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Abstract. Jamming is a kind of Denial-of-Service (DoS) attack in which an ad-
versary purposefully emits radio frequency signals to corrupt wireless transmis-
sions. Thus, the communications among normal sensor nodes become difficult
or even impossible. Although some research has been conducted on countering
jamming attacks, few works considered jamming by insiders. Here, an attacker
first compromises some legitimate sensor nodes to acquire the common crypto-
graphic information of the sensor network and then jams the network through
those compromised sensors. In this paper, as our initial effort, we propose a
compromise-resilient anti-jamming scheme called split-pairing scheme to deal
with single insider jamming problem in a one-hop network setting. In our solu-
tion, the physical communication channel of a sensor network is determined by
the group key shared by all the sensor nodes. When insider jamming happens, the
network will generate a new group key to be shared only by all non-compromised
nodes. After that, the insider jammer is revoked and will be unable to predict the
future communication channels used by non-compromised nodes. We implement
and evaluate our solution using the Mica2 Mote platform and show it has low
recovery latency and communication overhead, and it is a practical solution for
resource constrained sensor networks under the single insider jamming attack.

1 Introduction

Wireless communication is vulnerable to jamming-based Denial-of-Service (DoS) at-
tacks in which an attacker purposefully launches signals to corrupt wireless transmis-
sions. Wireless Sensor Networks (WSNs) are especially susceptible to jamming attacks
due to the limited resources in computation, communication, storage and energy.

Jamming cannot be adequately addressed by regular security mechanisms such as
confidentiality, authentication, and integrity, because jamming targets at the basic trans-
mission and reception capabilities of the physical devices. None of the cryptographic
constructions such as encryption/decryption could be directly adopted to solve the prob-
lem. Thus, we have to seek new solutions to deal with this severe attack.

Many existing countermeasures against jamming focus on spread spectrum [1, 2] in
which the sender and receiver hop among channels or use different spreading sequence
to evade the jamming attack. However, to successfully communicate under jamming
attack, both sender and receiver need to know the same hopping or spreading sequence
beforehand and keep it secret. Although uncoordinated frequency hopping (UFHSS)
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and direct spread spectrum (UDSSS) [3–5] proposed to enable key establishment be-
tween one pair of nodes without a pre-shared secret under a jammer, these approaches
are typically not applicable to WSNs due to the high storage and power cost.

For WSNs, Xu et al. proposed to use channel surfing [6] to deal with a narrow-band
and intermittent jammer. Their basic idea is to let sensor nodes switch channels in a
way that the jammer cannot predict them. For example, all nodes switch to a different
channel C(n+1) = FK(C(n)) to evade jamming after jamming is detected, where K is
a group key shared by all nodes, F is a pseudorandom function and C(n) is the original
channel used before jamming. However, this technique is limited to outsider attacks and
it does not work under node compromises since an inside attacker can acquire both the
group key K and the function F .

In this paper, as our initial effort, we consider the insider jamming problem in a one-
hop network. In our proposed solution, the physical communication channel is deter-
mined by the group key shared by all the sensor nodes. When insider jamming happens,
the network will generate a new group key to be shared only by all non-compromised
nodes. After that, the inside jammer is revoked and will be unable to predict the future
communication channels used by non-compromised nodes. To realize the above idea,
we address the following research challenges: First, how can the non-compromised
nodes agree on a new group key in a fully distributed way? Second, how do they dis-
tribute the new group key under the presence of the inside jammer. Specifically, we
propose a compromise-resilient anti-jamming scheme called split-pairing scheme. Our
idea is based on the fact that for any given time the jammer can either jam one channel or
none of them when it is switching channel. Thus, by actively splitting non-compromised
nodes into two or multiple channels, nodes communicating in jamming-free channels
can first reestablish a new common group key. A pairing process is then used to ensure
all the nodes can receive the new group key.

We implemented and evaluated our scheme on a Mica2 Mote platform. We show our
solution has low recovery latency and communication overhead, and it is a practical
solution for resource constrained sensor networks.

The rest of the paper is organized as follows. The related works are presented in
Section 2. The models and design goal are described in Section 3. The details of our
recovery scheme is addressed in Section 4. We introduce our testbed and metrics in
Section 5 and evaluate the performance of our scheme in Section 6. Finally, we discuss
some related issues of our solution in Section 7 and conclude the paper in Section 8.

