
Many-to-Many Graph Matching:
A Continuous Relaxation Approach

Mikhail Zaslavskiy1,2,3,5,�, Francis Bach4, and Jean-Philippe Vert1,2,3

1 Center for Computational Biology, Mines ParisTech, Fontainebleau, France
2 Institut Curie

3 INSERM, U900, Paris, F-75248, France
4 INRIA-WILLOW project, Ecole Normale Supérieure, Paris, France

5 Center for Mathematical Morphology, Mines ParisTech, Fontainebleau, France

Abstract. Graphs provide an efficient tool for object representation in various
machine learning applications. Once graph-based representations are constructed,
an important question is how to compare graphs. This problem is often formu-
lated as a graph matching problem where one seeks a mapping between vertices
of two graphs which optimally aligns their structure. In the classical formulation
of graph matching, only one-to-one correspondences between vertices are consid-
ered. However, in many applications, graphs cannot be matched perfectly and it
is more interesting to consider many-to-many correspondences where clusters of
vertices in one graph are matched to clusters of vertices in the other graph. In this
paper, we formulate the many-to-many graph matching problem as a discrete op-
timization problem and propose two approximate algorithms based on alternative
continuous relaxations of the combinatorial problem. We compare new methods
with other existing methods on several benchmark datasets.

1 Introduction

The necessity to process data with complex structures has triggered the wide use of
graph-based representation techniques in various applications domains. Graphs provide
a flexible and efficient tools for data representation in computer vision (segmentation,
contour and shock graphs), computational biology (biological networks), or chemoin-
formatics (representation of chemical compounds), to name just a few. A fundamental
question when data are represented as graphs is to be able to compare graphs. In partic-
ular, it is important in many applications to be able to assess quantitatively the similarity
between graphs (e.g., for applications in supervised or unsupervised classification), and
to detect similar parts between graphs (e.g., for identification of interesting patterns in
data).

Graph matching is one approach to perform these tasks. In graph matching, one tries
to “align” two graphs by matching their vertices in such a way that most edges are con-
served across matched vertices. Graph matching is useful both to assess the similarity
between graphs (e.g., by checking how much the graphs differ after alignment), and
to capture similar parts between graphs (e.g., by extracting connected sets of matched
vertices).

� Currently, Mikhail Zaslavskiy is with the bioinformatics group at Cellectis S.A.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 515–530, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

516 M. Zaslavskiy, F. Bach, and J.-P. Vert

Classically, only one-to-one mappings are considered in graph matching. In other
words, each vertex of the first graph can be matched to only one vertex of the second
graph, and vice-versa1. This problem can be formulated as a discrete optimization prob-
lem, where one wishes to find a one-to-one matching which maximizes the number of
conserved edges after alignment. This problem is NP-hard for general graphs, and re-
mains impossible to solve exactly in practice for graphs with more than 30 vertices or
so. Therefore much effort has been devoted to the development of approximate meth-
ods which are able to find a “good” solution in reasonable time. These methods can
roughly be divided into two large classes. The first group consists of various local opti-
mization algorithms on the set of permutation matrices, including A∗-Beam-search [2]
and genetic algorithms.The second group consists in solving a continuous relaxation of
the discrete optimization problem, such as the �1-relaxation [3], the Path algorithm [4],
various spectral relaxations [5, 6, 7, 8, 9] or power methods [10].

In practice, we are sometimes confronted with situations where the notion of one-
to-one mapping is too restrictive, and where we would like to allow the possibility to
match groups of vertices of the first graph to groups of vertices of the second graph.
We call such a mapping many-to-many. For instance, in computer vision, the same
parts of the same object may be represented by different numbers of vertices depend-
ing on the noise in the image or on the choice of object view, and it could be relevant
to match together groups of vertices that represent the same part. From an algorith-
mic point of view, this problem has been much less investigated than the one-to-one
matching problem. Some one-to-one matching methods based on local optimization
over the set of permutation matrices have been extended to many-to-many matching,
e.g., by considering the possibility to merge vertices and edges in the course of op-
timization [11, 12]. Spectral methods have also been extended to deal with many-to-
many matching by combining the idea of spectral decomposition of graph adjacency
matrices with clustering methods [13, 6]. However, while the spectral approach for
one-to-one matching can be interpreted as a particular continuous relaxation of the
discrete optimization problem [5], this interpretation is lost in the extension to many-
to-many matching. In fact, we are not aware of a proper formulation of the many-
to-many graph matching problem as an optimization problem solved by relaxation
techniques.

