
Functional Encryption: Definitions and Challenges

Dan Boneh1,�, Amit Sahai2, and Brent Waters3,��

1 Stanford University
2 University of California at Los Angeles

3 University of Texas at Austin

Abstract. We initiate the formal study of functional encryption by giving precise
definitions of the concept and its security. Roughly speaking, functional encryp-
tion supports restricted secret keys that enable a key holder to learn a specific
function of encrypted data, but learn nothing else about the data. For example,
given an encrypted program the secret key may enable the key holder to learn the
output of the program on a specific input without learning anything else about the
program.

We show that defining security for functional encryption is non-trivial. First,
we show that a natural game-based definition is inadequate for some function-
alities. We then present a natural simulation-based definition and show that it
(provably) cannot be satisfied in the standard model, but can be satisfied in the
random oracle model. We show how to map many existing concepts to our for-
malization of functional encryption and conclude with several interesting open
problems in this young area.

1 Introduction

Encryption is a method for a user to securely share data over an insecure network or
storage site. Before the advent of public key cryptography, a widely held view was that
for two users to communicate data confidentially they would need to a priori establish
a mutually held secret key k. While this might be acceptable for some small or tightly
knit organizations, such a solution was clearly infeasible for larger networks such as
today’s Internet consisting of billions of users. Over thirty years ago, Diffie and Hell-
man [DH76a, DH76b] put forth a radically new idea in the concept of public key cryp-
tography, where two parties can securely communicate with each other without having
an a prior mutual secret — radically challenging the conventional wisdom of the time.

Today public key encryption is an invaluable tool and its use is ubiquitous in building
tools from secure web communication (e.g., SSH, SSL), to disk encryption, and secure
software patch distribution. However, there is an ingrained view that: (1) Encryption
is a method to send a message or data to a single entity holding a secret key, and (2)
Access to the encrypted data is all or nothing – one can either decrypt and read the
entire plaintext or one learns nothing at all about the plaintext other than its length.

� Supported by NSF, MURI, and the Packard foundation.
�� Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Office of Sci-

entific Research (AFO SR) under the MURI award for “Collaborative policies and assured
information sharing” (Project PRESIDIO), Department of Homeland Security Grant 2006-
CS-001-000001-02 (subaward 641), and the Alfred P. Sloan Foundation.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 253–273, 2011.
c© International Association for Cryptologic Research 2011

254 D. Boneh, A. Sahai, and B. Waters

For many emerging applications such as “cloud” services this notion of public-key
encryption is insufficient. For example, there is often a need to specify a decryption
policy in the ciphertext and only individuals who satisfy the policy can decrypt. More
generally, we may want to only give access to a function of the plaintext, depending
on the decryptor’s authorization. As a concrete example, consider a cloud service stor-
ing encrypted images. Law enforcement may require the cloud to search for images
containing a particular face. Thus, the cloud needs a restricted secret key that decrypts
images that contain the target face, but reveals nothing about other images. More gen-
erally, the secret key may only reveal a function of the plaintext image, for example
an image that is blurred everywhere except for the target face. Traditional public-key
cryptography cannot help with such tasks.

We believe that it is time to adopt a new broad vision of encryption systems. To this
end, we explore the concept of functional encryption. In a functional encryption sys-
tem, a decryption key allows a user to learn a function of the encrypted data. Briefly,
in a functional encryption system for functionality F (·, ·) (modeled as a Turing Ma-
chine) an authority holding a master secret key can generate a key skk that enables
the computation of the function F (k, ·) on encrypted data. More precisely, using skk

the decryptor can compute F (k, x) from an encryption of x. Intuitively, the security of
the system guarantees that one cannot learn anything more about x, but as we shall see,
capturing this rigorously is quite challenging.

We can now see the power of functional encryption. Let us consider what can be
achieved if we could realize functional encryption for any polynomial-time Turing Ma-
chine F (·, ·). In applications of access control, one could let x = (ind, m) encode a
message m as well as an arbitrarily complex access control program ind that will act
over the description of a user’s credentials. The functionality F would interpret the
program ind over k and output the message m if and only if ind accepts on input k.
Moreover, the program ind would be hidden and thus one would not necessarily know
why decryption was successful or what other keys would satisfy ind. We give many
more examples in Section 3.

Our Contributions. Recently, there have been multiple systems that suggest moving
beyond the traditional boundaries of encryption. Some examples include Identity-Based
Encryption [Sha84, BF03, Coc01], searchable encryption [BCOP04] and Attribute-Based
Encryption [SW05]. These and other related works such as [BW07, KSW08] propose
specific new systems for problems ranging from expressive access control to searching
on encrypted data. In the last few years, the term “functional encryption1” was adopted
to describe this new area [LOS +10, OT10, AL10].

While these results contain special cases of functional encryption, the general con-
cept has never been formally defined or studied. In this paper we put forth a formal
treatment of the subject and discuss many of the remaining challenges. We begin with a
general framework and syntax for functional encryption and show how existing

1 We note that both the term “functional encryption” and its underlying concept were introduced
by the authors of this paper. This term was first publicly used to describe the line of work starting
with [SW05] in a talk “Functional Encryption: Beyond Public Key Cryptography” [Wat08] in
2008, given by one of the authors of this paper.

Functional Encryption: Definitions and Challenges 255

encryption concepts, such as attribute based encryption and many others, can be ele-
gantly expressed as particular functionalities of functional encryption.

Defining security of abstract functional encryption turns out to be highly non-trivial.
We begin with a natural indistinguishability game-based definition (based on a defini-
tion of secure predicate encryption from [BW07, KSW08]). Unfortunately, we show
that this simple definition is inadequate for certain functionalities since trivially inse-
cure constructions may satisfy it.

Given the inadequacy of game-based definitions we move to simulation-based def-
initions in the spirit of the original notion of semantic security of Goldwasser and
Micali [GM84]. The goal is to capture the notion that the adversary learns nothing
about the plaintext other than functions F (k, ·) of the plaintext for which he has a
secret key. Somewhat surprisingly, we show a connection to non-committing encryp-
tion [CFGN96, Nie02] which proves that our definition cannot be satisfied for the
same reason that non-interactive non-committing encryption is impossible. However,
we show that our definition can be satisfied in the random oracle model, and we ex-
hibit constructions for interesting functionalities that can be shown to be secure. (Inde-
pendently, O’Neill [O’N10] also observed a gap between simulation and game-based
definitions and a connection to non-committing encryption.)

