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Abstract. Ensembles of randomized trees such as Random Forests are
among the most popular tools used in machine learning and data mining.
Such algorithms work by introducing randomness in the induction of sev-
eral decision trees before employing a voting scheme to give a prediction
for unseen instances. In this paper, randomized trees ensembles are stud-
ied in the point of view of the basis functions they induce. We point out
a connection with kernel target alignment, a measure of kernel quality,
which suggests that randomization is a way to obtain a high alignment,
leading to possibly low generalization error. The connection also sug-
gests to post-process ensembles with sophisticated linear separators such
as Support Vector Machines (SVM). Interestingly, post-processing gives
experimentally better performances than a classical majority voting. We
finish by comparing those results to an approximate infinite ensemble
classifier very similar to the one introduced by Lin and Li. This method-
ology also shows strong learning abilities, comparable to ensemble post-
processing.

Keywords: Ensemble Learning, Kernel Target Alignment, Randomized
Trees Ensembles, Infinite Ensembles.

1 Introduction

Ensemble methods are among the most popular approaches used in statistical
learning. This popularity essentially comes from their simplicity and their effi-
ciency in a large variety of real-world problems. Instead of learning a single classi-
fier, ensemble methods first build several base classifiers, usually via a sequential
procedure such as Boosting ([I3], [I5]), or a parallel strategy using randomization
processes such as Bagging [2] or Stochastic Discrimination [2I], and in a second
phase, use a voting scheme to predict the class of unseen instances.

Because of their impressive performances, understanding the mechanisms of
ensemble learning algorithms is one of the main priority in the machine learning
community. Several theoretical works have connected the Boosting framework
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with the very well known SVMs [30] highlighting the margin’s maximization
properties of both algorithms (see e.g [11] [14] [26]). Another popular theoret-
ical framework comes from [I5] who pointed out its connection with forward
stagewise modelling leading to several improved Boosting strategies.

Ensembles using randomized processes suffer from a lack of well defined theo-
retical framework. Probably the most well-known result highlighting the benefits
of such a strategy is due to Breiman [5] who showed that the performance of
majority voting of an ensemble depends on the correlation between members
forming the pool and their individual strength. Other notable works concern the
study of the consistency of such algorithms [I].

In this paper, we go a step further [5] by analyzing the basis functions in-
duced by an ensemble using a randomized strategy. As pointed out in [19], most
ensemble methods can be seen as approaches looking for a linear separator in a
space of basis functions induced by the base learners. In this context, analyzing
the space of basis functions of an ensemble is of primary importance to better
understand its mechanism. We specifically focus on studying the situation where
base learners are decision trees. A lot of empirical studies have shown that this
class of classifiers is particularly well-suited for ensemble learning (see e.g [12]).

More precisely, we show a close connection between randomized trees ensem-
bles and Parzen window classifiers. Interestingly, the error of a Parzen window
classifier can be bounded from above with a kernel quality measure. This re-
sults in a generalization bound for an ensemble of randomized trees and clearly
highlights the role of diversity and individual strength on the ensemble perfor-
mance. Moreover, the connection suggests potential improvements of classical
trees ensembles strategies.

Our paper is organized as follows. In section 2, we review some basic elements
concerning decision tree induction. We focus on the importance of regularization
and we point out a connection between decision trees and Parzen window clas-
sifiers. We introduce the notion of kernel target alignment (KTA) [9], a kernel
quality measure allowing to bound the error of a Parzen window classifier. Once
those base concepts are posed, we will show that an ensemble of randomized
trees generates a set of basis functions leading to a kernel which can have a
high alignment, depending on the individual strength and correlation between
base learners (section 3). Interestingly, the connection shows that increasing the
amount of randomization leads to a more regularized classifier.