2 Related Works

Jamming models have been widely studied, classified and evaluated. For example, jam-
mers can be classified in terms of capabilities (broadband or narrowband) or behav-
iors (constant, deceptive, random, reactive) [8]. Jammers discussed and used in prior
works [6–11] can be also categorized based on their working layers in the network stack.
Physical layer jammers directly emit energy on communication channels to interfere the
reception of legitimate transmissions. MAC layer jammers can insert dummy packets or
preambles to deceive the receivers. Cross-layer jammers can attack some specific higher
layer network protocols such as TCP or UDP to generate infinite retransmissions.
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Most physical layer countermeasures rely on the spread spectrum technique. These
solutions require both the sender and receiver share the same key and pseudorandom
function to generate a hopping or spreading sequence. [3–5] studied the problem of
key establishment without pre-shared secret under jamming. In [3, 4], a node pair es-
tablishes a new key by randomly hopping on a large number of channels until meet.
Following that, UDSSS [5] was proposed for broadcast communication. Basically, the
sender sends a message repeatedly and the receivers synchronize the transmission by
a sliding-window approach and despread the received message by searching through
a set of codes. However, most of the physical layer approaches require sophisticated
processing unit and storage device which are not applicable to sensors.

Researchers studied jamming attacks on a broadcast control channel in [12, 13]. [12]
considered an inside attacker who could compromise nodes to obtain the cryptographic
information such as hopping sequences. A cluster head generates hopping sequences for
each member in which some positions of the sequences share the same frequency bands
for the control channel. The compromised node is identified by computing metrics such
as the expected hamming distance. The cluster head then updates the hopping sequences
and redistributes them. Dealing with the similar problem, [13] proposed a framework
for the control channel access scheme, using the random assignment of cryptographic
keys to hide the location of control channels. Both the schemes, however, run in a
centralized manner with the help of either cluster heads or trusted authorities.

For WSNs, [6] discussed evasion strategies called channel surfing under a narrow-
band and intermittent jammer. The basic idea is that the jammed nodes change channels
which cannot be predicted by the jammer. However, if the attacker could jam two chan-
nels at any time, the channel surfing scheme will not work. To solve the problem, [14]
considered a way of communication even under the interference based on the timing
covert channel. This scheme is effective against a broadband and constant/persistent at-
tacker. In their solution, the detection of failed packets is proved by the experiment. A
timing-based overlay and a coding/decoding scheme are established to convey informa-
tion. Though interesting, besides being low-rate, it is unclear how this technique could
be extended to a network with multiple users.

3 System Model and Design Goal

3.1 Network Model and Security Assumptions

We assume each node in the network has multiple channels and can switch to different
channels. For example, the Mica2 mote, which is equipped with Chipcon CC1000 ra-
dio, has 32 effective channels for radio transmission from 902MHz to 928MHz with a
separation of 800KHz in different channels [15]. As our first step towards addressing
the insider jamming problem, in this paper, we focus on a one-hop network in which
each node can directly communicate with all other nodes within one-hop range. This
model is widely used and studied in recent works [3–5, 12–14] and to our knowledge,
no work has studied jamming in a multihop network yet.

For security purpose, we assume every pair of nodes share a pairwise key. The issue
of establishing pairwise keys for sensor nodes was the most well studied one in sensor
network security research. Many pairwise key establishment schemes [16–18] allow
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two nodes to establish a pairwise key on the fly as long as they know each other’s id. In
our work, we choose the Blundo scheme [20] for our solution since the Blundo scheme
provides clear security guarantee and eases our presentation. In the Blundo scheme,
a bivariate symmetric polynomial f(x, y) with degree of t is chosen in advance and
f(i, y) is preloaded on sensor i. The pairwise key with node j on i can be generated by
evaluating the function f(i, j). The scheme provides unconditional secrecy if no more
than t nodes collude. For the storage cost, a node needs to store a univariate polynomial
represented by t + 1 coefficients. The size of a coefficient is the same as that of a
symmetric key. For example, if a sensor network wants to tolerate the compromises of
tens of nodes, it needs to store tens of coefficients. The size of a typical key on sensor is
typically 8 or 16 bytes [19]; hence, each node needs to store hundreds of bytes of keying
material. This storage overhead is affordable for low-end sensor motes with 4KB RAM.