Functional encryption is still in its infancy and many fascinating open problems re-
main. We conclude with several directions for future work. The key challenge is the
construction of functional encryption for more general functionalities. Another impor-
tant question is understanding the relative power of functionalities: when does one func-
tionality imply another and when can functionalities be black-box separated?

2 Functional Encryption Syntax

We begin by describing the syntactic definition of functional encryption (FE) for a func-
tionality F . The functionality F describes the functions of a plaintext that can be learned
from the ciphertext. More precisely, a functionality is defined as follows.

Definition 1. A functionality F defined over (K, X) is a function F : K×X → {0, 1}∗
described as a (deterministic) Turing Machine. The set K is called the key space and
the set X is called the plaintext space. We require that the key space K contain a special
key called the empty key denoted ε.

A functional encryption scheme for the functionality F enables one to evaluate F (k, x)
given the encryption of x and a secret key skk for k. The algorithm for evaluation
F (k, x) using skk is called decrypt. More precisely, a functional encryption scheme is
defined as follows.

Definition 2. A functional encryption scheme (FE) for a functionality F defined over
(K, X) is a tuple of four PPT algorithms (setup, keygen, enc, dec) satisfying the fol-
lowing correctness condition for all k ∈ K and x ∈ X:

(pp, mk)← setup(1λ) (generate a public and master secret key pair)

sk← keygen(mk, k) (generate secret key for k)

256 D. Boneh, A. Sahai, and B. Waters

c← enc(pp, x) (encrypt message x)

y ← dec(sk, c) (use sk to compute F (k, x) from c)

then we require that y = F (k, x) with probability 1.

We define security of a functional encryption scheme in Section 4. For now, we briefly
show that standard public-key encryption is a simple example of functional encryption.
Let K := {1, ε} and consider the following functionality F defined over (K, X) for
some plaintext space X :

F (k, x) :=

{
x if k = 1
len(x) if k = ε

A secret key for k = 1 fully decrypts valid ciphertexts, while the empty key k = ε
simply returns the bit length of the plaintext. Hence, this functionality syntactically
defines standard public-key encryption.

The empty key ε: The special key ε in K captures all the information about the plaintext
that intentionally leaks from the ciphertext, such as the length of the encrypted plaintext.
The secret key for ε is empty and also denoted by ε. Thus, anyone can run dec(ε, c) on
a ciphertext c

R← enc(pp, x) and obtain all the information about x that intentionally
leaks from c.

Further parametrization. In some cases the key space K and plaintext space X are
further parametrized by quantities generated by the setup algorithm. For example, setup
may output an RSA modulus N in which case the sets K and X and the functionality
F are defined as tuples over ZN . More generally, we allow setup to output a third
parameter π and we denote the key and plaintext space by Kπ and Xπ. The functionality
F is the defined as

Fπ : Kπ ×Xπ → {0, 1}∗ .

When π is clear from context, we avoid writing it as an explicit subscript.

2.1 Sub-classes of Functional Encryption

So far we defined the most general syntax for a functional encryption scheme. For the
applications we have in mind it is convenient to define two sub-classes of functional
encryption where the plaintext space X has additional structure.

Predicate encryption [BW07, KSW08]. In many applications a plaintext x ∈ X is
itself a pair (ind, m) ∈ I ×M where ind is called an index and m is called the payload
message. For example, in an email system the index might be the sender’s name while
the payload is the email contents.

In this context, an FE scheme is defined in terms of a polynomial-time predicate
P : K × I → {0, 1} where K is the key space. More precisely, the FE functionality
over (K ∪ {ε}, (I ×M)) is defined as

F
(
k ∈ K, (ind, m) ∈ X

)
:=

{
m if P (k, ind) = 1, and

⊥ if P (k, ind) = 0

Functional Encryption: Definitions and Challenges 257

Consequently, let c be an encryption of (ind, m) and let skk be a secret key for k ∈ K .
Then dec(skk, c) reveals the payload in c when P (k, ind) = 1 and reveals nothing new
about m otherwise.

Predicate encryption with public index. A sub-class of predicate encryption makes
the plaintext index easily readable from the ciphertext. In particular, in this type of FE
the empty key ε explicitly reveals the index ind, namely

F
(
ε, (ind, m)

)
= (ind, len(m))

Hence, dec(ε, c) gives anyone the index component of the plaintext as well as the bit
length of m.

3 Capturing Cryptosystems in the Context of Functional
Encryption

Many recent encryption concepts and constructions can be viewed as special cases of
Functional Encryption. In this section we give a few examples to show how functional
encryption captures these encryption concepts. Security of these schemes is captured
by the general security definitions of functional encryption in the next section.

3.1 Predicate Encryption Systems with Public Index

The first class of systems that we consider are Predicate encryption schemes with public
index2. We begin our study with the simplest interesting case of Identity-Based Encryp-
tion and then advance to more expressive methods of access formulas. We will describe
these systems using the notation for predicate encryption defined in Subsection 2.13.

Identity-Based Encryption. In Identity-Based Encryption (IBE) [Sha84] ciphertexts
and private keys are associated with strings (a.k.a identities) and a key can decrypt a
ciphertext if the two strings are equal. IBE represents the first functionality that is not
directly realizable from public key encryption [BPR+08]. IBE is formally described as
a Predicate Encryption scheme where:

1. The key space K is K := {0, 1}∗ ∪ {ε}.
2. The plaintext is a pair (ind, m) where the index space I := {0, 1}∗.
3. The predicate P on K × I is defined as

P
(
k ∈ K � {ε}, ind ∈ I

)
:=

{
1 if k = ind, and

0 otherwise

2 This class has also been informally referred to as “payload hiding” [BW07, KSW08] in the
literature.

3 Recall that for all predicate encryption schemes with public index we have that
F

(
ε, (ind, m)

)
= (ind, len(m)).