Based on those results, we present in section 4 two possibilities for improving
the performance of a randomized trees ensemble. The first strategy consists in
post-processing intensively the comittee using powerful linear separators. The
second strategy builds an approximate infinite ensemble classifier and is very
similar to the one presented in [23]. That is, instead of selecting a set of inter-
esting basis functions as realized by an ensemble, we will fit a regularized linear
separator in the (infinite dimensional) space of basis functions induced by all
possible decision trees having a fixed number of terminal nodes. Experiments
comparing all those approaches are presented in section 5. Finally in section 6
we conclude.
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2 Single Decision Tree Learning

2.1 Decision Tree Induction

We consider the binary classification case specified as follows. We are given access
to a set of n labeled examples S = {(x1,¥1) , ..., (Tn, yn)} drawn from some (un-
known) distribution P over X x {—1,+1}, where X is a d-dimensional abstract
instance space composed of features X1, ..., X4 taking their values in R. The
objective of any classification algorithm is to learn a function f : X — {—1,+1}
whose generalization error rate Pr, ,y=p [f(x) # y] is as low as possible. Among
the large variety of methods dedicated to this goal, decision trees are very popu-
lar thanks to their efficiency, their ability to capture non linear relations between
inputs and output and essentially because they are easily interpretable.

A binary decision tred] consists in recursively partitioning the input space X
by searching for the transversal cut which optimizes some predefined criterion.
The algorithm starts with the root node containing all learning instances and
looks for a split of the form [X; € Sjm ; X; ¢ Sjm] where Sjm = (Ljm; Wjm]
represents a set of possible values of X; defined by a lower and upper limit
lim < X; < %jm. Two new nodes are then added to the tree, one containing
instances respecting [X; € s;,] and the other instances respecting [X; ¢ sj,].
The process is then repeated for each subset (instances in a current node) until
a stopping criterion is satisfied. In this context, a decision tree can be seen as a
feature mapping @ : X — F such that F' is the space represented by the nodes
of the tree. Each node represents a basis function b¢(x) (i.e a dimension of F)
taking the form of a conjunctive rule [16]:

d
H (X; € Sjm) (1)

where I(.) is the indicator function of the truth of its argument. We have b(z) =
1 if the instance = belongs to node ¢ and b;(z) = 0 elsewhere. Once the decision
tree has been constructed, one can make a prediction by fitting a linear function
fin F :
271
f(x) =) abelx) + ao (2)

t=1

where T is the number of terminal nodes of the tred?. Classically a basis function
associated to a terminal node has a weight a; equal to 1 or —1 depending on
the most frequent class of all examples belonging to it, while both ay and basis
functions associated to non terminal nodes have a weight of 0.

1 'We restrict our framework to binary decision tree. Let us simply note that more
complex structures such as n-ary trees can be implicitly constructed using binary
trees (see e.g [19]).

2 A binary decision tree has a total number of node equal to 27" — 1 which explains
the upper term of the sum.
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A lot of different decision trees algorithms have been designed. The main
differences between them concern the criterion used to find the “best” split and
the strategy employed to stop the induction process. Several experimental studies
have shown that the splitting criterion has not a very significant effect on the
performance of the decision tree (see e.g [7], [29]). As pointed out in [6], the key
of success lies in controlling the tree complexity. Consequently, most efficient
decision tree algorithms such as CART [6] or C4.5 [25] particularly focus on tree
regularization.

A general method to control model complexity consists in giving a penalty
proportional to the model complexity. The goal of the induction process then
becomes to find the best tradeoff between performance (small error rate) and
complexity, which can be realized by minimizing a criterion of the following form

Criterion(f,\) = L(y, f) + AJ(f), A >0 (3)

where L(y, f) is a measure of the classifier error (a loss function) and J(f)
a functional penalty that should be large for complex functions f [19]. This
kind of regularization, widely used in machine learning is known as Tikhonov
regularization. In this spirit, Breiman [6] proposed to select L(y, f) as the error
rate and J(f) as the number of terminal nodes T' of the decision tree. Once a
value of A has been selected, [6] develop a tree of maximum depth using Gini
index as splitting criterion and, in a second phase, prune the tree in order to
minimizes (3) measured on a test set.

2.2 Connection with Parzen Window Classifier and Generalization
Error

The classical predictive scheme (using only terminal nodes with a weight of +1
or —1) can interestingly be seen as a Parzen window estimator based on the
kernel K(x,2') = Zle be(x)be(2’) with by(z) = 1 if = belongs to leaf t and 0
elsewhere. Note that the basis functions considered here are only those associated
to terminal nodes. Here, K is a very sparse kernel since we have K(z,z') = 1
if  and 2’ are in the same terminal node and 0 if not. The Parzen window
estimator consists in labeling = with f(z) = sign(}_,_, v:K(z,2;)) which is
strictly equivalent to predict the most frequent label encountered in the terminal
node in which z falls.