Our main contribution is to propose such a formulation of the many-to-many graph
matching problem as a discrete optimization problem, which generalizes the usual for-
mulation for one-to-one graph matching (Section 2), and to present two approximate
methods based on different continuous relaxations of the problem (Sections 3.1 and
3.2). In both cases, the relaxed problems are not convex, and we solve them approxi-
mately with a conditional gradient method. We also study different ways to map back
the continuous solution of the relaxed problem into a many-to-many matching. We
present experimental evidence in Section 5, both on simulated and simple real data,
that this formulation provides a significant advantage over other one-to-one or many-
to-many matching approaches.

1 Note that with the introduction of dummy nodes, one may match a vertex of the first graph to
up to one vertex of the second graph (see, e.g., [1]).

Many-to-Many Graph Matching: A Continuous Relaxation Approach 517

2 Many-to-Many Graph Matching as an Optimization Problem

In this section we derive a formulation of the many-to-many graph matching problem
as a discrete optimization problem. We start by recalling the classical expression of the
one-to-one matching problem as an optimization problem. We then show how to extend
the one-to-one formulation to the case of many-to-one. Finally we describe how we can
define many-to-many matchings via two many-to-one mappings.

One-to-one graph matching. Let G and H be two graphs with N vertices (if the
graphs have different numbers of vertices, we can always add dummy nodes with no
connection to the smallest graph). We also denote by G and H their respective adja-
cency matrices, i.e, square {0, 1}-valued matrices of size N × N with element (i, j)
equal to 1 if and only if there is an edge between vertex i and vertex j.

A one-to-one matching between G and H can formally be represented by a N × N
permutation matrix P , where Pij = 1 if the i-th vertex of graph G is matched to the j-th
vertex of graph H , and Pij = 0 otherwise. Denoting by ‖ · ‖F the Frobenius norm of
matrices, defined as ‖A‖2

F = trA�A = (
∑

i

∑
j A2

ij), we note that ‖G−PHP�‖2
F is

twice the number of edges which are not conserved in the matching defined by the per-
mutation P . The one-to-one graph matching problem is therefore classically expressed
as the following discrete optimization problem:

min
P

||G − PHP�||2F subject to P ∈ Poto, with

Poto ={P ∈ {0, 1}N×N, P1N =1N , P�1N =1N},
(1)

where 1N denotes the constant N -dimensional vector of all ones. We note that Poto

simply represents the set of permutation matrices. The convex hull of this set is the set
of doubly stochastic matrices, where the the constraint P ∈ {0, 1}N×N is replaced by
P ∈ [0, 1]N×N .

From one-to-one to many-to-one. Suppose now that G has more vertices than H , and
that our goal is to find a matching that associates each vertex of H with one or more
vertices of G in such a way that each vertex of G is matched to a vertex of H . We call
such a matching many-to-one (or one-to-many if we invert the order of G and H). The
problem of finding an optimal many-to-one matching can be formulated as minimizing
the same criterion as (1) but modifying the optimization set as follows:

Pmto(NG, NH) = {P ∈ {0, 1}NG×NH ,

P1NH = 1NG , P�1NG ≤ kmax1NH , P�1NG ≥ 1NH} ,

where NG denotes the size of graph G, NH denotes the size of graph H , and kmax
denotes an optional upper bound on the number of vertices that can be matched to a
single vertex. As opposed to the one-to-one matching case, each column sum of P
is allowed to be larger than one, and the non-zero elements of the j-th column of P
corresponds to the vertices of graph G which are matched to the j-th vertex of H .