258 D. Boneh, A. Sahai, and B. Waters

Boneh and Franklin [BF03] and Cocks [Coc01] construct the first practical IBE sys-
tems, which were proven secure according to an indistinguishability definition that is
a special case of our definition of functional encryption security (Definition 3 in Sec-
tion 4). These first schemes were proven secure in the random oracle model. Subsequent
schemes were proven secure in the standard model, but under a weaker notion known as
selective security [CHK03, BB04a], and further subsequent systems were proven adap-
tively secure [BB04b, Wat05, Gen06]. Recently, there have been multiple lattice-based
constructions of IBE systems [GPV08, CHKP10, ABB10].

For these systems to properly support the empty key ε function, the ciphertext must
explicitly include ind and the length of the message in the clear.

Attribute-Based Encryption. Sahai and Waters [SW05] proposed a notion of encryp-
tion, called Attribute-Based Encryption (ABE), where one could express complex ac-
cess policies. Subsequently, Goyal, Pandey, Sahai and Waters [GPSW06] refined this
concept into two different formulations of ABE: Key Policy ABE and Ciphertext-Policy
ABE.

We first describe Key-Policy ABE for boolean formulas, as was realized by Goyal
et. al. [GPSW06]4. A Key-Policy ABE system over n variables can be described as a
predicate encryption scheme (with public index) for the predicate Pn : K× I → {0, 1}
where:

1. The key space K is the set of all poly-sized boolean formulas φ in n variables
z = (z1, . . . , zn) ∈ {0, 1}n. We let φ(z) denote the value of the formula φ at z.

2. The plaintext is a pair (ind = z, m) where the index space is I := {0, 1}n, and
where we interpret z as a bit vector representing the boolean values z1, . . . zn.

3. The predicate Pn on K × I is defined as

Pn

(
φ ∈ K � {ε}, ind = z ∈ I

)
:=

{
1 if φ(z) = 1, and

0 otherwise

In these systems the key provides an access formula that operates over a set of n at-
tributes that must evaluate to true for decryption to yield the message m. Goyal et al.
also describe how to construct a “Large Universe” construction where ind can be viewed
as a set of strings. Then K consists of all monotone boolean formulas over strings. To
evaluate φ(ind) we evaluate a leaf labeled with string x in φ as ‘0’ if x /∈ ind.

Ciphertext-Policy ABE. A dual concept of Attribute-Based Encryption is Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), where the roles of the ciphertext and
key are essentially reversed. A Ciphertext-Policy ABE system over n variables can be
described as predicate encryption scheme (with public index) for the predicate Pn :
K × I → {0, 1} where:

1. The key space K := {0, 1}n is the set of all n bit strings representing n boolean
variables z = (z1, . . . , zn) ∈ {0, 1}n.

4 The ABE solutions of Goyal et. al. and others [BSW07, OSW07, GJPS08, Wat11] actually
extend to formulas over threshold gates and to Monotone Span Programs; however, we restrict
our description to Boolean formulas for simplicity.

Functional Encryption: Definitions and Challenges 259

2. The plaintext is a pair (ind = φ, m) where the index space I is the set of all
poly-sized boolean formulas φ over n variables.

3. The predicate Pn on K × I is defined as

Pn

(
z ∈ K � {ε}, ind = φ ∈ I

)
:=

{
1 if φ(z) = 1, and

0 otherwise

CP-ABE systems are constructed in [BSW07, GJPS08, Wat11]. Most constructions of
ABE (both Ciphertext-Policy and Key-Policy) were proven secure in a weaker selective
model of security. Recently Lewko et. al. [LOS +10] showed how to give fully secure
realizations meeting our security definition.

3.2 Predicate Encryption Systems

While the previous systems described allow for expressive forms of access control, they
are limited in two ways. First, the policy ind is given in the clear as part of the empty
functionality — often this in itself can be considered sensitive. Second, it does not allow
for computation on the encrypted data, which might include such applications as search.
Here we describe current Predicate Encryption systems that do not leak the index ind.

Anonymous Identity-Based Encryption. The problem of Anonymous Identity-Based
Encryption was first proposed by Boneh et. al. [BCOP04] and later formalized by Ab-
dalla et. al. [ABC+08]. Other constructions include [BW06, Gen06, CHKP10, ABB10].
The functionality of Anonymous IBE is similar to IBE except that the string represent-
ing the ciphertext identity is hidden and one can only determine it if they have the
corresponding private key. Therefore, we can describe Anonymous IBE in the exact
same manner as above, except we have that F

(
ε, (ind, m)

)
= len(m). The empty

functionality only gives the message length, but ind stays hidden.

Hidden Vector Encryption. Boneh and Waters [BW07] proposed what they called a
hidden vector encryption system. In such a system a ciphertext contains a vector of n
elements in {0, 1}∗ and a private key contains of a vector of n elements in {∗}∪{0, 1}∗
where we refer to ∗ as a wildcard character. More precisely,

1. The key space K is all (v1, . . . vn) where each vi ∈ {∗} ∪ {0, 1}∗.
2. The plaintext is a pair (ind = (w1, . . . , wn), m) where each wi ∈ {0, 1}∗. The

index space in I := ({0, 1}∗)n.
3. The predicate Pn on K × I is defined as

Pn

(
(v1, . . . , vn) ∈ K � {ε}, ind = (w1, . . . , wn)

)
:={

1 if vi = wi whenever vi �= ∗, and

0 otherwise

Applications of the predicate include conjunctive and range searches. Independently,
Shi et. al. [SBC+07] proposed a related system in a weaker security model. Again we
note that F

(
ε, (ind, m)

)
= len(m) so that ciphertexts do not reveal ind.

260 D. Boneh, A. Sahai, and B. Waters

Inner Product Predicate. The previous system was limited to conjunctive searches.
Katz, Sahai and Waters [KSW08] proposed a system for testing if a dot product oper-
ation over the ring ZN is equal to 0, where N is the product of three random primes
chosen by the setup algorithm. This enabled more complex evaluations on disjunctions,
polynomials, and CNF/DNF formulae. Subsequently, Okamoto and Takashima [OT09]
and Lewko et. al. [LOS +10] gave constructions over the field Fp. We describe this
predicate for vectors of length n.