Cristianini et al.[9] have shown that the generalization error GE of the ex-
pected Parzen window estimator f(x) = sign(Es [y K(2',z)]) based on a
kernel K is bounded from above with probability 1 — §:

GE(f(z)) <1- A (K,y'y) + \/i ln§ (4)

where A (K, y'y) is called (empirical) kernel target alignment (KTA) and is for-
mally defined on a sample S as :

<K7 yty>F - ZZSZI yiysK(xivl's)

A(K,y'y) = =
(K, y'y) VI K) g 9y, y'y) n\/zzsle(aci,ﬂcs)2

(5)



Learning with Ensembles of Randomized Trees : New Insights 71

where (.,.) p is the Frobenius product. KTA was initially designed to reflect the
goodness of a kernel and more generally the goodness of a similarity matrix.
As we can see from (5), KTA calculates the sum of similarities between objects
belonging to the same class and substracts the sum of similarities between objects
belonging to distinct classes. This quantity is then normalized to obtain an
indicator varying between —1 and 1.

The connection allows one to use the following regularization scheme. First,
we can induce a tree having the purest possible nodes, and then, look for the
subtree leading to the kernel that minimizes (4) or equivalently, that maximizes
A (K, y'y) on a test sample. Interestingly, this methodology is very similar to the
pruning technique of CART which estimates the expected Parzen window error
on a test sample and keep the subtree that minimizes a tradeoff between this
error and the tree complexity. In KTA, the complexity of the tree is penalized
implicitly because the effect of adding splits is reflected in the sparsity of K
leading to a lower value of (K, y'y) ..

2.3 Drawbacks of Single Decision Trees

While regularization is an essential feature of the success of decision trees, this
is generally not enough to obtain strong learning abilities. The first problem
comes from the greedy mechanism used to find a split. In some cases such as
the well known XOR problem, it is difficult for the algorithm to find the best
split because this implies finding an interaction between two (or more) features
in one shot. The second problem is their high variance. It is well-known that
small changes in data could lead to drastic changes in the decision tree. This
phenomenon comes from their hierarchical structures which implies that an error
at split k& will be propagated down to all splits below it [19]. This latter problem
is reflected in the basis functions induced by a single tree. If the algorithm does
a “strong” mistake at a high level, i.e, at the top levels of the tree, it will be
impossible for any regularization strategy based on pruning to obtain a good
result.

The main question is how one can overcome these problems. An appealing so-
lution lies in increasing the number of basis functions generated by the algorithm.
However, in order to be efficient, this process should induce basis functions in
a non-hierarchical manner, else the problem of high variance will remain. Trees
ensembles are particularly well-suited to realize such a process. Indeed, they
work by generating several decision trees which is equivalent to increase the
number of generated basis functions in a non-hierarchical way. In the next sec-
tion, we will see that randomized trees ensembles allow to increase the kernel
target alignment previously introduced. Consequently they improve the classifi-
cation accuracy compared to a single decision tree and act in the same time as
regularizers.

In the same spirit, one can choose to select all basis functions generated by all
possible decision trees having a predefined number of terminal nodes. While this
seems a priori untractable due to the infinite number of possible basis functions,
we will see (section 4) that a solution can nevertheless be found by embedding
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the basis functions into an appropriate kernel. However, in this case, we should
carefully regularize the classifier which will be realized using a classical Tikhonov
regularization as in (3).

3 Randomized Trees Ensemble

3.1 Algorithms

One of the most efficient ways to improve the performance of a single decision
tree is to construct several distinct decision trees and to aggregate them through
a voting scheme. Examples of such procedures are Bagging [2], Random Forests
[5], PERT [10] or Extremely Randomized Trees [I7]. These algorithms are all
particular cases of a more general methodology introducing randomization in
the induction process of base learners. The skeleton of these techniques consists
in repeating M times the following steps :

— Step 1 : Apply a sampling strategy on S to obtain a new sample S,,
— Step 2 : Induce a decision tree on S, by searching recursively for the best
split among a random subset of all possible ones.