To ease our presentation, we assume that legitimate nodes have detected and identi-
fied the jammer. Jammer localization and identification for WSNs are still open issues,
although recently some efforts have been made towards addressing them, for exam-
ple, RF fingerprinting for sensor nodes [26], jammer localization [27] and software-
based attestation [28–31]. Nevertheless, the focus of this paper is recovery from insider
jamming.

3.2 Attacker Model

As our initial effort, we assume that the attacker may compromise a single node to obtain
such confidential information as group key. The group key is used to derive the channel
used by all the sensor nodes. We discuss how to extend our scheme for the case of multi-
jammers in Section 7. We also assume that the attacker launches jamming through the
compromised sensor. That is, the jammer has the same physical capabilities in terms of
power and frequency band as the normal sensor do. Two reasons for this assumption
are that it is obvious that if the jammer is a high-powered, broadband aggressive device,
there is no hope to construct a jamming-resilient sensor network with the current low-
end sensors. A powerful jammer, on the other hand, can be easily noticed by defenders
since it violates normal communication pattern while jamming by the insider sensor
node is more stealthy. Nevertheless, we assume the compromised sensor launches sig-
nals as strong as possible to maximize the attack’s damage. In the rest of the paper,
informally, when we use “the attacker, it actually refers to the compromised sensor.

In our attack model, the attacker has following parameters:

– Jamming Probability. The attacker can jam up to n channels with probability pi(1 ≤
i ≤ n) for channel i.

– Channel Switch Latency. (tl) The attacker needs time tl(tl > 0) to change from
one channel to another. From our experiment in Section 6, the typical latency is
34ms for Mica2 mote. For MicaZ mote [24], tl is 132us. For 802.11 WiFi chipset,
similar results can be found in recent research works. For example, in [21], the
measurement result of tl for Atheros chipset was reported as 7.6ms.

– Sensing and Jamming Duration. We consider two types of jammers: active and re-
active. For active jammers, attackers launch jamming signal immediately without
sensing. We denote the jamming duration as tj . For reactive attackers, attackers
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sense the traffic before jamming. Active attackers do not sense, so they may jam
some channels that have no traffic. As such, active attacks have shorter response
time but are not energy efficient; on the contrary, reactive attacks have longer re-
sponse times but are more energy efficient.

3.3 Design Goal

Our goal is to design security mechanisms to minimize the damages caused by the in-
side jammer. More specifically, we consider a scenario where a normal node could be
compromised and deceived as a malicious inside jammer. The attacker could use any
cryptographic information known by the normal node to facilitate the jamming attack.
For example, the jammer could always predict the next channel used for communica-
tion and launch jamming signals to block the eligible network traffic. The goal of our
proposed security mechanism is to construct and propagate a new group key to all non-
compromised nodes under the presence of the inside jammer so that the new key can
be used to establish a keyed secret channel which cannot be predicted by the inside
attacker, thus excluding it from the network.

4 The Split-Pairing Scheme

Our basic idea is to split the jammed nodes into two groups, each of which works on
a different channel. Since at any given time the attacker can jam only one channel, or
neither of them when it is switching channel, the group free of jamming may conduct
key propagation. The scheme consists of three phases. Phase I deals with how to split
the network into two groups and assign communication channels to them. Then, we
design the protocol for intra-group key propagation in phase II to ensure that all nodes
in one of the two groups will share the new key at the end of this phase. In phase III,
nodes in two groups are paired to propagate the new key from one group to the other.
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Fig. 1. (a) Network topology (b) The illustration of channel switch for key reestablishment

4.1 Phase I: Channel Splitting

Suppose all nodes work on channel C0 originally and r channels available to switch.
Starting from time t0, one node is compromised and begins to jam channel C0. After the
jammer has been detected and identified, all N non-compromised nodes will be aware
of it. They will switch to new channels in a distributed way. Without loss of generality,
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let us denote their ids as 1, · · · , N . In this phase, nodes with lower ids {1, · · · , �N
2 �}

switch to channel C1 = H(C0|0), and nodes with higher ids {�N
2 �+1, · · · , N} switch

to channel C2 = H(C0|1), where H is a secure hash function preloaded in the sensor
nodes and maps to one of r channels.

