
Achieving Leakage Resilience through Dual

System Encryption

Allison Lewko�, Yannis Rouselakis, and Brent Waters��

The University of Texas at Austin
{alewko,jrous,bwaters}@cs.utexas.edu

Abstract. In this work, we show that strong leakage resilience for cryp-
tosystems with advanced functionalities can be obtained quite naturally
within the methodology of dual system encryption, recently introduced
by Waters. We demonstrate this concretely by providing fully secure
IBE, HIBE, and ABE systems which are resilient to bounded leakage
from each of many secret keys per user, as well as many master keys.
This can be realized as resilience against continual leakage if we assume
keys are periodically updated and no (or logarithmic) leakage is allowed
during the update process. Our systems are obtained by applying a sim-
ple modification to previous dual system encryption constructions: es-
sentially this provides a generic tool for making dual system encryption
schemes leakage-resilient.

1 Introduction

Defining and achieving the right security models is crucial to the value of prov-
ably secure cryptography. When security definitions fail to encompass all of the
power of potential attackers, systems which are proven “secure” may actually be
vulnerable in practice. It is often not realistic or desirable to address such prob-
lems solely at the implementation level. Instead, the ultimate goal of cryptogra-
phy should be to provide efficient systems which are proven secure against the
largest possible class of potential attackers. Additionally, these systems should
provide the most advanced functionalities available.

Recently, much progress has been made in obtaining increasingly complex
systems with stronger security guarantees. The emergence of leakage-resilient
cryptography has led to constructions of many cryptographic primitives which
can be proven secure even against adversaries who can obtain limited additional
information about secret keys and other internal state. This line of research is
motivated by a variety of side-channel attacks [46, 13, 7, 12, 53, 8, 47, 58, 33, 41],

� Supported by a National Defense Science and Engineering Graduate Fellowship.
�� Supported by NSF CNS-0915361, and CNS-0952692, Air Force Office of Scientific

Research (AFO SR) under the MURI award for “Collaborative policies and assured
information sharing” (Project PRESIDIO), Department of Homeland Security Grant
2006-CS-001-000001-02 (subaward 641), a Google Faculty Research award, and the
Alfred P. Sloan Foundation.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 70–88, 2011.
c© International Association for Cryptologic Research 2011

Achieving Leakage Resilience through Dual System Encryption 71

which allow attackers to learn partial information about secrets by observing
physical properties of a cryptographic execution such as timing, power usage,
etc. The cold-boot attack [41] allows an attacker to learn information about
memory contents of a machine even after the machine is powered down.

Leakage-resilient cryptography models a large class of side-channel attacks by
allowing the attacker to specify an efficiently computable leakage function f and
learn the output of f applied to the secret key and possibly other internal state
at specified moments in the security game. Clearly, limits must be placed on
f to prevent the attacker from obtaining the entire secret key and hence easily
winning the game. One approach is to bound the total number of bits leaked over
the lifetime of the system to be significantly less than the bit-length of the secret
key. Another approach is to continually refresh the secret key and bound the
leakage between each update (this is called “continual leakage”). Both of these
approaches have been employed successfully in a variety of settings, yielding
constructions of stream ciphers, signatures, symmetric key encryption, public
key encryption, and identity-based encryption (IBE) which are leakage-resilient
under various models of leakage [52, 45, 31, 57, 26, 1, 2, 32, 29, 24, 19, 30, 3, 15, 21,
16, 25].

Concurrently, the methodology of dual system encryption has emerged as
a useful tool for improving the security guarantees for efficient cryptosystems
with advanced functionalities like identity-based encryption (IBE), hierarchical
identity-based encryption (HIBE), attribute-based encryption (ABE) [63,50,48].
These works provide efficient systems with short parameters which are proven
fully secure in the standard model under static assumptions. Previous con-
structions of IBE and HIBE either used random oracles, had large parame-
ters, were only proven selectively secure (a weaker model of security where
the attacker must declare its target immediately instead of choosing it adap-
tively in the course of the security game), or relied on “q-based” assumptions
(where the size of the assumption depends on the number of the attacker’s
queries) [14, 22, 37, 18, 9, 10, 61, 11, 34, 36, 35]. All previous constructions of ABE
were only proven selectively secure [59,40,20,6,55,39,62]. Like leakage resilience,
moving from selectively secure systems to fully secure systems is important be-
cause it results in security against a more powerful class of attackers.

Our Contribution. In this work, we show that the techniques of dual system
encryption naturally lead to leakage resilience. We demonstrate this by providing
leakage-resilient constructions of IBE, HIBE, and ABE systems which retain all
of the desirable features of dual system constructions, like full security from
static assumptions and close resemblance to previous selectively secure schemes.
We present our combination of dual system encryption and leakage resilience
as a convenient abstraction and reduce proving security to the establishment of
three properties.

Our approach not only combines the benefits of dual system encryption and
leakage resilience, but also qualitatively improves upon the leakage tolerance of
previous leakage-resilient IBE schemes [16, 2, 21]. In particular, our IBE system
can tolerate leakage on the master key, as well as leakage on several keys for

72 A. Lewko, Y. Rouselakis, and B. Waters

each identity (this can be viewed as continual leakage, where secret keys are
periodically updated and leakage is allowed only between updates, and not during
updates).1 The IBE schemes of [2,21] only allow bounded leakage on one secret
key per identity, and allow no leakage on the master key. The IBE scheme of [16]
allows bounded leakage on each of many keys per identity, but allows no leakage
on the master key.