Each individual learner predicts a class for an unseen instance x correspond-
ing to the most frequent class of examples belonging to the terminal node in
which x falls. The prediction associated to the ensemble corresponds to the
most frequently voted class among the M decision trees. The differences be-
tween randomized ensembles algorithms comes from the sampling strategy used
in step 1 the randomization process chosen to find a split in step 2. In the case
of Bagging, S is sampled iteratively using a bootstrap strategy, while there is
no randomization in the split’s search. Random Forests work by sampling S via
a bootstrap and look for the best split among a random subset of d’ features
(d' < d). Extremely randomized trees do not use any sampling scheme but look
for the best split among d’ cut points randomly chosen on d’ features themselves
randomly chosen. Because such procedures lead to classifers with a low variance,
each individual tree is generally fully grown (i.e, until having the purest possible
leaves) in order to reduce bias and consequently the generalization error [19].
The use of an ensemble has the effect to increase the number of generated
basis functions compared to a single decision tree. Intuitively, this is interesting
because it overcomes the problems due to the hierarchical nature of decision trees
and to their greedy split’s search. However, such a mechanism will work only if
the basis functions are enough diverse and individually correlated to the output
y. Indeed, if the trees are identical, the set of generated basis functions will
be equivalent to the basis functions generated by a single decision tree leading
to an unchanged prediction. The use of randomization procedures is then fully

3 In [24], the authors define a slightly different way of introducing randomization
into decision trees ensembles. Their definition allows to study the “spectrum” of
randomization and give interesting insights about the effect of randomization on the
performance of decision trees ensembles.
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justified. Probably the most well-known theoretical justification is due to [5] who
has shown that the generalization error GE of majority voting of an ensemble
is bounded from above : GE < p(1 — s%)/s? where p is the average correlation
between base classifiers and s a function of their strength.

3.2 Connection with Kernel Target Alignment

We will see that the benefit of using randomized trees ensembles is also reflected
through the KTA measured on the kernel induced by the ensemble. Let us assume
that each tree of the ensemble is grown until having only pure terminal nodes.
Note that this is always possible while there are not two examples with the same
initial representation and distinct labels. It is well-known that in classification,
the best results are generally obtained by growing each tree until having only
pure nodes (see e.g [5]). Interestingly, in this case, the classical majority voting
scheme is equivalent to a Parzen window estimator based on the kernel induced
by the ensemble Ko,s(x,2') = M~} 2%:1 22’1 bt ()bt (x'). Here, bpi(x)
represents the basis function associated to the terminal node ¢ of the tree m. In
this context, the performance of the ensemble should be highly dependent on
the KTA of K.,s. The main question is why introducing randomization in the
induction of trees could lead to a higher KTA.

Kens can equivalently be written Keps(z,2') = M1 Z%:l K, (z,x’) where
K, (z,2") is the kernel induced by the m'" tree in the same manner as in section
2.2. Note that dropping the constant M ! has no effect on the prediction. In
this point of view, we see that K.,s simply consists in summing several base
kernels. In [9], the authors have shown that one can benefit from summing two
kernels. Indeed, the alignment of the sum of two kernels K; and K5 with the
target is given by :

IKille 5 1Kl

A (K + Ko, yty) = A (K, yly) +
(K1 + K2, y'y) (K1,y'y) 1Ky + Kl

= A (K, yt
K + Kol (K2, 9')

The alignment of the sum will be high if both kernels have a high individual align-
ment and if their correlation, i.e, A(K1, K2) = (K1, Ka) p / | K1l g || K2]| - is low.
Indeed, if the kernels are identical, we have A (K + K, y'y) = A (K1, y'y) =
A (K, y'y) while if they are different, we have :

(et p2 1Kl

>1
K1+ Koy o [ K+ Kalp

leading to a potentially higher overall alignment. Note that if one uses M kernels,
the alignment of sum will be equal to :

M

M
! (Z Kmyyty> =2 nle A (Km,y'y) (6)
m=1

5 sk,

The effect of randomization will be to decrease a bit the average individual
alignment of the kernels in order to decrease their correlation, i.e, to increase
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[ Kl g/ Hzle KmH . In most empirical studies on the relationship between
F

ensemble performance and strength-correlation, the main problem is to measure
the diversity [22]. Equation (6) clearly highlights the role of each component
and a possible way of measuring them. While randomization aims at playing on
diversity and individual strength, its exact role is more complex.