The channel switching and splitting process is illustrated in Figure 1(a) and
Figure 1(b). When node A is identified as a compromised node, nodes with lower ids,
i.e., nodes 1, 2 and 3, switch to channel C1 = H(C0|0) and nodes in higher ids, i.e.,
nodes 4, 5, 6 and 7, switch to channel C2 = H(C0|1).

4.2 Phase II: Jamming and Key Propagation within A Group

Once channel splitting finishes, the node with the smallest id in each group acts as
the group leader to generate a new group key, which is then propagated within each
group. That is, node 1 is the group leader of the first group, and node �N

2 � + 1 is the
group leader of the second group. Then, the new group key K is generated based on the
pairwise key K1,�N

2 �+1 shared between two leaders by applying K = F(K1,� N
2 �+1)

(0),

where F is a pseudorandom function. The desirable advantage is that the new group
key is generated without any communication and thus the jammer cannot interfere it.
Since the key K1,�N

2 �+1 is unknown to the attacker, it cannot predict the new group key
although the pseudorandom function F is publicly known.

Once the group leaders have generated the same new key, they will only need to
propagate the new key to all their group members. Clearly, the new key has to be en-
crypted to preclude the compromised attacker from eavesdropping. To propagate K ,
the simple solution is to let the group leader unicast the key to each group member.
To save communication cost, we use reliable broadcast. Specifically, the group leader
broadcasts the key to all group members and gets the acknowledgements (acks) from
each of them. The group leader will retry if any acks are missing.

Specifically, in the broadcast message M1, the new key K is encrypted by differ-
ent pairwise keys shared between the leader and each member. For group 1, node 1
broadcasts M1 and starts a timer

M1 = Mapping||EK1,2(T |2|K)||...||EK1,� N
2 �(T |�N

2
�|K).

where T is the timestamp to prevent replay attacks. After successfully receiving and
decrypting M1, node i sends back a confirmation message to the group leader 1 or
�N

2 � + 1. For group 1, node i sends back

M2 = EK1,i(T |i|K)||i.
If any confirmations are missing due to jamming or collision, a new key propagation
message M1 is reconstructed and sent out after timeout. Only unconfirmed nodes are
required to send back confirmations to reduce the traffic and collision. This procedure
continues until all confirmations are received by the leader.

In TinyOS 2.0.1, the MAC layer frame structure has a data payload of 28bytes. Given
a typical key size of 8 bytes [19], one frame can include at most 3 encryptions of a group
key. Also, node ID is 1 byte and encryption id is 1byte. For Mica2 with transmission rate
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of 19.2Kbps, the transmission time for M1 with three encryptions (i.e., the subgroup
size is 4 counting the leader) is τ1 ≈ (8Bytes∗3)+1Byte)

19.2Kbps = 10.42ms and for M2 is τ2 ≈
(8+1)Bytes
19.2Kbps = 3.75ms, the one-round communication time will be τ0 = τ1 + 3 ∗ τ2 =

21.67ms. It is worth noting that the one-round time τ0 < tl, where tl=34ms for Mica2.
That is, for a group of size 4, a keying message can be transmitted successfully during
the course of the jammer switching to another channel, jamming a minimal packet, and
returning. If the group size is larger than 4, we need to embed the multiple encryptions
into two or more broadcast messages. Suppose that the key propagation time in one
group without jamming is Tkr. Given the number of nodes in each group and the packet
loss rate, we can compute the expected message transmission round E[Y ] based on [25].
Hence, Tkr = τ0E[Y ].

Unfortunately, in practice the key propagation messages M1 and M2 can be cor-
rupted by jamming and the actual key propagation needs more time. In order to esti-
mate this time, we consider the optimal jamming strategies in which the attacker can
maximize the total key propagation time for this phase. Since the hash function H and
the original channel C0 are publicly known, the attacker knows channels C1 and C2 by
computing the same hash values. However, the attacker has only one air interface and
thus at any given time it can jam only one channel or neither of them when it is switch-
ing channel. This means that at least one of two groups are free of jamming at any time,
and this group can execute the above key propagation protocol. In other words, the at-
tacker cannot simultaneously prevent the key reestablishment for both groups and the
best it can do is to prolong the key propagation time of phase II.

Theorem 1. The optimal jamming strategy for a single jammer is to actively jam two
channels with an equal probability.