1. The setup algorithm defines a randomly chosen prime p of length κ, where κ is the
security parameter.

2. The key space K is all v = (v1, . . . vn) where each vi ∈ Fp.
3. The plaintext is a pair (ind = (w1, . . . , wn), m) where each wi ∈ Fp. The index

space is I := (Fp)n.
4. The predicate Pn,p on K × I is defined as

Pn,p

(
(v1, . . . , vn) ∈ K � {ε}, ind = (w1, . . . , wn)

)
:={

1 if
∑

i=1,...,n vi · wi = 0
0 otherwise

3.3 Other Systems and Combinations

Different researchers have realized different combinations of the above core systems.
Examples of these include combinations of: Attribute-Based Encryption and Broad-
cast Encryption [AI09], Identity-Based Broadcast Encryption [Del07, DPP07, SF07,
GW09], broadcast HIBE [BH08], and Inner-Product Encryption and ABE [OT10]. All
are captured as special cases of functional encryption.

4 Security Definitions

Given the syntactic definitions of Functional Encryption (FE) from Section 2 we now
turn to defining security of an FE scheme. In this section we give game based defini-
tions. In Section 5 we discuss simulation-based definitions.

Let E be an FE scheme for functionality F defined over (K, X). Our goal is to define
security against an adaptive adversary that repeatedly asks for secret keys skk for keys
k ∈ K of the attacker’s choice. As we shall see, defining security against such attackers
is more delicate than one might first expect. The problem is how to define the challenge
ciphertext in a semantic security game. As usual, once the attacker obtains all the secret
keys he desires, he outputs two challenge messages m0, m1 ∈ X and expects to get
back an encryption c of m0 or m1 chosen at random by the challenger. Clearly, if the
attacker has a secret key skk for some k ∈ K for which F (k, m0) �= F (k, m1) then he
can easily answer the challenge c by outputting{

0 if dec(skk, c) = F (k, m0), and

1 otherwise

Functional Encryption: Definitions and Challenges 261

Hence, for the definition to be satisfiable we must severely restrict the attacker’s choice
of m0, m1 and require that they satisfy

F (k, m0) = F (k, m1) for all k for which the attacker has skk. (1)

Since the empty key ε reveals the plaintext length, condition (1) ensures that |m0| =
|m1|, as in the standard PKE definition of semantic security.

Security definition. With requirement (1) in place we obtain a natural game for defining
security of an FE scheme E . For b = 0, 1 define experiment b for an adversary A as
follows:

– Setup: run (pp, mk)← setup(1λ) and give pp to A.
– Query: A adaptively submits queries ki in K for i = 1, 2, . . . and is given ski ←

keygen(mk, ki).
– Challenge: A submits two messages m0, m1 ∈ X satisfying (1) and is given

enc(pp, mb).
– A continues to issue key queries as before subject to (1) and eventually outputs a

bit in {0, 1}.
For b = 0, 1 let Wb be the event that the adversary outputs 1 in Experiment b and define

FEadv[E ,A](λ) :=
∣∣Pr[W0]− Pr[W1]

∣∣
Definition 3. An FE scheme E is secure if for all PPTA the function FEadv[E ,A](λ) is
negligible.

Definition 3 is a generalization of related definitions from [BW07, KSW08].

4.1 A “Brute Force” Construction

We briefly show that any functionality F where the key space K has polynomial size
can be easily realized. Write s = |K| − 1 and K = {ε, k1, . . . , ks}. In this brute force
construction, the size of public parameters, secret key, and ciphertext are all propor-
tional to s. A closely related construction is given in [BW07].

The brute force FE scheme realizing F uses a semantically secure public-key en-
cryption scheme (G, E, D) and works as follows:

– setup(1λ): for i = 1, . . . , s run (ppi, mki)← G(1λ).

output: pp := (pp1, . . . , pps) and mk := (mk1, . . . , mks)

– keygen(mk, ki): output ski := mki.
– enc(pp, x): output c :=

(
F (ε, x), E

(
pp1, F (ki, x)

)
, . . . , E

(
pps, F (ks, x)

))
.

– dec(ski, c): output c0 if ski = ε, and output D(ski, ci) otherwise.

Clearly, a ciphertext c leaks the bit lengths of F (ki, x) for i = 1, . . . , s. Therefore, for
this construction to be secure we must assume that this information is already leaked
by the empty functionality F (ε, ·), namely that |F (ki, x)| for i = 1, . . . , s is contained
in F (ε, x). If so then we say that F reveals functional bit lengths.

262 D. Boneh, A. Sahai, and B. Waters

Theorem 1. Let F be a functionality that reveals functional bit lengths. If (G, E, D)
is a semantically secure public-key encryption scheme then the brute force FE system
implementing F is secure.

Proof (Proof Sketch). The proof is by a standard hybrid argument across the s compo-
nents of the challenge ciphertext.

4.2 Insufficiency of the Game-Based Security Definition

We will now show that for certain complex functionalities Definition 3 is too weak. For
these functionalities we construct systems that are secure under Definition 3, but should
not be considered secure. Nevertheless, for functionalities such as predicate encryption
with public index we show in Section 5 that Definition 3 is adequate.

We give a simple example of a functionality for which the game-based Definition 3
is insufficient. Let π be a one-way permutation and consider the functionality F that
only admits the trivial key ε, defined as follows:

F (ε, x) = π(x)

It is clear that the “right” way to achieve functional encryption for this very simple
functionality is to have the functional encryption algorithm itself simply output π(x)
on input x, namely enc(pp, x) = π(x). This scheme would also clearly achieve the
simulation-based definition of security presented in Section 5.

However, consider an “incorrect” realization of this functionality where the func-
tional encryption algorithm outputs x on input x, namely enc(pp, x) = x. Clearly this
system leaks more information about the plaintext than needed. Nevertheless, it is easy
to verify that this construction satisfies the game-based definition from Section 4. This
is because for any two values x and y, it is the case that F (ε, x) = F (ε, y) if and only
if x = y and therefore the attacker can only issue challenge messages m0, m1 where
m0 = m1.

This problematic system, however, would clearly not achieve the simulation-based
definition of security presented in Section 5, since if x is chosen at random, the real-life
adversary would be able to recover x always, while the simulator would not be able to
recover x without breaking the one-wayness of the permutation π.