The reason comes from the concentration property of the alignment. As un-
derlined in [9], if the kernel function is selected a priori, that is, if one do not
learn the kernel, the value of the alignment measured on a sample S is highly
concentrated around its expected value. As a consequence, building an ensemble
of extremely randomized trees as realized by [I7] leads to a kernel that would
have quite the same alignment on the training sample and any test sample. How-
ever, learning too intensively the kernel, i.e, introducing few randomization in
the tree induction will result in a larger difference and will be reflected in a lower
expected alignment than one could wish to have. The direct implication is that
introducing a high level of randomness leads to a more regularized classifier. This
also shows that decreasing the amount of randomization in the induction of de-
cision trees will not necessarily result in a higher individual expected alignment
of a decision tree. Interestingly, in its experiments, Breiman [5] observed that
increasing the number of features to find the best split did not necessarily lead
to higher individual strength. The explanation in terms of alignment concentra-
tion may give a clue to these results. Experiments showing all those claims are
presented in section 5.

4 Improved Randomized Trees Ensembles

In this section, we present two possible improvements of an ensembles of ran-
domized trees. Here, we describe the theoretical aspects. Experiments will be
presented in section 5.

4.1 Post-processing

Globally, randomized trees ensembles can be seen as powerful kernel construc-
tors because they aim at increasing KTA through the introduction of random-
ization. While the alignment is directly connected to Parzen window estimator,
[9) have shown experimentally that maximizing KTA is also a good strategy
before employing more complex learners such as SVMs. Because randomized
trees ensembles directly act on the kernel target alignment, it seems interesting
to post-process them using a more complex learner than a simple Parzen win-
dow estimator. That is, instead of simply giving the same weight to all basis
functions induced by the ensemble, one can learn “optimal weights” with an
appropriate learning strategy. In this case however, we are no more protected
against over-fitting because of the lack of links between the new learner and
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KTA and should consequently employ a specific regularization. A possible way
consists in searching a vector of weights & such that [16]:

n | B |B]

~IBl : , , P
{a}y"" = arg gn‘%‘ZL yz,ao+Zatbt(a:z) +/\;\at| (7)

}0 =1 t=1

where B is the set of basis functions induced by the ensemble of decision treedd.
Different parameterizations of L(.) and p lead to classical statistical learners.
For example, choosing L(y;, f(x;)) = max(0,1 —y;f(x;)) (hinge loss), and p = 2
consists in solving the SVM optimization program [30] in the space of basis func-
tions constructed by the tree, while choosing L(.) as the hinge loss and p =1 is
equivalent to solve the LPBoost problem [IT]. The choice of L(.) is mainly de-
pendent on the type of learning problem we are facing. Typically, in a regression
setting, L(.) is chosen as the square-loss function while in classification, we will
tend to choose the hinge loss. The choice of regularization is a harder task since
its effect is not yet fully understood. A well known difference is that constraining
the coeflicients in L; norm (i.e, p = 1) leads to sparser results than using the
Lo norm, i.e, most «; will tend to be equal to 0 [27]. Note that the set of basis
functions B can be chosen to be the set of basis functions associated to terminal
nodes or the set of basis functions associated to all nodes (terminal and non
terminal).

4.2 Generating an Infinite Set of Basis Functions

In case one works with a Tikhonov regularizer, an appealing strategy consists
in considering not only basis functions induced by a finite ensemble, but all
basis functions that could be induced by any decision tree and let a regularized
learner as in (7) finding an optimal solution. The main problem here is that
the program (7) will have infinitely many variables and finding a solution seems
a priori untractable. However, as we will see, there are some possibilities to
overcome this problem.