Proof. We denote Tj as the overall jamming duration in phase II. The total key prop-
agation time for Phase II is T . In our system model, pi is the probability for the at-
tacker to launch jamming on channel i. For group i, the time it is free of jamming is
Ti = T − Tjpi. In order to maximize the key propagation time, an optimal attacker
would minimize the maximum free-of-jamming time for all groups. Here we consider
the case of two groups i = 1, 2. We formalize the optimization problem as follows:

min
p1,p2

max
p1,p2

(T − Tjp1, T − Tjp2)

s.t.p1 + p2 = 1
p1,2 ≥ 0

(1)

If T − Tjp1 ≥ T − Tjp2, we have p1 ≤ p2. Then, the problem is simplified to:

min
p1≥0,p1≤p2,p1+p2=1

(T − Tjp1) (2)

The solution is p1 = p2 = 0.5. Similarly, we have the same result when T − Tjp2 ≥
T − Tjp1.

To estimate the key propagation time T in one group, we consider a typical optimal
case for the attacker where the attacker alternates between two channels and jams each



Compromise-Resilient Anti-jamming for Wireless Sensor Networks 147

channel for a period of tj . If it starts with group 1, group 2 will be able to complete key
propagation ahead of group one or at the same time as group one. We consider the worst
case in which each jam leads to a retransmission. The number of retransmissions for one
group due to jamming is T

2(tj+tl)
and the time for retransmission is Tjr ≈ T

2(tj+tl)
τ0.

The finish time T is

T ≈ Tkr + Tjr =
2(tj + tl)

2(tj + tl) − τ0
∗ Tkr. (3)

4.3 Phase III: Key Propagation between Groups

After one group finishes the key propagation, this group excludes the attacker by the
keyed secret channel. It is possible that the attacker chooses to jam group 2 all the way
so that few nodes in group 2 can obtain the new group key. If so, nodes in group 1 can
propagate the group key to nodes in group 2 by pairing one node in group 1 with another
node in group 2. For simplicity, we pair the two nodes with the lowest ids in two groups,
the second lowest and so on. If N is odd, group 2 will have one more node left. We pair
it to node 1 since the two lowest id nodes, 1 and �N

2 �+ 1, are group leaders they do not
need to communicate in this phase. Therefore, node 1 is actually only responsible for
that extra node. That is better than pairing this extra node to any other node in group 1,
which is already paired. In Figure 1(a), we pair node 1, 4; 2, 5; 3, 6 and 1, 7.

Fig. 2. Network pairing for the illustrated network in Fig.1

In order to safely propagate the new group key from one group to the other, paired
parties in different groups communicate in a keyed secret channel based on their pair-
wise key. Suppose node i(1 ≤ i ≤ �N

2 �) and j(�N
2 � + 1 ≤ j ≤ N) are paired and

they share a pairwise key Kij . Then, they switch to channel Cij = H(Kij |0). In some
rare cases, two or more pairs are hashed to the same channel due to the limited channel
resource. We use random back-off mechanism to avoid collision. In Figure 2, we show
the pairing and channel switching of the network in Figure 1(a).

After channel switching, all nodes that have received the new group key switch to the
reception mode and wait for a request from their paired parties. For the key propagation,
since phase II can guarantee that nodes in one group have correctly received the new
group key, two cases may occur for the pair i and j. One is that both i and j have
correctly received the new group key. In this case, i and j do not communicate to save
energy and avoid unnecessary traffic and collision. The other is that either i or j has



148 X. Jiang et al.

received the new group key. Without loss of generality, we assume that i has received
the new key but j has not. In this case, j initiates key reestablishment by sending a
message M1 to node i:

M1 = T ||j||MACKij (T |j).
where T is a timestamp and MAC is a message authentication algorithm. Node i replies
to j message M2:

M2 = EKij (T |i|K).

node j decrypts message M2 to obtain K . Note that here M2 does not include a separate
MAC because the knowledge of T and i serves as a way of (weak) authentication. Last,
node j returns a confirmation message M3 to i:

M3 = EKij (T |j|K).

Note that given a typical size of 4-byte MAC [19] all three messages are short and the
time for this exchange for the Mica2 mote is τ3 < 8Bytes∗3

19.2Kbps = 10ms, which can be
completed within tl. In other words, as long as attacker is jamming a channel other than
Cij at the beginning of this phase, inter-group communication of pair ij can complete
without jamming. To deal with some rare case that the attacker has chance to jam the
communication on pair ij, paired nodes maintain a timer and the timeout could be
set to τ3 or a bit more to tolerate lost time synchronization. Since nodes can detect
failed packet [14], if any exchange message is detected to be failed, paired parties stop
the exchange protocol and wait for a timeout. When a timeout occurs, they switch to
another channel C′

ij = H(Kij |1), set timer and retry until one party can successfully
propagate the new group key to the other.