While the simple example above may seem to be “abusing” the role of the trivial
key ε, it is easy to modify the functionality example F above so that there is exactly
one non-trivial key k ∈ K that outputs π(x). The only difference to the construction
above would be that the functional encryption algorithm would output a public-key
encryption5 of either π(x) (in the “correct” implementation) or x (in the “incorrect”
implementation), and the secret key for key k would be the secret key of the public-key
encryption scheme. Again, it is easy to verify that the incorrect implementation satisfies
the game-based definition.

Discussion. What does this separation show? While this is a subjective question, our
view is that it shows that if the output of the functionality is supposed to have some

5 The public-key encryption would need to be non-committing to achieve the simulation-based
definition of security for the good case.

Functional Encryption: Definitions and Challenges 263

computational hiding properties – that is, security of your application is not only based
on the information-theoretic properties of the function, but also on the computational
properties of the function – then there is a real problem with the game-based formulation
of security. The game-based formulation essentially ignores any computational hiding
properties of the function, and therefore offers no security guarantees that could be
meaningfully combined with such computational considerations.

5 Simulation Based Definitions

In this section, we explore security definitions for functional encryption that arise from
the simulation paradigm [GM84, GMR85, GMW86] that has served us so well, espe-
cially in the closely related context of secure computation protocols.

We begin by considering a simulation-based definition6 of security for functional
encryption that captures the most basic intuition we have: That getting the secret key skk

corresponding to the key k ∈ K should only reveal F (k, x) when given an encryption
of x.

It turns out that we can achieve this simulation-based definition for natural function-
alities in the random oracle model, where in the ideal model the random oracle would
also be simulated. We argue that in fact this (very strong) random oracle model seems
necessary for a meaningful simulation-based definition of security for functional en-
cryption: we show that even in the non-programmable random oracle model (where the
simulator, too, only has oracle access to the same random oracle that is provided to
the distinguisher), simulation-secure functional encryption (for a seemingly “minimal”
formulation of simulation-security) even just for the IBE functionality is impossible to
achieve. At a high level, this is because any simulation-based definition that allows the
adversary to query for secret keys after seeing the challenge ciphertext must achieve
something very similar in spirit to non-interactive non-committing encryption, where
exactly these kinds of impossibility and possibility results are known [Nie02].

In our main definition below (that we will achieve in our positive results), we will use
some non-standard syntax for representing a stateful oracle7. When we write AB(·)[[x]],
we mean that the algorithm A can issue a query q to its oracle, at which point B(q, x)
will be executed and output a pair (y, x′). The value y is then communicated to A as
the response to its query, and the variable x is set to x′, and this updated value is fed
to the algorithm B the next time it is queried as an oracle, and fed to any algorithms
executed later in an experiment that want x as an input. Also, if we write AB◦(·), we
mean that A can send a query q to its oracle, at which point B◦(q) is executed, and any
oracle queries that B makes are answered by A.

Definition 4. An FE scheme E is simulation-secure if there exists an (oracle) PPT
algorithm Sim = (Sim1, SimO, Sim2) such that for any (oracle) PPT algorithms

6 We note that there are several natural variants possible for such a definition. We have chosen
a definition that is strong in the sense that it requires a universal black-box simulator. We will
later discuss some weaker formulations.

7 The more standard way to formalize this communication structure would be through interactive
Turing Machines, but we find this notation to be simpler to parse.

264 D. Boneh, A. Sahai, and B. Waters

Message and Adv, we have that the following two distribution ensembles (over the
security parameter λ) are computationally indistinguishable:

Real Distribution:
1. (pp, mk)← setup(1λ)
2. (x, τ)←Messagekeygen(mk,·)(pp)
3. c← enc(pp, x)
4. α← Advkeygen(mk,·)(pp, c, τ)
5. Let y1, . . . , y� be the queries to keygen made by Message and Adv in the

previous steps.
6. Output (pp, x, τ, α, y1, . . . , y�)

Ideal Distribution:
1. (pp, σ)← Sim1(1λ)
2. (x, τ)←MessageSimO(·)[[σ]](pp)
3. α← Sim

F (·,x), Adv◦(pp,·,τ)
2 (σ, F (ε, x))

4. Let y1, . . . , y� be the queries to F made by Sim in the previous steps8.
5. Output (pp, x, τ, α, y1, . . . , y�)

We note that this definition can be extended further to allow the adversary to receive
challenge ciphertexts adaptively (instead of as a single vector), and all our positive
results below would extend to this setting. We omit this generalization due to the nota-
tional complexity that would be required to formulate such a definition.

5.1 Impossibility of Simulation-Secure Functional Encryption

In this section, we briefly sketch the impossibility result for simulation-secure func-
tional encryption, even for a quite simple functionality (the functionality corresponding
to IBE), in the non-programmable random oracle model. As the proof closely mirrors
the argument of Nielsen [Nie02] for non-interactive non-committing encryption, we
give only a high-level overview of the proof.

We note that our impossibility result in fact holds for much less stringent formu-
lations of simulation security for functional encryption. In particular, we consider the
following weaker version of our main definition:

Definition 5. An FE scheme E is weakly simulation-secure if for any (oracle) PPT
algorithms Message and Adv, there exists an (oracle) PPT algorithm Sim such that
we have that the following two distribution ensembles (over the security parameter λ)
are computationally indistinguishable:

Real Distribution:
1. (pp, mk)← setup(1λ)
2. (x, τ)←Message(1λ)

8 Note that Sim does not need to query the oracle for F (ε, x), as this is provided as an explicit
input to Sim2. We choose this formulation since in the real distribution, the Adversary does
not explicitly need to ask keygen for the key corresponding to ε in order to gain knowledge
about F (ε,x).