We develop a simple and versatile methodology for modifying a dual system
encryption construction and proof to incorporate strong leakage resilience guar-
antees. The change to the constructions is minimal, and can be viewed as the
adjoining of a separate piece which does not interfere with the intuitive and
efficient structure of the original system. Essentially, we show that dual system
encryption and leakage resilience are highly compatible, and their combination
results in the strongest security guarantees available for cryptosystems with ad-
vanced functionalities, with no sacrifice of efficiency.

Our Techniques. In a dual system encryption scheme, keys and ciphertexts can
each take on two forms: normal and semi-functional. Normal keys can decrypt
both forms of ciphertexts, while semi-functional keys can only decrypt normal
ciphertexts. In the real security game, the ciphertext and all keys are normal.
Security is proven by a hybrid argument, where first the ciphertext is changed
to semi-functional, and then the keys are changed to semi-functional one by one.
We must prove that the attacker cannot detect these changes. Finally, we arrive
at a game where the simulator need only produce semi-functional objects, which
cannot correctly decrypt. This greatly reduces the burden on the simulator and
allows us to now prove security directly.

There is an important challenge inherent in this technique: when we argue
the indistinguishability of games where a certain key is changing from normal to
semi-functional, it is crucial that the simulator cannot determine the nature of
this key for itself by test decrypting a semi-functional ciphertext. However, the
simulator should also be prepared to make a semi-functional ciphertext for any
identity and to use any identity for this particular key. This challenge is overcome
by allowing the simulator to make nominal semi-functional keys: these are keys
that are distributed like ordinary semi-functional keys in the attacker’s view,
but in the simulator’s view they are correlated with the challenge ciphertext, so
that if the simulator tries to decrypt a semi-functional ciphertext, decryption
will always succeed, and hence will not reveal whether the key is normal or
nominally semi-functional.

To keep nominal semi-functionality hidden from the attacker’s view, previous
dual system encryption constructions relied crucially on the fact that the attacker
cannot ask for a key capable of decrypting the challenge ciphertext. When we
add leakage to this framework, the attacker is now able to ask for leakage on
keys which are capable of decrypting the challenge ciphertext: hence we need a

1 For simplicity, we present our system as allowing no leakage during key updates,
but our system can tolerate leakage which is logarithmic in terms of the security
parameter using the same methods employed in [16].

Achieving Leakage Resilience through Dual System Encryption 73

new mechanism to hide nominal semi-functionality from attackers who can leak
on these keys.

We accomplish this by expanding the semi-functional space to form n + 2
dimensional vectors, where n ≥ 3 is a parameter determining the leakage tol-
erance. Nominality now corresponds to the vector in the semi-functional space
of the key being orthogonal to the vector in the semi-functional space of the ci-
phertext. Because the leakage function on the key must be determined before the
challenge ciphertext is revealed, an attacker whose leakage is suitably bounded
cannot distinguish orthogonal vectors from uniformly random vectors in this
context (this is a corollary of the result from [16], which shows that “random
subspaces are leakage-resilient”). Hence, the attacker cannot distinguish leakage
on a nominally semi-functional key from leakage on an ordinary semi-functional
key. This allows us to obtain leakage resilience within the dual system encryption
framework.

Comparison to Previous Techniques. One of the leakage-resilient IBE con-
structions of [21] also applied the dual system encryption methodology, but ulti-
mately relied on the technique of hash proof systems [23,52,2] to obtain leakage
resilience, instead of deriving leakage resilience from the dual system encryp-
tion methodology itself, as we do in this work. More precisely, they used the
dual system encryption framework to allow the simulator to produce keys in-
capable of decrypting the challenge ciphertext, but did not apply dual system
encryption to handle leakage on keys which are capable of decrypting the chal-
lenge ciphertext. Instead, they relied on a hash proof mechanism for this part
of the proof. This leads them to impose the restriction that the attacker can
only leak from one key for the challenge identity, and no leakage on the master
key is allowed. Essentially, their application of dual system encryption is “or-
thogonal” to their techniques for achieving leakage resilience. In contrast, our
techniques allow us to handle all key generation and leakage queries within the
dual system encryption framework, eliminating the need for a separate technique
to achieve leakage resilience. This enables us to allow leakage from multiple
keys which can decrypt the challenge ciphertext, as well as leakage from the
master key.

The leakage-resilient IBE construction of [16] in the continual leakage model
relies on selective security to allow the simulator to produce the keys incapable of
decrypting challenge ciphertext. This is accomplished with a partitioning tech-
nique. Their technique for handling leakage on secret keys for the challenge
identity is more similar to ours: they produce these keys and ciphertext in such
a way that each is independently well-distributed, but the keys for the challenge
identity exhibit degenerate behavior relative to the challenge ciphertext. This
correlation, however, is information-theoretically hidden from the adversary be-
cause the leakage per key is suitably bounded. We employ a similar information-
theoretic argument to hide nominal semi-functionality of leaked keys from the
attacker’s view. However, their technique does not quite fit our dual system en-
cryption framework, and only achieves selective security in their implementation,
with no leakage allowed from the master key.

74 A. Lewko, Y. Rouselakis, and B. Waters

1.1 Related Work

Leakage resilience has been studied in many previous works, under a variety of
leakage models [60, 56, 45, 3, 19, 24, 30, 28, 44, 29, 52, 1, 2, 17, 26, 31, 42, 51, 57, 32,
15, 27, 16, 25]. Exposure-resilient cryptography [17, 28, 44] addressed adversaries
who could learn a subset of the bits representing the secret key or internal state.
Subsequent works have considered more general leakage functions. Micali and
Reyzin [51] introduced the assumption that “only computation leaks informa-
tion.” In other words, one assumes that leakage occurs every time the cryp-
tographic device performs a computation, but that any parts of the memory
not involved in the computation do not leak. Under this assumption, leakage-
resilient stream ciphers and signatures have been constructed [31, 57, 32]. Addi-
tionally, [43,38] have shown how to transform any cryptographic protocol into one
that is secure with continual leakage, assuming that only computation leaks infor-
mation and also relying on a simple, completely non-leaking hardware device.