5 Sensor Testbed and Metrics

5.1 Testbed Configurations and Implementation of the Jammer

The testbed consists of 17 Mica2 motes [15] deployed at fixed locations in an indoor
laboratory. Each sensor mote has a 902-928MHz Chipcon CC1000 radio, which has 32
800KHz channels. Each mote is within the communication range of other motes and
the transmission rate is 19.2Kbps. All motes run TinyOS version 2.0.1 [23].

In TinyOS 2.0.1, the module CC1000ControlP provides interface CC1000Control
and command tuneManual() to control channel switching. Since Chipcon CC1000 uses
a digital frequency synthesizer, a programmable register can be used to change the
frequency and then achieve channel switching.

In TinyOS 2.0.1, the implementation of the mote-to-mote communication de-
pends on the radio chip. For Chipcon CC1000, the communication is implemented
in two modules: CC1000CsmaP and CC1000SendReceiveP under directory tinyos-
2.x/tos/chips/cc1000. CC1000CsmaP provides CSMA and low-power sensing logic,
whereas CC1000SendReceiveP provides the send-and-receive logic for CC1000 radio.
The send-and-receive logic includes Request-to-Send (RTS) and Clear-to-Send (CTS)
commands. A node starts data transmission after receiving CTS. CSMA provides two
mechanisms for media access control: random backoff and carrier sensing. The random
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backoff mechanism is used to reduce further collisions where the backoff delay is ran-
domly set to [1,32] bytes initially. The sensing mechanism is used to determine if there
is any ongoing communication on the channel. It requires the air interface to read re-
ceived signal strength indication (RSSI) every 80 microseconds up to 5 readings. If all
5 readings are above a threshold, the backoff mechanism is activated. After each RSSI
reading, the threshold is updated and thus it is is adaptively changed with the current
channel condition.

We modify the TinyOS source code to implement the jammer. We disable the random
backoff and the sensing mechanisms so that the jammer can send out packets arbitrarily
to jam the channel. Specifically, we use command disableCca() provided by the Csma-
Control interface in module CC1000CsmaP to bypass the media access control. We let
the jammer’s air interface stay in the transmission mode by using enterTXState(). We
change the send-and-receive logic so that the jammer always receives CTS after sending
a RTS.

In order to explore the impact of jamming duration, we bypass the MAC layer and
directly use the command writeByte() provided by the interface HplCC1000Spi. In this
way, the shortest jamming time can be as low as one byte (tj ≈ 0.42ms). For longer
jamming duration, we have to increase the maximum message size defined in mes-
sage.h, so that the jamming signal can last as long as 100ms.

5.2 Performance Metrics

In our recovery scheme, we assume that the physical device has channel switching la-
tency; thus, we first measure the switching latency for Mica2 motes. For the evaluation,
we focus on measuring the recovery latency as the number of jammers and the jamming
duration change. We also consider the size of the network in these measurements.

6 Experimental Results

6.1 Channel Switching Latency

In order to jam a communication channel, the attacker has to switch to that communi-
cation channel and send out at least a packet of 1 byte for the CC1000 chip. There is a
minimum channel switching latency due to the limitations of the physical device. Three
Mica2 motes as shown in Figure 3(a) are selected to measure this channel switching la-
tency. We consider two switching modes: sequential switching and random switching.
In the sequential switching mode, motes switch to one channel and send one minimum
packet, then they switch to the next adjacent channel until all 32 channels are used. We
consider two cases, ascendant and descendent. In the ascendant case, motes start from
the lowest frequency channel to the highest, while the descendent case uses the reverse
order. We run the test 1000 times for both cases. We get the average and divide it by
32 to get the switching latency between two adjacent channels. In the random switch-
ing mode, motes randomly select the next channel. Similar to the sequential mode, we
run the test 1000 times to get the switching latency between two arbitrary channels.
As shown in figure 3(b), the switching latency is independent of the channel switching
mode, and it is around 34ms for all three motes.
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Fig. 3. (a) Three Mica2 motes are used for measuring the channel switching latency. (b) The
channel switching latency for the three Mica2 motes.