Most of existing continuous relaxation techniques may be adopted for many-to-one
matching. For example, [8] describes how spectral relaxation methods may be used in
the case of many-to-one matching. Other techniques like convex relaxation [4] may be

518 M. Zaslavskiy, F. Bach, and J.-P. Vert

used as well since the convex hull of Pmto is also obtained by relaxing the constraint
P ∈ {0, 1}NG×NH to P ∈ [0, 1]NG×NH .

From many-to-one to many-to-many. Now to match two graphs G and H under
many-to-many constraints we proceed as if we matched these two graphs to a virtual
graph S under many-to-one constraints, minimizing the difference between the trans-
formed graph obtained from G and the transformed graph obtained from H . The idea
of many-to-many matching as a double many-to-one matching is illustrated in Figure 1.
Graph S (assumed to have L vertices) represents the graph of matched vertex clusters.

Fig. 1. Many-to-many matching between G and H via many-to-one matching of both graphs to
a virtual graph S

Each vertex of S corresponds to a group of vertices of G and a group of vertices of H
matched to each other. For example, in Figure 1, vertices g3 (vertex 3 of G), g4 and h3

are matched to the same vertex s3; it means that in the final many-to-many matching
between G and H , g3 and g4 will be matched to h3. Let P1 ∈ Pmto(L, NG) denote
a many-to-one matching G → S, and P2 ∈ Pmto(L, NH) a many-to one matching
H → S; we propose to formulate the many-to-many graph matching problem as an op-
timization problem where we seek S, P1 and P2 which minimize the difference between
S and P1GP�

1 and between S and P2HP�
2

min
P1,P2,S

||P1GP�
1 − S||2F + ||S − P2HP�

2 ||2F . (2)

Note that if we know P1 and P2, then the optimal S is just 1
2 (P1GP�

1 + P2HP t
2op)

(point in the middle between P1GP�
1 and P2HP�

2). Plugging this expression in (2) we
obtain the following objective function for the many-to-many graph matching problem

F (P1, P2) = ||P1GP�
1 − P2HP�

2 ||2F , (3)

where P1 ∈ Pmto(L, NG) and P2 ∈ Pmto(L, NH) denote two many-to-one mappings.
The objective function (3) is similar to the objective function for the one-to-one case (1).
In (1), we seek a permutation which makes the second graph H as similar as possible to
G. In (3), we seek combinations of merges and permutations which makes G and H as
similar as possible to each other. The only difference between both formulations is that
in the many-to-many case we add the merging operation. Given matrices P1 and P2, it
is easy to retrieve the many-to-many matching between G and H by considering

Many-to-Many Graph Matching: A Continuous Relaxation Approach 519

M = P1P
�
2 .

Indeed, M is a NG × NH binary matrix such that Mij = 1 if and only if gi is matched
to hj .

There are two slightly different ways of defining the set of matrices over which (3)
is minimized. We can fix in advance the number of matching clusters L, which cor-
responds to the size of S, in which case the optimization set is P1 ∈ Pmto(L, NG)
and P2 ∈ Pmto(L, NH). An alternative way which we follow in the paper is to re-
move the constraint P1NG ≥ 1L from the definition of Pmto(L, NG), in this case the
method estimates itself the number of matching clusters (number of rows with non-
zero sum). Finally, we thus formulate the many-to-many graph matching problem as
follows:

min
P1,P2

||P1GP�
1 − P2HP�

2 ||2F subject to

P1 ∈ {0, 1}NK×NG , P11NG ≤ kmax1NK , P�
1 1NK = 1NG ,

P2 ∈ {0, 1}NK×NH , P21NH ≤ kmax1NK , P�
2 1NK = 1NH ,

(4)

where NK = min(NG, NH) represents the maximal number of matching clusters. Note
that NK is only an upper bound on the number of matching clusters, since it can not ex-
ceed the size of the smallest graph. On the other hand some of the columns of P1 and P2

may be empty, meaning that the corresponding clusters do not contain vertices, i.e., that
these clusters do not exist. This formulation is in fact valid for many kinds of graphs,
in particular graphs may be directed (with asymmetric adjacency matrices), have edge
weights (with real-valued adjacency matrices), and self-loops (with non-zero diagonal
elements in the adjacency matrices).We also describe in Section 3.1 how this formula-
tion can be modified to include information about vertex labels, which are important for
machine learning applications.