Since attacks like the cold-boot attack [41] can reveal information about
memory contents in the absence of computation, it is desirable to have leakage-
resilient constructions that do not rely upon this assumption. Several works have
accomplished this by bounding the total amount of leakage over the lifetime of
the system, an approach introduced by [1]. This has resulted in constructions of
pseudorandom functions, signature schemes, public key encryption, and identity-
based encryption [26, 52, 3, 45, 2, 21] which are secure in the presence of suitably
bounded leakage. For IBE schemes in particular, this means that an attacker can
leak a bounded amount of information from only one secret key per user. This
does not allow a user to update/re-randomize his secret key during the lifetime
of the system.

Recently, two works have achieved continual leakage resilience without as-
suming that only computation leaks information [16, 25]. Dodis, Haralambiev,
Lopez-Alt, and Wichs [25] construct one-way relations, signatures, identification
schemes, and authenticated key agreement protocols which are secure against at-
tackers who can obtain leakage between updates of the secret key. It is assumed
the leakage between consecutive updates is bounded in terms of a fraction of
the secret key size, and also that there is no leakage during the update process.
Brakerski, Kalai, Katz, and Vaikuntanathan [16] construct signatures, public key
encryption schemes, and (selectively secure) identity-based encryption schemes
which are secure against attackers who can obtain leakage between updates of
the secret key, and also a very limited amount of leakage during updates and
during the initial setup phase. The leakage between updates is bounded in terms
of a fraction of the secret key size, while the leakage during updates and setup
is logarithmically small as a function of the security parameter.

The dual system encryption methodology was introduced by Waters in [63].
It has been leveraged to obtain constructions of fully secure IBE and HIBE
from simple assumptions [63], fully secure HIBE with short ciphertexts [50],
fully secure ABE and Inner Product Encryption (IPE) [48], and fully secure
functional encryption combining ABE and IPE [54].

Achieving Leakage Resilience through Dual System Encryption 75

Independently, Alwen and Ibraimi [4] have proposed a leakage resilient system
for a special case of Attribute-Based Encryption, where the ciphertext policy is
expressed as a DNF. Their work pursues a different technical direction to ours,
and provides an interesting application of hash proof systems to the ABE setting.
Security is proven from a “q-type” assumption.

2 Preliminaries

Notation. We denote by s
$← S the fact that s is picked uniformly at random

from a finite set S and by x, y, z
$← S that all x, y, z are picked independently

and uniformly at random from S. We say that a function is of constant output
size if the number of bits output by it is independent of the input. By |x|, we
denote the size/number of bits of term x. Also, the special symbol ⊥ is meant
to serve as a unique dummy value in all our systems. Finally, by PPT we denote
a probabilistic polynomial-time algorithm.

Complexity Assumptions. To prove the security of our system, we will use
three assumptions in composite order groups, also used in [50, 48]. These are
static assumptions, which hold in the generic group model if finding a nontrivial
factor of the group order is hard. The proof of this can be found in [50]. The
first two of our assumptions belong to the class of General Subgroup Decision
Assumptions described in [5]. The specific statement of the assumptions can be
found in the full version [49].

2.1 Security Definition

In this section we assume familiarity with the main functionalities of the algo-
rithms of an IBE system. Due to lack of space in this version we included the
detailed definition only in the full version [49].

The security of our system is based on a game, called MasterLeak. It is a
modified version of the usual IbeCpa security game. In that game, the attacker
can make a polynomial number of Keygen queries for identities other than the
challenge identity. Each of these queries returns a secret key of the requested
identity. The main idea of our security game is to allow these queries and in
addition allow leakage on the master key and secret keys of the challenge identity.
The only restriction we impose is that it can not get leakage of more than �MK

bits per master key (remember we can have many master keys) and �SK bits per
secret key, where �MK, �SK are parameters of the game.

The game starts with a setup phase, where the challenger runs the setup
algorithm and gives the attacker the public parameters. It also gives the attacker
a handle (i.e. reference) to the master key. We now allow the attacker to make
three kinds of queries, called Create, Leak, and Reveal. With a Create query,
the attacker asks the challenger to create a key and store it. The attacker supplies
a handle that refers to a master key to be used in the key generation algorithm.
Each such query returns a unique handle-reference to the generated key, so that
the attacker can refer to it later and either apply a leakage function to it and/or

76 A. Lewko, Y. Rouselakis, and B. Waters

ask for the entire key. The original master key (the one created in the Setup
algorithm) gets a handle of 0.

Using a handle, the attacker can make a leakage query Leak on any key of its
choice. Since all queries are adaptive (the attacker has the ability to leak from
each key a few bits at the time, instead of requiring the leakage to occur all at
once) and the total amount of leakage allowed is bounded, the challenger has to
keep track of all keys leaked via these queries and the number of leaked bits from
each key so far. Thus, it creates a set T that holds tuples of handles, identities,
keys, and the number of leaked bits. Each Create query adds a tuple to this set
and each Leak query updates the number of bits leaked.

