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413-427. Springer,
Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/

280 G. Fumaroli et al.

23. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 171-188. Springer, Heidelberg (2009)

24. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208-225. Springer, Heidelberg (2006)

25. Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443-461. Springer, Heidelberg (2009)

26. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed,
M., Kasper, M., Mangard, S.: The world is not enough: Another look
on second-order dpa. Cryptology ePrint Archive, Report 2010/180 (2010),
http://eprint.iacr.org/

27. von Willich, M.: A technique with an information-theoretic basis for protecting
secret data from differential power attacks. In: Honary, B. (ed.) Cryptography and
Coding 2001. LNCS, vol. 2260, pp. 44-62. Springer, Heidelberg (2001)

http://eprint.iacr.org/

	Affine Masking against Higher-Order Side Channel Analysis
	Introduction
	Securing AES with Affine Masking
	Affine Masking Applied to AES
	Time-Memory Trade-Offs
	Implementation Results

	Resistance to Higher-Order SCA
	Leakage of Affine Masking
	Information Theoretic Evaluation
	Higher-Order DPA Evaluation
	Attack Experiments

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