6.2 The Performance of the Split-Pairing Scheme

In this subsection, we conduct experiments to study the effectiveness of the split-pairing
scheme described in Section 4, in which we consider a single jammer and the network is
split into two groups. We measure the impact of the following two parameters: jamming
probability and jamming duration.

The Impact of Jamming Probability. Since the jammer can only jam one channel at a
time, it selects one of the two channels used for intra-group communication with some
probability (the jamming probability) and sends a minimum size packet, then it repeats
this process. We will measure how the jamming probability affects the recovery latency.

We deploy 8, 12 and 16 nodes in the network and manually put a jammer in the
center of the network to ensure that it can jam all the nodes. Legitimate nodes are split
into two groups of 4, 6 and 8 nodes respectively. The network with 16 nodes and one
jammer is shown in Figure 4(a). We set the retransmission timeout to be 250ms since
one round of communication should be finished within 250ms. For different network
size, we measure the recovery latency of the splitting phase for both groups by running
our scheme 20 times and compute their average.
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Fig. 4. (a) A network with 16 legitimate nodes and one jammer. (b) The recovery latency of the
splitting phase (Phase I and II) for a single group. (c) the recovery latency of the splitting phase
(Phase I and II) which is the minimum latency of both groups.

Figure 4(b) shows the average recovery latency of one group. As can be seen, the
average latency increases with the jamming probability since nodes have to retransmit
after the data is jammed. For a group of 4 nodes (the 8-node line in the figure con-
sidering there are two groups), the recovery latency does not change too much as the
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jamming probability increases from 0.1 to 0.3. This is because all versions of the group
key can be embedded into one message which makes the key propagation message
(M1) less vulnerable of being jammed. However, when the group size increases to 6
or 8 nodes, different versions of the group key have to be split into two messages, and
either one being jammed will lead to a retransmission, thus increasing the recovery la-
tency. Moreover, as the network size increases, more confirmation messages (M2) are
required for key propagation and are more likely to be jammed, thus further increasing
the recovery latency.

Figure 4(c) shows the recovery latency of the splitting phase in our scheme, which is
the minimum of both groups. Since the jammer cannot jam two groups simultaneously,
jamming one group always means free of jamming in the other group. After the jam-
ming probability of group 1 is larger than 0.5, the minimum recovery latency should be
the latency of group 2. This explains why the recovery latency starts to decrease after
the jamming probability is larger than 0.5. When the jamming jamming probability is
0.5, the recovery latency reaches the highest point, which is consistent with our results
on optimal jammer.

The Impact of Jamming Duration. In this subsection, we evaluate the impact of the
jamming duration. We deploy a network of 16 nodes and fix the jamming probability
to be 0.5. The retransmission time is set to be 250ms in Phase II and 70ms in Phase
III. We add 0, 50, 100, 150 and 200 bytes to the jamming packet to construct different
jamming durations.
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Fig. 5. (a) The recovery latency of the splitting phase (Phase I and II) under different jamming
duration (Jamming probability=0.5, Network size=16 nodes) (b) Recovery latency for the split-
pairing scheme (including all 3 phases) under different jamming duration (Jamming probabil-
ity=0.5, Network size=16 nodes)

Figure 5(a) shows the average recovery latency of the splitting phase by running
our scheme 20 times. As can be seen, the recovery latency increases when the packet
size increases from 0 to 100 bytes, and then decreases when the packet size increases
from 100 bytes to 200 bytes. When the packet size increases from 0 to 100 bytes, the
recovery latency is longer since the channel is jammed longer, and ongoing messages
are more likely to be jammed and retransmitted. However, when the jammer stays in
one group longer (100-200 bytes), the other group has larger chance to finish its intra-
group communication. Since the recovery latency is the minimum key propagation time
of both groups, the splitting phase completes as long as one group finishes the key
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propagation. Thus, jamming in one group longer gives the opportunity for the other
group to finish earlier without any interruption, thus reducing the recovery latency.