Consider the optimization problem as stated in (7). Choosing p = 2 and
L(y, f(x)) = max(0,1—yf(x)) leads to the well-known SVM optimization prob-
lem. Most practical SVM implementations work on the dual formulation of (7)

n

) 1 n n
min ; 2 BiBsyiys K (i, x5) — ;ﬁi (8)

Zﬁiyi =0
i=1

4 As pointed out by a reviewer, the optimization problem presented in (7) can be seen
as a particular case of Stacking [3I]. The main difference is that instead of using
classifiers as new features, we use decision trees’ nodes.
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K is a kernel function defined as K (z,z') = (@(z), P(2’')) where &(x) is obtained
from the feature mapping ¢ : X — F where F' is assumed to be a Hilbert
space equipped with the inner product (.,.) [28]. The dual form has the great
advantage to enable solving the SVM problem even if ¢ maps examples into an
infinite dimensional space. Indeed, we see from (8) that K is sufficient to find
the optimal solution. This also means that the mapping @ need not to be known
if we are sure it exists, which is automatically achieved if the Gram matrix
IN(@S = K(x;,xs) of dimension n x n is always symmetric and semi-positive
definite [28].

The use of an SVM makes possible solving (7) for infinitely many variables
and consequently, to solve the SVM in the space represented by all possible basis
functions induced by any decision tree. To do so, one must find a kernel function
which embodies those basis functions. In section 3, we have seen that the kernel
corresponding to the basis functions induced by an ensemble of decision trees is
equal to the proportion of decision trees letting two examples x and z’ sharing
the same terminal node. The main difference here is that instead of simply
counting the number of decision trees letting z and 2z’ reaching the same leave,
we must calculate the probability that x and 2’ end in the same terminal node
considering all possible decision trees.

Interestingly, Breiman [4] has given an implicit answer to this question. Con-
sider the following assumptions are met : 1) the space of features is entirely
bounded, i.e, X C (L1, R1) X (L2, R2) X ...(L4, Rq) where L; € ® and R; € R,
1 < j < d, are respectively the lowest and highest bounds of feature X; ; 2)
each split of each tree is selected at random, i.e, a feature is first randomly se-
lected, and a split point is then randomly choosen along this feature according
to an uniform distribution, 3) the probability measure P is uniform on the space.
Then Breiman [4] showed that if one builds an infinity of decision trees having
each T terminal nodes, the proportion of trees letting x and z’ sharing the same
terminal node is approximately :

Kmf(w’x/) ~ expfvl\wfwlh 9)

where v = log(T)/d, where d the dimensionality of the initial feature space.
Interestingly, this is the very well-known Laplacian kernel. A recent and very
interesting paper of Lin and Li has pointed a similar result [23]. Their demon-
stration shows a strict equality between the kernel and the set of basis functions
instead of just an approximation as in (9). However, the kernel is derived in a
bit different perspective and the relation between the number of terminal nodes
and kernel’s sharpness (i.e, v) is harder to capture. For these reasons, we will
keep the framework based on [4]. With an appropriate v, one could solve the
SVM problem using the kernel K, ¢ to obtain an approximate infinite ensem-
ble classifer working in the (infinite dimensional) space Hr embedding all basis
functions induced by any tree with 7" terminal nodes.

Note that the basis functions embedded in Kj, s corresponds to basis functions
associated to terminal nodes of the trees. It is not evident a priori to choose
a good 7. One could proceeds by evaluating the SVM with several values of
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~ on a test sample or by cross-validation. However, another interesting way of
proceeding consists in summing several Laplacian kernels in the following manner

Q
KSinf(xa x/) = Zexp*'ﬁz”x*ﬂh (]_0)
q=2

where v, = log(q)/d. It is well-known that summing two kernels embdedding
respectively Hy and Hs leads to a kernel embedding Hy U Hs (see e.g [23]). As
a consequence, solving an SVM program using the kernel Kg;y, s in equation (8)
leads approximately to search a linear separator in the space represented by all
basis functions induced by any tree having a number of leaves from 2 to Q.

5 Experiments

5.1 KTA and Random Forests

To illustrate the link between KTA and the performance of a randomized trees
ensemble;, we have run the following experiments on the Heart and Ionosphere
datasets coming from the UCI repository. Heart has 13 features and 270 ex-
amples, while Jonosphere has 351 examples and 34 features. We have randomly
splitted each dataset into two subsets of equal size, one used as a training sample
and the other as a test sample. One Random Forest of 100 trees [5] has been
run for several possible d’ (d’ is the number of features evaluated to find the
best split) on the training set. More specifically, we used d’' = {1, 3,5, ...33} for
Tonosphere and d' = {1,2,3,...,13} for Heart. Each tree of a Forest was grown
until having the purest possible terminal nodes. For each Random Forest, we
have calculated its KTA and its error rate on the test sample as well as the KTA
on the training sample. Fig. 1 shows the results averaged over 10 runs.