The Reveal queries allow the attacker to get access to an entire secret key.
They get as input a handle to a key and the challenger returns this secret key
to the attacker. The obvious restriction is that the attacker cannot get a master
key, since it would trivially break the system. For the same reason, no key for
the challenge identity should be revealed and thus the challenger has to have
another set to keep track of the revealed identities. We will denote this set by R.
We also note that the Reveal queries model the attacker’s ability to “change its
mind” in the middle of the game on the challenge identity. Maybe the attacker,
after getting leakage from a secret key, decides that it is better to get the entire
key via a Reveal query. Thus we achieve the maximum level of adaptiveness.

We now define our game formally. The security game is parameterized by a
security parameter λ and two leakage bounds �MK = �MK(λ), �SK = �SK(λ). The
master keys’, secret keys’ and identities’ spaces are denoted byMK, SK, and I,
respectively. We assume that the handles’ space is H = N. The game MasterLeak
consists of the following phases:

Setup: The challenger makes a call to Setup(1λ) and gets a master key MK
and the public parameters PP. It gives PP to the attacker. Also, it sets R = ∅
and T = {(0, ε, MK, 0)}. Remember thatR ⊆ I and T ⊆ H×I×(MK∪SK)×N

(handles - identities - keys - leaked bits). Thus initially the set T holds a record
of the original master key (no identity for it and no leakage so far). Also a handle
counter H is set to 0.

Phase 1: In this phase, the adversary can make the following queries to the
challenger. All of them can be interleaved in any possible way and the input of
a query can depend on the outputs of all previous queries (adaptive security).

– Create(h, X): h is a handle to a tuple of T that must refer to a master key
and X can be either an identity I or the empty string ε.

The challenger initially scans T to find the tuple with handle h. If the
identity part of the tuple is not ε, which means that the tuple holds a secret
key of some identity, or if the handle does not exist, it responds with ⊥.

Otherwise, the tuple is of the form (h, ε, MK′, L). Then the challenger
makes a call to Keygen(MK′, X)→ K and adds the tuple (H + 1, X, K, 0)
to the set T . K is either a secret key for identity I or another master key
depending on X . If X is an identity it returns a secret key and if X is the

Achieving Leakage Resilience through Dual System Encryption 77

empty string ε it returns another master key. See the full version [49] for a
detailed definition. After that, it updates the handle counter to H ← H +1.

– Leak(h, f): In this query, the adversary requests leakage from a key that
has handle h ∈ N with a polynomial-time computable function f of constant
output size2 acting on the set of keys.

The challenger scans T to find the tuple with the specified handle. It is
either of the form (h, I, SK, L) or

(
h, ε, MK′, L

)
3.

In the first case, it checks if L + |f(SK)| ≤ �SK. If this is true, it responds
with f(SK) and updates the L in the tuple with L + |f(SK)|. If the check
fails, it returns ⊥ to the adversary.

If the tuple holds a master key MK′, it checks if L +
∣
∣f(MK′)

∣
∣ ≤ �MK. If

this is true, it responds with f(MK′) and updates the L with L +
∣
∣f(MK′)

∣
∣.

If the check fails, it returns ⊥ to the adversary.
– Reveal(h): Now the adversary requests the entire key with handle h. The

challenger scans T to find the requested entry. If the handle refers to a master
key tuple, then the challenger returns ⊥. Otherwise, we denote the tuple by
(h, I, SK, L). The challenger responds with SK and adds the identity I to
the set R.

Challenge: The adversary submits a challenge identity I∗ /∈ R and two mes-
sages M0, M1 of equal size. The challenger flips a uniform coin c

$← {0, 1} and
encrypts Mc under I∗ with a call to Encrypt(Mc, I

∗). It sends the resulting
ciphertext CT∗ to the adversary.

Phase 2: This is the same as Phase 1 with the restriction that the only queries
allowed are Create and Reveal queries that involve a (non-master) secret key
with identity different than I∗. The reason for forbidding Leak queries on a
master key and on I∗ is that the adversary can encode the entire decryption
algorithm of CT∗ as a function on a secret key, and thus win the game trivially
if we allow these queries. For the same reason, the challenger can not give an
entire secret key of I∗ to the adversary and hence no Reveal queries involving
I∗ are allowed too. Leak queries on keys of identities other than I∗ are useless,
since the adversary can get the entire secret keys.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds if c′ = c.
The security definition we will use is the following:

Definition 1. An IBE encryption system Π is (�MK, �SK)-master-leakage secure
if for all PPT adversaries A it is true that

AdvMasterLeak
A,Π (λ, �MK, �SK) ≤ negl(λ)

2 We apply this restriction so that the adversary does not get any “extra” information
about the input; only the output bits of the function. This restriction is also present
in other works (e.g. in [16] they use circuits as leakage functions).

3 It can be the case that MK′ is the original master key.

78 A. Lewko, Y. Rouselakis, and B. Waters

where AdvMasterLeak
A,Π (λ, �MK, �SK) is the advantage of A in game MasterLeak with

security parameter λ and leakage parameters �MK = �MK(λ), �SK = �SK(λ) and
is formally defined as

AdvMasterLeak
A,Π (λ, �MK, �SK) =

∣
∣
∣∣Pr[A succeeds]− 1

2

∣
∣
∣∣ ,

where the probability is over all random bits used by the challenger and the
attacker.

3 Dual System IBE

We now define dual system IBE schemes as an abstraction and define three secu-
rity properties which will ensure leakage resilience. We show that these properties
imply that a dual system IBE scheme is (�MK, �SK)-master-leakage secure4.

3.1 Definition

A dual system IBE scheme ΠD has the following algorithms:

Setup(1λ)→ (PP, MK). The setup algorithm takes in the security parameter,
λ, and outputs the public parameters, PP, and a normal master key, MK.