3 Continuous Relaxations of the Many-to-Many Graph Matching
Problem

The many-to-many graph matching problem (4) is a hard discrete optimization problem.
We therefore need an approximate method to solve it in practice.

3.1 Method 1: Gradient Descent

In this section we propose an algorithm based on a continuous relaxation of (4). For
that purpose we propose to replace the binary constraints P1 ∈ {0, 1}NK×NG , P2 ∈
{0, 1}NK×NH by continuous constraints P1 ∈ [0, 1]NK×NG , P2 ∈ [0, 1]NK×NH . Let K
denote the new continuous optimization set

K = K1 ×K2, where

K1 = {P1 ∈ [0,1]NK×NG , P11NG ≤ kmax1NK , P�
1 1NK = 1NG},

K2 = {P2 ∈ [0,1]NK×NH , P21NH ≤ kmax1NK , P�
2 1NK = 1NH} ,

(5)

520 M. Zaslavskiy, F. Bach, and J.-P. Vert

To solve the relaxed optimization problem we propose to use the following version of
the conditional gradient (a.k.a. Frank-Wolfe method [14]):

– Input: initial values P 0
1 and P 0

2 , t = 0,
– Do

1. compute ∇F (P t
1 , P t

2)
2. find the minimum of ∇F (P t

1 , P t
2)�(P1, P2) w.r.t. (P1, P2) i.e. over K

3. perform line search in the direction of the optimum found in Step 2, assign the
result to P t+1

1 , P t+1
2 , t = t + 1

– Until |ΔF | + ||ΔP1||F + ||ΔP2||F < ε
– Output: P t

1 , P t
2 .

Step 2 consists in the minimization of a linear function over a convex optimization
set. This problem can be solved by a generic linear programming solver in O(((NG +
NH)NK)3.5). The minimum of the gradient function is one of the extreme points of
the continuous optimization set. Since our ultimate objective is to minimize F (P1, P2)
over the discrete optimization set (4) it would be better to move towards one of the
points of (4) and not just any extreme point of K.The good news is that due to the
special structure of the optimization set, the gradient minimization can be solved in
O(max(kmaxNK)3) by reformulating minP ∇F (P t

1 , P t
2)�(P1, P2) as a linear assign-

ment problem (see Appendix A). We then have to solve a linear assignment problem
for a (NG + NH) × kmax min(NH , NG) matrix, which can be done efficiently by the
Hungarian algorithm [15] .

The solution of the line search step can be found in closed form since the objective
function is a polynomial of the fourth order.

The conditional descent algorithm converges to a stationary point of (4) [14]. Be-
cause of the non-convex nature of the objective function, we can only hope to reach a
local minimum (or more generally a stationary point) and it is important to have a good
initialization. In our experiments we found that a good choice is the fixed “uniform”
initialization, where we initialize P1 by 1

NK
1NG1�NH

and P2 by the identity matrix I .
Another option would be to use a convex relaxation of one-to-one matching [4].

Algorithm complexity is mainly defined by two parameters:

N = max(kmax min(NG, NH), NG + NH) and ε.

In general the number of iterations of the gradient descent scales as O(κ
ε) where κ is the

condition number of the Hessian matrix describing the objective function near a local
minima [14]. N has no direct influence on the number of iterations, but it defines the
cost of one iteration, i.e., the complexity of the Hungarian algorithm O(N3).