On the Heart dataset, we can note an interesting correlation between KTA
and the forest’s performance. Indeed, the lowest KTA values are met for d’ > 7
which corresponds to the poorest performances of the ensemble. The maximal
alignment is achieved for d’ = 5 which is also the best performance of the en-
semble. We clearly see that the higher the level of randomization, the lower the
difference between KTA on the training sample and test sample. The results for
Tonosphere are less conclusive. Indeed, the test error does not vary too much
with d’ as well as KTA. We can however note that the higher the level of ran-
domization, the lower the difference between KTA on the learning sample and
the test sample as expected.

Of course, more extensive experiments should be carried out to clearly test
the relation between KTA and the error rate of a randomized trees ensemble.
However, we believe that the framework presented here provides promising per-
spectives and must be further analyzed.

5.2 Comparison of Randomized Trees Ensembles

In this section, we compare the performances of the methodologies presented
previously. Our benchmark consists of 10 real-world datasets coming from the



78 V. Pisetta, P.-E. Jouve, and D.A. Zighed

== # Correctly classified Training align === Test align == # Correctly classified Training align. === Test align.
095 - 0.85
09 ’ v V=t b~
0.75
085 T
0.7
08 1 0.65
0.75 06
f E—
kg “"A’“"-“'A-.‘_‘_‘..‘-,d“'" 035 T ik
0 e b
’ i
0.65 T T T T T T 1 0.45
0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14
Nb. of features selected to find the best split Nb. of features selected to find the best split

Fig.1. KTA vs. performance of an ensemble. Left : Tonosphere dataset (KTA was
multiplied by a factor 1.5 for better lisibility. Right : Heart dataset - KTA was multiplied
by a factor 2.

UCI repository, three synthetic datasets (Twonorm, Threenorm and Ringnorm)
coming from [3] and three datasets coming from the NIPS 2003 Feature challenge
selection [18].

Four classifiers have been tested : a Random Forest of 100 trees [5] (RF), the
same Random Forest whose basis funtions associated to terminal nodes are
post-processed according to equation (7) with p = 2 and a hinge loss (RF-L),
the same Random Forest whose basis functions associated to all the nodes
are post-processed according to equation (7) with p = 2 and a hinge loss (RF-
N+L) and finally an SVM trained with a kernel defined in (10) (SVM-K). We
have chosen p = 2 and hinge loss for post-processed ensembles in order to have a
fair comparison with the SVM trained with (10). The error rates of each method
are averaged over 3 trials of 10-fold cross-validation.

All feature elements of all datasets were scaled to [0, 1] even for RF. For RF,
RF-L and RF-N+L, the trees forming the ensemble were grown until having
the purest possible leaves. The parameters of all algorithms were searched as
to minimize the error estimated by a 5-fold cross-validation on the training
set as suggested in [20]. That is, for RF, RF-L and RF-N+L, d’ was chosen

within { 1,V d,d} which are references in Random Forests [5], and for RF-L,

RF-N+L and SVM-K, the regularization parameter A was searched within the
set {0.001,0.01,0.1, 1, 10, 100, 1000}. Finally SVM-K was trained using 3 possible
sums of 10 Laplacian kernels. The first sum was chosen to embedd decision trees
of depth 1 to 10, the second trees of depth 4 to 13 and the third trees of depth 7 to
16. In binary trees, the relation between depth k£ and number of terminal nodes
T is T = 2*. Random Forests have been induced using our own implementation,
while LIBSVM [§] has been used as SVM soft-margin solver. Results are shown
in Table 1.
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Table 1. Performances of 4 classifiers on several datasets. Results in bold are signifi-
cantly better than others according to one-sided Student t-test at level 0.05.

