Skip to main content

Post-Transcriptional Modifications of Plant Small RNAs

  • Chapter
  • First Online:
Non Coding RNAs in Plants

Part of the book series: RNA Technologies ((RNATECHN))

  • 1789 Accesses

Abstract

Generally, small RNAs are generated template dependent by RNA ­polymerases or RNA dependent RNA polymerases with the transcription template being either DNA or RNA. Following transcription, small RNAs in plants undergo processing by Dicer-like RNase III type endonucleases to define their mature 5′ and 3′ termini. Part of the maturation process of small RNAs are post-transcriptional modifications either on the ribose or base moiety of the nucleotide. Additionally, deletion and/or addition of nucleotides by RNA-specific ribonucleotidyl transferases are also plausible (RNA 13:1834–1849, 2007). In this chapter, ubiquitous and sequence specific post-transcriptional modifications of plant small RNAs are discussed as well as their detection through biochemical means or analysis of DNA sequencing data of small RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alefelder S, Patel BK, Eckstein F (1998) Incorporation of terminal phosphorothioates into oligonucleotides. Nucleic Acids Res 26:4983–4988

    Article  PubMed  CAS  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Liu J, Cheng Y et al (2002) HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Chen LT, Patel K et al (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274

    Article  PubMed  CAS  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N et al (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Dance GS, Beemiller P, Yang Y et al (2001) Identification of the yeast cytidine deaminase CDD1 as an orphan C→U RNA editase. Nucleic Acids Res 29:1772–1780

    Article  PubMed  CAS  Google Scholar 

  • Dolgosheina EV, Morin RD, Aksay G et al (2008) Conifers have a unique small RNA silencing signature. RNA 14:1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Ebhardt HA, Unrau PJ (2009) Characterizing multiple exogenous and endogenous small RNA populations in parallel with subfemtomolar sensitivity using a streptavidin gel-shift assay. RNA 15:724–731

    Article  PubMed  CAS  Google Scholar 

  • Ebhardt HA, Thi EP, Wang MB et al (2005) Extensive 3′ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc Natl Acad Sci USA 102:13398–13403

    Article  PubMed  CAS  Google Scholar 

  • Ebhardt HA, Tsang HH, Dai DC et al (2009) Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res 37:2461–2470

    Article  PubMed  CAS  Google Scholar 

  • Ebhardt HA, Fedynak A, Fahlman RP (2010) Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity. Silence 1:12

    Article  PubMed  Google Scholar 

  • Ebhardt HA, Ovando OM, Unrau PJ (2011) Isolation and biochemical analysis of plant small RNAs. John M. Watson, Ming-Bo Wang (eds.), Antiviral resistance in plants. Humana Press (Springer)

    Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Gustafson AM, Allen E, Givan S et al (2005) ASRP: the Arabidopsis small RNA project database. Nucleic Acids Res 33:D637–D640

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B et al (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Martin G, Keller W (2007) RNA-specific ribonucleotidyl transferases. RNA 13:1834–1849

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  PubMed  CAS  Google Scholar 

  • Omer AD, Lowe TM, Russell AG et al (2000) Homologs of small nucleolar RNAs in Archaea. Science 288:517–522

    Article  PubMed  CAS  Google Scholar 

  • Omer AD, Ziesche S, Ebhardt H et al (2002) In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proc Natl Acad Sci USA 99:5289–5294

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Potter J, Zheng W, Lee J (2003) Thermal stability and cDNA synthesis capability of SuperScript™ III reverse transcriptase. Focus 25:19–24

    Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Goodman HM (2004) Uridine addition after microRNA-directed cleavage. Science 306:997

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (2009) AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS ONE 4:e6442

    Article  PubMed  Google Scholar 

  • Wang MB, Bian XY, Wu LM et al (2004) On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci USA 101:3275–3280

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Ebright YW, Yu B et al (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HAE is supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Post-doctoral Fellowship. HAE would also like to thank the reviewers for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Alexander Ebhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebhardt, H.A. (2011). Post-Transcriptional Modifications of Plant Small RNAs. In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_4

Download citation

Publish with us

Policies and ethics