Keygen(MK′, X)→ K. The key generation algorithm takes in a normal master
key, MK′, and either an identity, I, or the empty string ε. In the first case, it
outputs a normal secret key, SK, for the identity I, and in the second case, it
outputs another normal master key, MK′′.

Encrypt(PP, M, I) → CT. The encryption algorithm takes in the public pa-
rameters PP, a message M , and an identity I, and outputs a normal ciphertext,
CT.

Decrypt(CT, SK) → M . The decryption algorithm takes in a ciphertext CT
encrypted to identity I, and a secret key SK for identity I. It outputs the message
M , unless both the key and the ciphertext are semi-functional.

KeygenSF(MK′, X)→ K̃. The semi-functional key generation algorithm works
in a similar way to Keygen but outputs semi-functional keys. If X = I, an
identity, it outputs a semi-functional secret key, S̃K for identity I. If X = ε, the
empty string, it outputs a semi-functional master key, M̃K.

Notice that this algorithm takes in a normal master key; not a semi-functional
one. Also, this algorithm need not be polynomial time computable, in contrast to
Setup, Keygen, Encrypt, and Decrypt.

EncryptSF(PP, M, I)→ C̃T. The semi-functional encryption algorithm takes
in the public parameters PP, a message M , and an identity I, and outputs
a semi-functional ciphertext, CT. This algorithm need not be polynomial time
computable.
4 We choose not to include nominal semi-functionality as part of our abstraction, since

one can use dual system encryption without employing this concept. For example,
nominal semi-functionality was not used in [63].

Achieving Leakage Resilience through Dual System Encryption 79

3.2 Security Properties for Leakage Resilience

We now define three security properties for a dual system IBE scheme. For this,
we define two additional games which are modifications of the MasterLeak game.

The first game, called MasterLeakC, is exactly the same as the MasterLeak
game except that in the Challenge phase, the challenger uses EncryptSF
instead of Encrypt to create a semi-functional ciphertext, and returns this to
the adversary.

In the second new game, called MasterLeakCK, the challenger again uses En-
cryptSF for the challenge phase. However, the set of tuples T has a different
structure. Each tuple holds for each key (master or secret) a normal and a semi-
functional version of it. In this game, all keys leaked or given to the attacker
are semi-functional. As we have noted above, the semi-functional key genera-
tion algorithm takes as input a normal master key. Thus the challenger stores
the normal versions, as well the semi-functional ones so that it can use the
normal versions of master keys as input to Keygen calls.5 More precisely, the
challenger additionally stores a semi-functional master key in tuple 0 by call-
ing KeygenSF(MK, ε) after calling Setup. Thereafter, for all Create(h, X)
queries, the challenger makes an additional call to KeygenSF(MK′, X), where
MK′ is the normal version of the master key stored in tuple h. Leak and Reveal
queries act always on the semi-functional versions of each key.

Finally, notice that the same attackers that play game MasterLeak can play
games MasterLeakC and MasterLeakCK without any change in their algorithms
- queries etc. The simulator answers them in a different way.

Semi-functional Ciphertext Invariance: We say that a dual system IBE
scheme ΠD has (�MK, �SK)- semi-functional ciphertext invariance if for any prob-
abilistic polynomial time algorithm A, the advantage of A in the MasterLeak
game is negligibly close to the advantage of A in the MasterLeakC game.

Semi-functional Key Invariance: We say that a dual system IBE scheme ΠD

has (�MK, �SK)-semi-functional key invariance if for any probabilistic polynomial
time algorithmA, the advantage ofA in the MasterLeakC game is negligibly close
to the advantage of A in the MasterLeakCK game.

Semi-functional Security: We say that a dual system IBE scheme ΠD has
(�MK, �SK)-semi-functional security if for any probabilistic polynomial time al-
gorithm A, the advantage of A in the MasterLeakCK game is negligible.

The proof of the following theorem is straightforward, and can be found in
the full version [49].

Theorem 1. If a dual system IBE scheme ΠD =(Setup, Keygen, En-
crypt, Decrypt, KeygenSF, EncryptSF) has (�MK, �SK)-semi-functional
ciphertext invariance, (�MK, �SK)-semi-functional key invariance, and (�MK,

5 As one should notice, we will never use the normal versions of non-master keys in
this game. However, we have them here because we will need them in the game of
the next section and when we move to the HIBE setting.

80 A. Lewko, Y. Rouselakis, and B. Waters

�SK)-semi-functional security, then Π =(Setup, Keygen, Encrypt, Decrypt)
is a (�MK, �SK)-master-leakage secure IBE scheme.

3.3 An Alternate Security Property

We additionally define a property called One Semi-functional Key Invariance.
In the full version we will show that this implies semi-functional key invariance,
and so can be substituted for semi-functional key invariance in proving that a
system is (�MK, �SK)-master-leakage secure. The motivation for this is that prov-
ing semi-functional key invariance directly will often involve a hybrid argument,
and defining one semi-functional key invariance allows us to include this hybrid
as part of our abstraction and hence avoid repeating it for each system.

To define this property, we first define one more variation of our security
game, called MasterLeakb. This is similar to the MasterLeakCK game, with the
main difference being that the attacker can choose on which version of each key
to leak or reveal. In other words, on the first leakage or reveal query on a key
of the augmented set T , the attacker tells the challenger whether it wants the
normal or the semi-functional version of the key. In order for the challenger to
keep track of the attacker’s choice on each key, we further augment each tuple
of T with a lock-value denoted by V ∈ Z that can take one of the three values
{−1, 0, 1}:

– If V = −1 the attacker has not made a choice on this key yet and the key is
“unlocked”. This is the value the tuple gets, in a Create query.