Functional Encryption: Definitions and Challenges 265

3. c← enc(pp, x)
4. α← Advkeygen(mk,·)(pp, c, τ)
5. Let y1, . . . , y� be the queries to keygen made by Adv in the previous steps.
6. Output (x, τ, α, y1, . . . , y�)

Ideal Distribution:
1. (x, τ)←Message(1λ)
2. α← SimF (·,x)(1λ, τ, F (ε, x))
3. Let y1, . . . , y� be the queries to F made by Sim in the previous step.
4. Output (x, τ, α, y1, . . . , y�)

We note another weakening of the definition above would be to have the distributions
output the queries y1, . . . , y� as an unordered set, instead of an ordered tuple. Our im-
possibility proof can be extended to this weakening as well. We now sketch the proof
of the following theorem.

Theorem 2. Let F be the functionality for IBE. There does not exist any weakly
simulation-secure FE scheme for F in the non-programmable random oracle model.

Proof (Brief Proof Sketch). The overall idea of this proof is almost identical to the im-
possibility proof of Nielsen [Nie02] for non-interactive non-committing encryption. Let
H represent the random oracle. Consider the following concrete adversary algorithms:

Message(1λ) works as follows: Let lensk be the maximum bit length produced by
the keygen algorithm for the key 0 for security parameter λ. Then the vector x consists
of the following elements: for i = 1, . . . , lensk + λ, the element (ri, 0) where ri is a
randomly and independently chosen bit for each i. The value τ is empty.

Advkeygen(mk,·)(pp, c, τ) works as follows: Call the random oracle H on the input
(pp, c) to obtain a string w of length λ. Now request the secret key for the identity
(w) first, and then for the identity 0. Use the key for identity 0 to decrypt the entire
ciphertext. Output a full transcript of the entire computation done by Adv, including all
calls to the random oracle and the interaction with the keygen oracle.

Now consider what Sim must do in order to output a distribution indistinguishable
from the real interaction. Because Adv only makes a single key query of the form (w),
it is the case that Sim must make exactly one query – its first query – to F of this
form as well. Furthermore, the distinguisher can check if this w is the output of H
applied to some string of the form (pp, c). Thus, the simulator must perform this query
to H before making any queries to F . The simulator at this point has no information
whatsoever about the plaintexts ri (which is only revealed when the simulator queries
F for identity 0 afterwards). Thus, this fixed string z = (pp, c) has the (impossible)
property that after receiving only lensk bits of information, it can deterministically
“decode” z to be a an arbitrary string of length lensk + λ.

We remark that the proof above made use of the fact that the simulator’s queries to
F are recorded in order. However, we note that the same impossibility result would
hold even if the security definition only recorded the unordered set of queries to F , but
using a slightly more involved adversary and message distribution. Roughly speaking,
the only identities in the system would be of the form (i, 0) and (i, 1) for i = 1, . . . , λ,

266 D. Boneh, A. Sahai, and B. Waters

and the messages to be encrypted would be random long messages for each identity.
The adversary would apply the random oracle to (pp, c) to obtain a single string w
of length λ exactly as above, but it would now use this string to obtain keys (i, wi)
for i = 1, . . . , λ. The argument would now proceed by looking at the point when the
simulator has made at least λ/2 queries to F . By now with overwhelming probability,
a single query (pp, c) to H would be compatible with these queries, and that could be
used to define the “impossible string” needed above.

5.2 A Simulation-Based Brute Force Scheme

We now consider FE schemes that are simulation-secure in the random oracle model
(where the scheme algorithms and the Message and Adv algorithms all have oracle
access to a random oracle, but the simulator algorithms can emulate the random oracle
itself). We note that this is the standard formulation of the random oracle model, more
recently called the “full” or “programmable” random oracle model.

The modified “brute-force” construction. We first consider the following slight mod-
ification of the brute-force construction given earlier. The modification just uses the
random oracle to randomly mask the output values of the function.

We will make use of a random oracle H : {0, 1}∗ → {0, 1}. Note that we will
abuse notation and also write H(x) to produce strings of arbitrary length (which will
be clear from context). This can be accomplished by interpreting H(x) to mean the
concatenation of H((x, 1)), . . . , H((x,
)) to produce strings of length
.

Recall that we write s = |K|−1 and K = {ε, k1, . . . , ks}. The brute force FE scheme
realizing F uses a semantically secure public-key encryption scheme (G, E, D), and
works as follows:

– setup(1λ): for i = 1, . . . , s run (ppi, mki)← G(1λ).

output: pp := (pp1, . . . , pps) and mk := (mk1, . . . , mks)

– keygen(mk, ki): output ski := mki.
– enc(pp, x): choose random values r1, . . . , rs ∈R {0, 1}λ. output

c :=
(

F (ε, x), E
(
pp1, r1

)
, H(r1)⊕ F (k1, x), . . . ,

E
(
pps, rs

)
, H(rs)⊕ F (ks, x)

)
.

– dec(ski, c): output c0 if ski = ε, and output H
(
D(ski, c2i−1)

)⊕ c2i otherwise.

A proof sketch of the following theorem is given in the full version of the paper [BSW10].

Theorem 3. Let F be a functionality that reveals functional bit lengths. If (G, E, D)
is a semantically secure public-key encryption scheme then the modified brute force FE
system above implementing F is simulation-secure in the random oracle model.

Functional Encryption: Definitions and Challenges 267

5.3 An Equivalence for Public Index Schemes

We show that any predicate encryption system with public index that is secure under the
game-based Definition 3 also satisfies the simulation based Definition 4 in the random
oracle model. This result shows equivalence (in the random oracle model) for the large
class of public index schemes including various forms of Attribute-Based encryption.

Let E := (setup, keygen, enc, dec) be an FE predicate encryption system with public
index for predicate P : K × I → {0, 1}. We convert the system into a scheme EH :=
(setup, keygen, encH , decH) where encryption is done using a random oracle H :

– encH(pp, (ind, m)): choose a random value r ∈ {0, 1}λ and output

c :=
(

enc(pp, (ind, r)), H(r) ⊕m
)

.

– decH(sk, (c1, c2)): if dec(sk, c1) = ⊥ output⊥, otherwise output dec(sk, c1)⊕c2.

The following theorem shows that this construction is simulation secure.

Theorem 4. If the system E is game-secure (Definition 3) then EH is simulation secure
(Definition 4) in the random oracle model.