Projection
Once we have reached a local optimum of the relaxed optimization problem, we still
need to project P1 and P2 to the set of matrices with values in {0, 1} rather than in
[0, 1]. Several alternatives can be considered. A first idea is to use the columns of P1

and P2 to define a similarity measure between the vertices of both graphs, e.g., by
computing the dot products between columns. Indeed, the more similar the columns

Many-to-Many Graph Matching: A Continuous Relaxation Approach 521

corresponding to two vertices, the more likely these vertices are to be matched if they
are from different graphs, or merged if they are from the same graph. Therefore a first
strategy is to run a clustering algorithm (e.g., K-means or spectral clustering) on the
column vectors of the concatenated matrix (P1, P2) and then use the resulting clustering
to construct the final many-to-many graph matching.

An alternative to clustering is an incremental projection or forward selection pro-
jection, which uses the matching objective function at every step. Once P1 and P2 are
obtained from the continuous relaxation, we take the pair of vertices (g, h) from the
union of the graphs having the most similar column vectors in (P1, P2). We then re-
run the continuous relaxation with the new (linear) constraint that these two vertices
remain matched. We then go on and find the most similar pair of vertices from the con-
strained continuous solution. This greedy scheme can be iterated until all vertices are
matched.

In our experiments, the second approach produced better results. This is mainly due
to the fact that when we just run a clustering algorithm we do not use the objective func-
tion, while when we use incremental projection we adapt column vectors of unmatched
vertices according to earlier established matchings.

Neighbor merging. In many cases, it can be interesting to favor the merging of neigh-
boring vertices, as opposed to merging of any sets of vertices. To that end we propose
the following modification to (4):

FN (P1, P2) = F (P1, P2) − trG�P�
1 P1 − trH�P�

2 P2. (6)

The matrix product P�
1 P1 is a NG × NG matrix, with (i, j)-th entry equal to 1 if i

and j are merged into the same cluster. Therefore, the new components in the objective
function represent the number of pairs of adjacent vertices merged together in G and
H , respectively.

Local similarities. Like the one-to-one formulation, we can easily modify the many-to-
many graph matching formulation to include information on vertex pairwise similarities
by modifying the objective function as follows:

Fλ(P1, P2) = (1 − λ)F (P1, P2) + λtrC�P�
1 P2 , (7)

where the matrix C ∈ R
NG×NH is a matrix of local dissimilarities between graph

vertices, and parameter λ controls the relative impact of information on graph vertices
and information on graph structures.

The new objective function is again a polynomial of the fourth order, so our algorithm
may still be used directly without any additional modifications.

3.2 Method 2: SDP Relaxation

The second method consists in a relaxation of (4) to a quadratic semidefinite program-
ming (SDP) problem.

522 M. Zaslavskiy, F. Bach, and J.-P. Vert

First, we rewrite the objective function of (4) in an alternative form

||P1GPT
1 − P2HPT

2 ||2F =

trP1G
T PT

1 P1
︸ ︷︷ ︸

M1

GPT
1 + trP2H

T PT
2 P2

︸ ︷︷ ︸
M2

HPT
2 − 2trP1G

T PT
1 P2

︸ ︷︷ ︸
M12

HPT
2 =

trM1G
T M1G + trM2H

T M2H − 2trM21G
T M12H =

tr

⎡

⎢
⎢
⎢
⎣

(
M1 M12

M21 M2

)

︸ ︷︷ ︸
M

(
GT 0
0 −HT

)

︸ ︷︷ ︸
AT

(
M1 M12

M21 M2

) (
G 0
0 −H

)

⎤

⎥
⎥
⎥
⎦

=

trMAT MA = vec(M)(AT ⊗ A)vec(M).

(8)

Let F (M) denote our new objective function vec(M)(AT ⊗ A)vec(M), now we have
to minimize the quadratic function F (M) over the discrete set M of binary matrices
with a special structure. Since matrix M is a positive-semidefinite matrix (indeed, M
can be expressed as PT P where P is the matrix made of P1 and P2 stacked one below
another), we can relax the optimization problem minM∈M F (M) to the minimization
of a quadratic function over the convex set of positive-semidefinite matrices

min
M�0

F (M). (9)

Therefore the second method consists in the running of the Frank-Wolfe algorithm with
an SDP solver to compute conditional gradient and further projection of the produced
solution on M.