– If V = 0 the attacker chose to use the normal version of the key on the first
leakage or reveal query on it. All subsequent Leak and Reveal queries act
on the normal version.

– If V = 1 the attacker chose the semi-functional version and the challenger
works as above with the semi-functional version.

To summarize, each tuple is of the form (h, X, K, K̃, L, V) i.e. handle - identity
or empty string - normal key - semi-functional key - leakage - lock. For example,
the original master key is stored at the beginning of the game in the tuple
(0, ε, MK,KeygenSF(MK, ε), 0,−1).

At some point, the attacker must decide on a challenge key which is “un-
locked”, V = −1, and tell this to the challenger. The challenger samples a
uniformly random bit b

$← {0, 1} and sets V = b. Therefore, the attacker has
access to either the normal (if b = 0) or the semi-functional (if b = 1) version
of this key via Leak and Reveal queries. We note that if the attacker did not
make a choice for the original master key in tuple 0, it can choose this master
key as the challenge key.

The attacker is then allowed to resume queries addressed to either normal or
semi-functional keys, with the usual restrictions (i.e. no leakage or reveal queries
on keys capable of decrypting the challenge ciphertext after the attacker has
seen the challenge ciphertext).

Achieving Leakage Resilience through Dual System Encryption 81

One Semi-functional Key Invariance: We say that a dual system IBE
scheme ΠD has (�MK, �SK)-one semi-functional key invariance if, for any prob-
abilistic polynomial time algorithm A, the advantage of A in the MasterLeakb

game with b = 0 is negligibly close to the advantage of A in the MasterLeakb

game with b = 1.
The proof of the following theorem can be found in the full version [49].

Theorem 2. If a dual system IBE scheme ΠD has (�MK, �SK)-one semi-
functional key invariance, then it also has (�MK, �SK)-semi-functional key
invariance.

4 Master-Leakage Secure IBE Scheme

Our IBE scheme is an augmented version of the Lewko-Waters IBE [50], designed
to sustain master and secret key leakage from an arbitrary number of keys.
To hide nominal semi-functionality in the attacker’s view, we add vectors of
dimension n to the front of the ciphertexts and secret keys of the LW system.
Notice in the construction below that the last two elements of our secret keys and
ciphertexts are very similar to the elements in the LW system (which is essentially
a composite order version of the selectively-secure Boneh-Boyen IBE system
[9]). Nominal semi-functionality now corresponds to the vector of exponents of
the semi-functional components of the key being orthogonal to the vector of
exponents of the semi-functional components of the ciphertext. We can use the
algebraic lemma of [16] to assert that this orthogonality is hidden from attackers
with suitably bounded leakage. Finally, to allow leakage on the master key, we
designed the master key to be similar in form to regular secret keys.

Like the original LW scheme, our system uses a bilinear group whose order
is the product of three distinct primes (additional background on composite
order bilinear groups can be found in the full version [49]). The role of the first
prime order subgroup is to “carry” the necessary information of the plaintext
message and the secret information of each user or the master authority. The
second subgroup is used only in the proof to provide semi-functionality. The
third subgroup is used to additionally randomize secret keys. Each of these
components is orthogonal to the other two under the pairing operation.

In the construction below, we will use angle brackets to denote vectors and
parentheses to denote collections of elements of different types. The dot prod-
uct of vectors is denoted by · and component-wise multiplication is denoted
by ∗. For a group element u ∈ G and a vector �a ∈ Z

n
N , we define u�a to be

〈ua1 , ua2 , . . . , uan〉. We also define a pairing operation of vectors in G
n: For

�v1 = 〈v11, v12, . . . , v1n〉 ∈ G
n and �v2 = 〈v21, v22, . . . , v2n〉 ∈ G

n, their pairing
is en(�v1, �v2) :=

∏n
i=1 e(v1i, v2i) ∈ GT , where e : G × G → GT is the bilinear

mapping of G and the product is the group operation of GT .

4.1 Construction

Our dual system IBE scheme consists of the following algorithms:

82 A. Lewko, Y. Rouselakis, and B. Waters

Setup(1λ). The setup algorithm generates a bilinear group G of composite
order N = p1p2p3, where p1, p2, p3 are three different λ1,λ2,λ3-bit prime numbers
respectively6. The subgroup of order pi in G is denoted by Gi. We assume that
the identities of users in our system are elements of ZN .

We let n be a positive integer greater than or equal to 2. The value of n
can be varied - higher values of n will lead to a better fraction of leakage being
tolerated (see Section 5), while lower values of n will yield a system with fewer
group elements in the keys and ciphertexts.

The algorithm picks 3 random elements 〈g1, u1, h1〉 ∈ G1 × G1 × G1

and one random element g3 ∈ G3. It also picks n + 1 random exponents
〈α, x1, x2, . . . , xn〉

$← Z
n+1
N . It picks 〈r, y1, y2, . . . , yn〉

$← Z
n+1
N , a random vec-

tor �ρ = 〈ρ1, . . . , ρn+2〉 $← Z
n+2
N , and a random element ρn+3

$← ZN . It outputs
the following public parameters and master key:

PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , gx2

1 , . . . , gxn
1)

MK =
(

�K∗, K∗
)

=

(〈

gy1
1 , . . . , gyn

1 , gα
1 h−r

1

n∏

i=1

g−xiyi

1 , gr
1

〉

∗ g�ρ
3 , ur

1g
ρn+3
3

)