Proof (sketch). We construct the universal simulators Sim1, SimO, and Sim2 needed
for simulation security. These algorithms work as follows:

– Sim1(1λ) simply executes setup(1λ) to obtain pp and mk. It outputs pp unmodi-
fied, and outputs σ = (mk, O, κ), where O and κ are empty lists. This list O will
keep track of the simulated random oracle, and κ will keep track of key queries.

– SimO(·)[[σ]] works as follows: It responds to random oracle queries and keygen
queries the adversary Message makes as follows:

• Random Oracle Queries: On query q, the simulator first checks to see if a
pair (q, y) already exists in the list O. If so, it provides y as the response to the
adversary’s query. If not, the simulator chooses a fresh random string y, adds
the pair (q, y) to the list O, and provides y as the response to the adversary’s
query. This list O is updated in the state variable σ.
• Key Queries: When the adversary asks for the key k, the simulator sends the

secret key sk ← keygen(mk, k) to the adversary. The simulator adds k to the
list κ. This list κ is updated in the state variable σ.

– Sim
F (x,·), Adv◦(pp,·,τ)
2 (σ, F (x, ε)) works as follows:

1. The algorithm begins by preparing a “fake” vector of ciphertexts as follows:
Let n be the number of elements in x and let ind1, . . . , indn be the indices in
x. Sim2 obtains n and these indices by querying its F oracle at F (ε, x).

Now, for i = 1 . . . n, it chooses random strings r1, . . . , rn and R1, . . . Rn,
and creates the ciphertext components

ci,1 := enc
(
pp, (indi, ri)

)
and ci,2 = Ri for i = 1, . . . , n.

Let c be the vector of n ciphertexts c := (ci,1, ci,2)i=1,...,n .

268 D. Boneh, A. Sahai, and B. Waters

2. For each key k in the list κ of keys already queried, the simulator does the
following:
(1) it invokes the F oracle and obtains F (k, x) = (z1, . . . , zn),
(2) for i = 1, . . . , n if zi �= ⊥ it adds the pair (ri, Ri ⊕ zi) to the list O. If any
of these ri values were already in the list O, the simulation aborts.

3. Then it invokes Adv(pp, c, τ) using this “fake” ciphertext vector c created
above.

4. It now monitors which random oracle queries and keygen queries the adversary
Adv makes. It responds to these queries as follows:

• Random Oracle Queries: On query q, the simulator first checks to see if a
pair (q, y) already exists in the list O. If so, it provides y as the response to
the adversary’s query. If not, the simulator chooses a fresh random string
y, adds the pair (q, y) to the list O, and provides y as the response to the
adversary’s query.
• Key Queries: If the adversary asks for the key k, then the simulator in-

vokes the F oracle and obtains F (k, x) = (z1, . . . , zn). For i = 1, . . . , n
if zi �= ⊥ it adds the pair (ri, Ri ⊕ zi) to the list O. If for any i there
is already a pair (ri, R) in the list O with R �= Ri ⊕ zi then the simu-
lation aborts. Finally, it sends the secret key sk ← keygen(mk, k) to the
adversary. It is easy to confirm that the decryption procedure will work as
it should after we have modified the random oracle as detailed above.

5. When the adversary terminates and outputs α, then the simulator outputs this
α as well, finishing the simulation.

The same argument as in the proof of Theorem 3 shows that the simulator aborts with
negligible probability and that the distribution generated by these simulators is statis-
tically close to the real distribution. In particular, the negligible probability of abort
follows from the game-based security of E , since game-based security implies one-way
security for encrypting random values, which implies that the adversary is extremely
unlikely to query the random oracle on the ri values prior to obtaining a secret key that
can open the i’th ciphertext.

Other Simulation-Secure Functional Encryption Schemes. Since the above equiva-
lence only applies to public index schemes, an interesting question is whether we can
achieve simulation security for more general systems. Intuitively this is more challeng-
ing, since it goes beyond just hiding a payload, to “hiding a computation” and is ar-
guably closer to our counter example of Section 4.2.

In the full version of the paper [BSW10] we prove the simulation security of the
Boneh-Franklin construction for the anonymous IBE functionality. An interesting di-
rection is to prove simulation security for systems with more functionality. One chal-
lenge is that it is not completely clear how to apply the random oracle heuristic to these
systems, as the correctness of such schemes typically relies on structure that a hash
function might break.

Functional Encryption: Definitions and Challenges 269

6 Extending Functional Encryption

In this work, we focus on the “core” case of functional encryption. However, there are
multiple ways to extend the concept. We briefly outline these here. We hope future work
will develop these extensions and give precise definitions of security and constructions.

Delegation. Delegation is the ability of an algorithm to transform a key k in a func-
tional encryption system to another key k′. For example, one might want to share the
ability to decrypt all messages of a certain subject to another user. Typically, we think
of the resulting key k′ as being more restricted than the source key k. We observe
that the set of allowed delegations must respect the security definition of the system.
Delegation in functional encryption systems is typically associated with Hierarchical
Identity-Based Encryption [HL02, GS02], but was also considered in Attribute-Based
Encryption [GPSW06] and other predicate encryption systems [SW08].

Encryption over Multiple Parameters and Multiple Systems. Our functional encryp-
tion systems allow for functionalities F : K × X → {0, 1}∗ that take in a single key
and plaintext as inputs. However, we could extend our system to allows for functionali-
ties that take in multiple keys F : (K1, . . . , Kn)×X → {0, 1}∗. This can be useful in
applications where we want users to combine their capabilities in a specified manner or
when one of the keys can represent an event such as a certain time period arriving, or
publication of a revocation list [BGK08].Another interesting direction is to allow for a
functional encryption system that operates over multiple ciphertexts.

Taking things further we could consider an encryption system where encryption takes
in multiple public parameters each from different authorities and where the functional-
ity is evaluated over private keys generated by different master secret keys. One no-
table application of this is Attribute-Based Encryption where multiple authorities are
used [Cha07, CC09].

Hiding Information about capabilities of the key. One consistent feature of all sys-
tems is that there do not exist any security notions about the attacker’s inability to
distinguish what type of key k he is given a secret key for. A natural reason for this is
that in a public key system, he can distinguish whether he has the capability for k0, k1

by simply encrypting an x ∈ X such that F (k0, x) �= F (k1, x). However, one might
try to consider such a problem when encryption is not public key [SSW09, BIP10].