Here again we can run a clustering algorithm using the output of the Frank-Wolfe
algorith (a real-valued positive-semidefinite matrix M) as a similarity matrix between
vertices of two graphs, or use the incremental projection strategy fixing on each step the
most probable matching and adjusting the optimum given the new constraint.

To favor the neighbor merging and to introduce local vertex similarities, we can use
the same terms that we used before. Note, P1P

T
1 = M1, P2P

T
2 = M2 and P1P

T
2 =

M12, therefore new terms in (6) and (7) can be expressed as linear functions of M

trGT M1 + trHT M2 and trCT M12

The addition of these new terms to the objective function F (P) does not change its
structure, F (P) stays a quadratic function, so we can use the same minimization pro-
cedure.

A serious drawback of the “SDP” approach lies in its complexity. The complexity of
a generic SDP solver scales as O(m2.5) [16] where m is the number of variables of a
given “SDP” problem. In our case, m is equal to (NG + NH)2 which means that the
complexity of the gradient minimization step is at least O((NG + NH)5). Hence, it is
almost impossible to run the “SDP” method on graphs with more than 30 vertices. To
overcome this problem we propose to use an early stopping rule i.e. replace the exact
SDP solution by an approximate one.

Many-to-Many Graph Matching: A Continuous Relaxation Approach 523

4 Related Methods

There exist two major groups of methods for many-to-many graph matching, which we
briefly describe in this section. The first one consists of local search algorithms, gener-
ally used in the context of the graph edit distance, while the second one is composed of
variants of the spectral approach.

Local search algorithms. Examples of this kind of approach are given in [11] and [12].
In the classical formulation of the graph edit distance, the set of graph edit operations
consists of deletion, insertion and substitution of vertices and edges. Each operation has
an associated cost, and the objective is to find a sequence of operations with the low-
est total cost transforming one graph into another. In the case of many-to-many graph
matching, this set of operations is completed by merging (and splitting if necessary) op-
erations. Since the estimation of the optimal sequence is a hard combinatorial problem,
approximate methods such as beam search [2] as well as other examples of best-first,
breadth-first and depth-first searches are used.

Spectral approach. Caelli and Kosinov [6] discuss how spectral matching may be
used for many-to-many graph matching. Their algorithm is similar to the Umeyama
method [5] but instead of one-to-one correspondences, they search a many-to-many
mapping by running a clustering algorithm. In the first step, the spectral decomposition
of graph adjacency matrices is considered

G = VGΛGV �
G , H = VHΛHV �

H . (10)

Rows of eigenvector matrices VG and VH are interpreted as spectral coordinates of
graph vertices. Then vertices having similar spectral coordinates are clustered together
by a clustering algorithm, and vertices grouped in the same cluster are considered to be
matched.

Another example of spectral approach is given in [13] where, roughly speaking, the
adjacency matrix is replaced by the matrix of shortest path distances, and then spectral
decomposition with further clustering is used.

5 Experiments

In this section we compare the new methods proposed in this paper with existing tech-
niques (beam-search and spectral approach). We thus test four competitive approaches
in several experiments: beam-search “Beam” (A*-beam search from [2]), the spectral
approach “Spec” [6] and two new approaches: the gradient descent method “Grad”
(from Section 3.1), and the “SDP” relaxation (Section 3.2). All four algorithms are im-
plemented in matlab and are available at http://cbio.ensmp.fr/graphm/mtmgm.html. We
use SeDuMi (http://sedumi.ie.lehigh.edu/) to perform the gradient minimization in the
“SDP” method.