Keygen(MK, PP, X). We first consider when X = ε, the empty string.
Then this algorithm re-randomizes the master key by picking another
〈r′, y′

1, y
′
2, . . . , y

′
n〉

$← Z
n+1
N , a random vector �ρ′ =

〈
ρ′1, . . . , ρ′n+2

〉 $← Z
n+2
N , and

a random element ρ′n+3
$← ZN . If MK =

(
�K∗, K∗

)
, it outputs the new (same-

sized) master key:

MK′=
(

�K ′, K ′
)

=

(
�K∗ ∗

〈

g
y′
1

1 , . . . , g
y′

n
1 , h−r′

1

n∏

i=1

g
−xiy

′
i

1 , gr′
1

〉

∗ g
�ρ′
3 , K∗ur′

1 g
ρ′

n+3
3

)

If X = I ∈ ZN , an identity, the algorithm picks n + 1 random exponents
〈r′, z1, z2, . . . , zn〉 $← Z

n+1
N . Also it picks �ρ′ $← Z

n+2
N and outputs the secret key:

SK = �K1 = �K∗ ∗
〈

gz1
1 , gz2

1 , . . . , gzn
1 , (K∗)−I(uI

1h1)−r′
n∏

i=1

g−xizi
1 , gr′

1

〉

∗ g
�ρ′
3

The terms g
−xiy

′
i

1 and g−xizi
1 above are calculated by using the gxi terms of PP.

It is very important to notice that with knowledge of α alone, one can create
properly distributed secret keys, because the random terms r, y1, . . . , yn, ρn+3, �ρ
of the master key are all masked by the random terms r′, z1, . . . , zn, �ρ′ generated

6 The three λ’s depend on the security parameter and are chosen appropriately to get
a better leakage fraction (see Section 5 for details).

Achieving Leakage Resilience through Dual System Encryption 83

by the algorithm. However, instead of storing α, the master authority now stores
n + 3 elements of G.

Encrypt(M, I). The encryption algorithm picks s
$← ZN and outputs the

ciphertext:

CT =
(
C0, �C1

)
=

=
(
M · (e(g1, g1)α)s,

〈
(gx1

1)s, . . . , (gxn
1)s, gs

1, (u
I
1h1)s

〉)
∈ GT ×G

n+2

Decrypt(CT, SK). To calculate the blinding factor e(g1, g1)αs, one computes
en+2(�K1, �C1) and the message is computed as M = C0

en+2(�K1, �C1)
.

4.2 Semi-functionality

All the ciphertexts, master keys, and secret keys generated by the above algo-
rithms are normal, where by normal we mean that they have no G2 parts. On
the other hand, a semi-functional key or ciphertext has G2 parts. We let g2

denote a generator of G2. The remaining algorithms of our dual system IBE are
the following:

KeygenSF(MK, X)→ K̃. This algorithm calls first the normal key generation
algorithm Keygen(MK, X) to get a normal key MK =

(
�K∗, K∗

)
or SK = �K1,

depending on X .
In the former case, it picks �θ

$← Z
n+2
N and θ

$← ZN and outputs

M̃K =
(

�K∗ ∗ g
�θ
2 , K

∗gθ
2

)
.

In the latter case, it picks �γ
$← Z

n+2
N and outputs

S̃K = �K1 ∗ g�γ
2 .

EncryptSF(M, I) → C̃T. This algorithm calls first the normal encryption
algorithm Encrypt(M, I) to get the ciphertext CT =

(
C0, �C1

)
. Then it picks

�δ
$← Z

n+2
N and outputs

C̃T =
(
C0, �C1 ∗ g

�δ
2

)
.

We call the three terms
(
�θ, θ

)
, �γ, �δ the semi-functional parameters of the mas-

ter key, secret key, and ciphertext, respectively. The semi-functional keys are
partitioned in nominal semi-functional keys and in truly semi-functional keys,
with respect to a specific semi-functional ciphertext. In short, a nominal secret
key can correctly decrypt the ciphertext (by using Decrypt), while a nominal
master key can generate a semi-functional secret key that correctly decrypts the
ciphertext.

84 A. Lewko, Y. Rouselakis, and B. Waters

As a result, a semi-functional secret key of identity Ik with parameters �γ is
nominal with respect to a ciphertext for identity Ic with parameters �δ if and
only if �γ · �δ = 0 mod p2 and Ik = Ic.

It is easy to see that only then the decryption is correct, because we get an
extra term e(g2, g2)�γ·

�δ by the pairing. A semi-functional master key with param-
eters �θ, θ is nominal with respect to a ciphertext for identity I with parameters
�δ if and only if �δ ·

(
�θ + 〈0, . . . , 0,−Iθ, 0〉

)
= 0 mod p2.

The proof of the following theorem can be found in the full version [49].

Theorem 3. Under our complexity assumptions and for (�MK = (n − 1 −
2c) log(p2), �SK = (n− 1 − 2c) log(p2)), where c > 0 is a fixed positive constant,
our dual system IBE scheme is (�MK, �SK)-master-leakage secure.

Our HIBE and ABE constructions as well as their security proofs can also be
found in the full version [49].

5 Our Leakage Bound

Our systems allow the same absolute amount of leakage for both the master and
the secret keys. That is, �MK = �SK = (n − 1 − 2c) log p2 bits, where n is an
arbitrary integer greater than or equal to 2 and c is a fixed positive constant.
Notice that the leakage depends only on the size of the G2 subgroup, and not
on the size of p1 or p3. Thus by varying the relative sizes of the G1, G2, and G3

subgroups, we can achieve variable key sizes and allow different fractions of the
key size to be leaked. We use the term “leakage fraction” to mean the number
of bits allowed to be leaked from a key divided by the number of bits required
to represent that key.