Figure 5(b) shown the recovery latency of the split-pairing scheme including all three
phases. We set the phase II to III Let Ts denote the switch time from phase II to phase
III. We consider two cases Ts = 1000ms and Ts = 1200ms. This is because the split-
ting phase can be finished between 4 to 5 broadcast rounds. Since the retransmission
timeout is 250ms, the splitting phase should be finished between time 250*4=1000ms
to 1250ms. If we set Ts smaller than 1000ms, the splitting phase may not complete. If
we set Ts larger than 1250ms, both groups may have finished the key propagation and
the pairing phase (Phase III) is not required any more. By setting time to be 1000ms and
1200ms, we can investigate the impact of the jamming duration for both splitting phase
(Phase II) and pairing phase (Phase III). For each jamming duration and switch time,
we record the overall latency, and we repeat the experiment 20 times. We also compute
the mean and the 95% confidence interval shown as vertical bar in Figure 5(b).

For Ts = 1200ms, the latency does not change too much compared with the case
of Ts = 1000ms. Given Figure 5(a), both groups have adequate time to finish the key
propagation and therefore less communication is needed in the pairing phase. How-
ever, when the jamming duration increases, the latency slightly increases and the vari-
ability becomes larger. This is because the recovery difference between two groups in
the splitting phase becomes more significant with longer jamming duration, thus more
communication is needed in the pairing phase. This trend becomes more obvious with
ts = 1000ms. With Ts = 1000ms, the latency increases significantly between 100-
150Bytes and declines between 150-200Bytes. Since pairing in phase III needs more
communication when the jamming duration increases, the random scan of the jammer
in the pairing phase may have more chances to corrupt the communication and more
messages are needed to be retransmitted. Therefore, the latency becomes larger. How-
ever, when the jamming duration increases, the jammer can scan less number of chan-
nels for a given period of time which reduces the chance of packets being jammed, thus
the overall recovery latency becomes smaller.

7 Discussion

Our scheme can be extended to the multiple-jammer case. In this case, we split the
network (excluding the jammer) into N1 groups where N1 > number of jammers and
each group has a leader whose id is publicly determined, like in our basic scheme.
Then, a multi-variate version of the Blundo scheme, such as that in [32], can be used to
derive a global group key K with these N1 leader ids as input to the polynomial, similar
to the process in Phase II of the basic scheme. By far no communication is involved.
Next, each group leader tries to distribute the key K to its group members. Because
N1 >number of jammers, at least one group (called recovered group) will be able to
share K to all its group members. In the pairing phase, one-to-one pairing is replaced
by one-to-many pairing where we pair one node from the recovered group with nodes
each from each subgroup to be recovered. Again, a multivariate version of the Blundo
scheme can be used to calculate a pairing key for each set of nodes only given the node
ids as the input. Finally, a pairing key is used to select a new communication channel
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and securely deliver K to the other nodes in each paired group. Through these three
similar phases, all the nodes will know the same global key K .

By far our presentation is based on the Mica2 mote platform, but our scheme can
be applied to some other platforms too. For example, Atheros 802.11 WiFi chipset has
the channel switching latency of 7.6ms. Given the transmission rate of WiFi 54Mb/s
and a key size of 256bits, more than 1500 keys can be transmitted within one switching
latency. Thus, our scheme works much more effectively for the WiFi platform.

For the MicaZ sensor, the channel switching latency is 132us; however, the minimum
time for key propagation communication is 424us [24]. It consists of the time for the jam-
mer to leave the key propagation channel, send a minimum packet and then return. Given
the transmission rate of 250Kbps, only about 13 bytes could be transmitted. Considering
the MAC frame header and key size, 13 bytes are not enough to transmit one key. To deal
with this difficulty, we can apply the chained hash fragmentation [3]. The basic idea is
to divide a large frame into small fragments. By hashing fragment cyclically, fragments
can be linked to reconstruct the original frame after receiving all fragments.

8 Conclusions and Future Work

In this paper, we consider the insider jamming problem in a one-hop network and pro-
pose a compromise-resilient jamming recovery scheme. We exploit the fact that the
jammer can only work on one channel for any given time and nodes in the other chan-
nels will be free of jamming which can execute recovery. In the evaluation, we imple-
ment our scheme on the Mica2 mote platform and show that the solution is efficient and
has low recovery latency.

To the best of our knowledge, this is the first paper to address the inside jamming issue
in WSNs. As our initial work, we do not expect to solve all the problems. In the future,
we will further investigate the efficient solutions for multiple colluding inside jammers.
Also, we will study how to recover a multi-hop network under the presence of jamming.
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