7 Future Directions in Functional Encryption

The results to date scratch the surface of functional encryption and only implement rel-
atively simple functionalities. Here we list a few fascinating open problems that remain.

– The grand challenge is to construct a secure functional encryption scheme for all
polynomial-time functionalities. A more modest goal is to do the same for predi-
cate encryption for all polynomial-time predicates. Currently, the best we can do
is predicates defined by inner products [KSW08]. The inner product construction
uses bilinear maps and our inability to move beyond inner products is due to the
“bi” in bilinear maps. Other tools, perhaps borrowing from fully homomorphic en-
cryption [Gen09], may lead to a more general class of predicates.

270 D. Boneh, A. Sahai, and B. Waters

– If not all polynomial time functionalities, can we realize complex interesting ones
such as data-mining functionalities? That is, can we build a secret key that given an
encrypted data set will produce a cleartext model (e.g. a decision tree) for the data
set, but reveal nothing else about the data? Nothing in this vain is currently known.

– Are there black box separations between different functionalities? Currently, the
only result in this direction separates IBE from public-key encryption [BPR+08].
Is there a generic separation result that separates any two functionalities that are
not trivially implied one by the other?

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–
572. Springer, Heidelberg (2010)

[ABC+08] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T.,
Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited:
Consistency properties, relation to anonymous ibe, and extensions. J. Cryptol-
ogy 21(3), 350–391 (2008)

[AI09] Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based
encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671,
pp. 248–265. Springer, Heidelberg (2009)

[AL10] Attrapadung, N., Libert, B.: Functional encryption for inner product:
Achieving constant-size ciphertexts with adaptive security or support for nega-
tion. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
384–402. Springer, Heidelberg (2010)

[BB04a] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[BB04b] Boneh, D., Boyen, X.: Secure identity based encryption without random
oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459.
Springer, Heidelberg (2004)

[BCOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryp-
tion with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

[BF03] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing.
SIAM J. Comput. 32(3), 586–615 (2003); Extended abstract In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

[BGK08] Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient
revocation. In: ACM Conference on Computer and Communications Security,
pp. 417–426 (2008)

[BH08] Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–
470. Springer, Heidelberg (2008)

[BIP10] Blundo, C., Iovino, V., Persiano, G.: Predicate encryption with partial public
keys. Cryptology ePrint Archive, Report 2010/476 (2010),
http://eprint.iacr.org/

[BPR+08] Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
FOCS, pp. 283–292 (2008)

http://eprint.iacr.org/

Functional Encryption: Definitions and Challenges 271

[BSW07] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

[BSW10] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and
challenges. Cryptology ePrint Archive, Report 2010/543 (2010),
http://eprint.iacr.org/2010/543

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(Without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

[CC09] Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: ACM Conference on Computer and Communi-
cations Security, pp. 121–130 (2009)

[CFGN96] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC 1996, pp. 639–648 (1996)

[Cha07] Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption
scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–
271. Springer, Heidelberg (2003)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic residues.
In: IMA Int. Conf., pp. 360–363 (2001)

[Del07] Delerablée, C.: Identity-based broadcast encryption with constant size cipher-
texts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

[DH76a] Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: AFIPS Na-
tional Computer Conference, pp. 109–112 (1976)

[DH76b] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions
on Information Theory IT-22(6), 644–654 (1976)

[DPP07] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys. In:
Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 39–59. Springer, Heidelberg (2007)

[Gen06] Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464.
Springer, Heidelberg (2006)

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009), http://crypto.stanford.edu/craig

[GJPS08] Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 579–591. Springer, Heidelberg (2008)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. Jour. of Computer and
System Science 28(2), 270–299 (1984)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof-systems. In: STOC, pp. 291–304 (1985)

http://eprint.iacr.org/2010/543
http://crypto.stanford.edu/craig

272 D. Boneh, A. Sahai, and B. Waters

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In: FOCS, pp.
174–187 (1986)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for
fine-grained access control of encrypted data. In: ACM Conference on Com-
puter and Communications Security, pp. 89–98 (2006)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

[GS02] Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y.
(ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg
(2002)

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

[HL02] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer,
Heidelberg (2002)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

[LOS +10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure
Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner
Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (2010)

[Nie02] Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010),
http://eprint.iacr.org/2010/556

[OSW07] Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with
non-monotonic access structures. In: ACM Conference on Computer and Com-
munications Security, pp. 195–203 (2007)

[OT09] Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-
products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–
231. Springer, Heidelberg (2009)

[OT10] Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

[SBC+07] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.:
Multi-dimensional range query over encrypted data. In: IEEE Symposium on
Security and Privacy, pp. 350–364 (2007)

[SF07] Sakai, R., Furukawa, J.: Identity-based broadcast encryption. Cryptology ePrint
Archive, Report 2007/217 (2007), http://eprint.iacr.org/

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

[SSW09] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Hei-
delberg (2009)

http://eprint.iacr.org/2010/556
http://eprint.iacr.org/

Functional Encryption: Definitions and Challenges 273

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg
(2005)

[SW08] Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578.
Springer, Heidelberg (2008)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

[Wat08] Waters, B.: Functional encryption:beyond public key cryptography. Power
Point Presentation (2008),
http://userweb.cs.utexas.edu/ bwaters/presentations/
files/functional.ppt

[Wat11] Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. In: Ishai, Y. (ed.) PKC 2011. LNCS,
vol. 6597. Springer, Heidelberg (2011)

http://userweb.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://userweb.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	Functional Encryption: Definitions and Challenges
	Introduction
	Functional Encryption Syntax
	Sub-classes of Functional Encryption

	Capturing Cryptosystems in the Context of Functional Encryption
	Predicate Encryption Systems with Public Index
	Predicate Encryption Systems
	Other Systems and Combinations

	Security Definitions
	A ``Brute Force'' Construction
	Insufficiency of the Game-Based Security Definition

	Simulation Based Definitions
	Impossibility of Simulation-Secure Functional Encryption
	A Simulation-Based Brute Force Scheme
	An Equivalence for Public Index Schemes

	Extending Functional Encryption
	Future Directions in Functional Encryption
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