Recall that p1, p2, p3 are primes of λ1, λ2, λ3 bits, respectively, and N = p1p2p3

is the order of our group G. We assume that each group element is represented
by approximately λ1 + λ2 + λ3 = Θ(log N) bits. Then, by fixing λ1 = c1λ,
λ2 = λ, and λ3 = c3λ, where λ is the security parameter and c1, c3 are arbitrary
positive constants, we get that the leakage fractions of our systems are the values
presented in the table above.

One notable property of our HIBE scheme is that the higher our keys are in
the hierarchy, the less leakage is allowed from them. The master key which is at
the top allows for a leakage fraction of (n−1−2c)/((n+2+D)(1+c1+c3)). This
is because the base system we adapted, a HIBE system with short ciphertexts,
has keys which contain more group elements for users which are higher in the
hierarchy. This feature could be avoided by choosing a different base system.

The leakage fraction can be made arbitrarily close to 1 by modifying n, c1

and c3 (if we assume a fixed maximum depth for HIBE and a fixed universe size
for ABE). Higher values of n give a better leakage fraction, but larger public
parameters, keys, and ciphertexts. Smaller values of c1, c3 give a better leakage
fraction, but also give fewer bits of security in the G1 and G3 subspaces as a
function of λ. We must choose λ so that c1λ and c3λ are sufficiently large.

Achieving Leakage Resilience through Dual System Encryption 85

Table 1. c, c1, c3 are arbitrary positive constants and n is an integer greater than 2.
For the HIBE scheme, D is the maximum depth of the hierarchy and i is the depth of
the key in question. The master key is considered to be the root of the hierarchy tree
and had depth 0. For the ABE scheme, |U | is the total number of attributes in the
system, and |S| is the number of attributes of the key in question. Notice that in the
ABE scheme we ignored the size of the representations of U and S. They are included
in the keys, but they are considered public; thus not included in the leakage fraction.

Scheme Master Key Secret Key

IBE n−1−2c
n+3

· 1
1+c1+c3

n−1−2c
n+2

· 1
1+c1+c3

HIBE n−1−2c
n+2+D−i

· 1
1+c1+c3

for key of depth i in the hierarchy

ABE n−1−2c
n+2+|U| · 1

1+c1+c3

n−1−2c
n+2+|S| · 1

1+c1+c3

Acknowledgments

We are thankful to Joël Alwen and Yevgeniy Vahlis for useful observations.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

4. Alwen, J., Ibraimi, L.: Leakage resilient ciphertext-policy attribute-based
encryption (2010) (manuscript)

5. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure under selective
opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597. Springer, Heidelberg
(2011)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

7. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

86 A. Lewko, Y. Rouselakis, and B. Waters

10. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

11. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

12. Boneh, D., Brumley, D.: Remote timing attacks are practical. Computer
Networks 48(5), 701–716 (2005)

13. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking
cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

14. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

15. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

16. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510 (2010)

17. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)

18. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

19. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.:
Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

20. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: ACM
Conference on Computer and Communications Security, pp. 456–465 (2007)

21. Chow, S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: ACM Conference on
Computer and Communications Security, pp. 152–161 (2010)

22. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf., pp. 360–363 (2001)

23. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

24. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

25. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against
continuous memory attacks. In: FOCS, pp. 511–520 (2010)

26. Dodis, Y., Kalai, Y., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630 (2009)

27. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and
side-channel attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 21–40. Springer, Heidelberg (2010)

Achieving Leakage Resilience through Dual System Encryption 87

28. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 301–324. Springer, Heidelberg (2001)

29. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

30. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp.
227–237 (2007)

31. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–
302 (2008)

32. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer,
Heidelberg (2010)

33. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

34. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

35. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

36. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 197–206. ACM, New York (2008)

37. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

38. Goldwasser, S., Rothblum, G.: Securing computation against continuous leak-
age. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer,
Heidelberg (2010)

39. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

40. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

41. Halderman, A., Schoen, S., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.,
Feldman, A., Applebaum, J., Felten, E.: Lest we remember: Cold boot attacks on
encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

42. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

43. Juma, A., Vahlis, Y.: On protecting cryptographic keys against side-channel
attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer,
Heidelberg (2010)

44. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. In: FOCS, pp. 92–101 (2003)

45. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

88 A. Lewko, Y. Rouselakis, and B. Waters

46. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

47. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

48. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–
91. Springer, Heidelberg (2010)

49. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. Cryptology ePrint Archive, Report 2010/438 (2010)

50. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

51. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

52. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

53. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology 15(3), 151–176 (2002)

54. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

55. Ostrovksy, R., Sahai, A., Waters, B.: Attribute based encryption with
non-monotonic access structures. In: ACM Conference on Computer and Com-
munications Security, pp. 195–203 (2007)

56. Petit, C., Standaert, F.X., Pereira, O., Malkin, T., Yung, M.: A block cipher based
pseudo random number generator secure against side-channel key recovery. In:
ASIACCS, pp. 56–65 (2008)

57. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

58. Quisquater, J.J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

59. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

60. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

61. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

62. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. Cryptology ePrint Archive, Report 2008/290
(2008)

63. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

	Achieving Leakage Resilience through Dual System Encryption
	Introduction
	Related Work

	Preliminaries
	Security Definition

	Dual System IBE
	Definition
	Security Properties for Leakage Resilience
	An Alternate Security Property

	Master-Leakage Secure IBE Scheme
	Construction
	Semi-functionality

	Our Leakage Bound
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