Dataset n d RF RF-L RF-N+L SVM-K
Sonar 208 60 0.846 0.894 0.894 0.905
Breast 569 30 0.963 0.974 0.972 0.975
Tonosphere 351 34 0.940 0.940 0.940 0.945
Pima 768 8 0.754 0.782 0.775 0.772
Musk 476 166 0.917 0.927 0.948 0.979
Heart 270 13 0.807 0.839 0.845 0.856
Vote 435 16 0.960 0.958 0.958 0.940
Australian 690 14 0.801 0.853 0.866 0.858
Spambase 4601 57 0.969 0.982 0.986 0.989
Tic-Tac-Toe 958 9 0.991 1 1 0.996
Twonorm 300 20 0.973 0.971 0.971 0.972
Threenorm 300 20 0.836 0.832 0.832 0.832
Ringnorm 300 20 0.956 0.972 0.972 0.974
Dexter 600 20000 0.905 0.938 0.939 0.897
Arcene 200 10000 0.774 0.836 0.836 0.829
Gisette 7000 5000 0.968 0.978 0.978 0.961

The results show several interesting things. First, post-processing an ensem-
ble of decision trees gives quite systematically lower error rates than non post
processed ones. Secondly, RF-L and Rf-N+L share almost indistinguishable per-
formances suggesting that the basis functions induced by terminal nodes are
sufficient to learn well.

On both UCI and synthetic datasets, the performances of post-processed en-
sembles (RF-L and RF-N+L) and SVM-K are very close. Indeed, except on the
Musk dataset, there are no statistical differences between both approaches. How-
ever, on the high-dimensional datasets coming from the NIPS feature selection
challenge, post-processed ensembles tend to outperform SVM-K. This suggests
that ensemble of randomized trees are well-suited for high-dimensional data.

Using an infinite ensemble has the advantage of better space covering resulting
in a very smooth decision boundary. In the case of a finite ensemble induced by
randomized trees strategies, the lack of smoothness seems to be compensated by
the search of a subset of interesting basis functions. This can be seen as a feature
selection operating directly in the infinite feature space of basis functions induced
by all possible decision trees. This feature selection may be an explanation to the
strong performance of randomized trees ensembles in very high dimensional data.

The use of a finite ensemble has also the great advantage to give interpretable
results. Indeed, each basis function induced by a decision tree can be seen as a
rule (see section 2). Post-processing will give a weight to each basis function (i.e,
each rule) highlighting the most important ones. Note that one who focus on in-
terpretability should normalize each weight by the support of the corresponding
rule (the number of covered examples by the rule) in order to not give too much
importance on rules covering a lot of examples (see eg. [10]).
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6 Conclusion

We analyzed randomized trees ensembles through the basis functions they in-
duce. We pointed out a connection with the kernel target alignment and Parzen
window classifiers. The connection can be used to bound the generalization error
of an ensemble and gives some insights about the performance of randomized
trees ensembles. Experiments realized in this paper showed that it seems to have
an empirical relationship between KTA and the ensemble performance. This con-
nection highlights the role of classifiers diversity as well as individual strength.
We also showed that increasing the amount of randomization has the effect to
better regularize the ensemble. We should however be careful when analyzing the
relation between level of randomization and strength-diversity tradeoff. Indeed,
increasing the amount of randomization does not necessarily imply increasing
the diversity or decreasing the strength and vice-versa. Open questions and in-
teresting future aspects are : 1) how one can find another ensemble strategy
acting more intensively on KTA, 2) realizing more experiments to deeper test
the relation between KTA and the performance of an ensemble, 3) if it is pos-
sible to generalize the KTA framework to other ensemble approaches such as
Boosting algorithms.

We have also suggested two possible improvements of classical randomized
ensembles strategies. The first one consists in post-processing the ensemble with
powerful linear separators. In our experiments, post-processing always led to bet-
ter performance than a classical majority voting. Another alternative consists in
taking into account the set of all possible basis functions induced by any deci-
sion tree having a specified number of leaves. This is possible thanks to the use
of an appropriate kernel embedding those basis functions. Experimentally, both
“improvements” gives very similar results. Possible future works here are : 1)
should we benefit of using another post-processing strategy which uses a penalty
on the L, norm of regressors. The main advantage could lie in the sparsity prop-
erty of such regularizers leading in more interpretable results. 2) Breiman [4]
showed that in a space of d dimensions, there exists a set of weights wq, ..., Weo
which applied to all possible decision trees having d + 1 terminal nodes con-
verges to the Bayes rate. Interestingly, the approach presented in section 4, as
well as the one of [23] enters completely in this framework and gives perhaps a
possible way of finding such weights. A critical step here would be to study the
consistency of SVMs when used with Laplacian kernels.
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