5.1 Synthetic Examples

In this section, we compare the four many-to-many graph matching algorithms on pairs
of randomly generated graphs with similar structures. We generate graphs according to

http://cbio.ensmp.fr/graphm/mtmgm.html
http://sedumi.ie.lehigh.edu/

524 M. Zaslavskiy, F. Bach, and J.-P. Vert

the following procedure: (1) generate a random graph G of size N , where each edge is
present with probability p, (2) build a randomly permuted copy H of G, (3) randomly
split the vertices in G (and in H) by taking a random vertex in G (and in H) and split it
into two vertices (operation repeated M times), (4) introduce noise by adding/deleting
σ × p × N2 random edges in both graphs.

As already mentioned, our principal interest here is to understand the behavior of
graph matching algorithms as functions of the graph size N , and their ability to resist to
structural noise. Indeed, in practice we never have identical graphs and it is important to
have a robust algorithm which is able to deal with noise in graph structures. The objec-
tive function F (P1, P2) in (4) represents the quality of graph matching, so to compare
different graph matching algorithms we plot F (P1, P2) as a function of N (Figure 2a),
and F (P1, P2) as a function of σ (Figure 2b) for the four algorithms. In both cases, we
observe that “Grad” and “SDP” significantly outperform both “Beam” and “Spec” with
the “SDP” algorithm working slightly better than “Grad”. “Beam” was run with beam
width equal to 3, which represents a good trade-off between quality and complexity,
“Spec” was run with projection on the first two eigenvectors with the normalization
presented in [6]2. To maximally accelerate the “SDP” method, the number of iterations
in SeDuMi was set to one, actually, one iteration is enough to have a good matching
quality.

Figure 2c shows how algorithms scale in time with the graph size N . The “Spec”
algorithm is the fastest one, but “Grad” has the same complexity order as “Spec” (cor-
responding curves are almost parallel lines in log-log scale, so both functions are poly-
nomials with the same degree and different multiplication constants), these curves are
coherent with theoretical values of algorithm complexity summarized in Section 3.1.
The early stopping rule makes possible the use of the “SDP” algorithm on graphs with
up to one hundred vertices, but it is still about 10 times slower than the “Grad” method,
and almost 100 times slower than the “Spec” algorithm.

5.2 Chinese Characters

In this section we quantitatively compare many-to-many graph matching algorithms
as parts of a classification framework. We use graph matching algorithms to compute
similarity/distance between objects of interest on the basis of their graph-based rep-
resentations. Our objective here is to see if with the new formulation of the many-to-
many graph matching problem (4) and corresponding continuous relaxation algorithms
improve the classification performance comparing to the existing state of the art algo-
rithms. Since “Grad” and “Spec” are essentially two alternative approximate algorithms
for the same discrete optimization problem with “Grad” working almost 10 times faster
and providing the matching quality similar to that of the “SDP” method, we decided to
test only the “Grad” algorithm. For example, to compute the similarity matrix of 600
graphs with in average 50 vertices, the running time of the “SDP” method would be
about 280 hours (≈ 50 seconds per pair).

2 “Spec” variants with three and more eigenvectors were also tested, but two eigenvectors pro-
duced almost the same matching quality and worked faster.

Many-to-Many Graph Matching: A Continuous Relaxation Approach 525

20 40 60 80 100
0

50

100

150

200

250

N

F
(P

1,P
2)

Grad
SDP
Spec
Beam

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

σ

F
(P

1,P
2)

Grad
SDP
Spec
Beam

1.4 1.6 1.8 2
−2

−1

0

1

2

3

Log10(N)

Lo
g1

0(
R

un
ni

ng
 ti

m
e)

Grad
SDP
Spec
Beam

(a) (b) (c)

Fig. 2. (a) F (P1, P2) (mean value over 30 repetitions) as a function of graph size N , simulation
parameters: p = 0.1, σ = 0.05, M = 3. (b) F (P1, P2) (mean value over 30 repetitions) as a
function of noise parameter σ, simulation parameters: N = 30, p = 0.1, M = 3. (c) Algorithm
running time (mean value over 30 repetitions) as a function of N (log-log scale), other parameters
are the same as in (a), “Beam” slope ≈ 3.9,“SDP” slope ≈ 4.2, “Grad” slope ≈ 2.9, “Spec” slope
≈ 2.7.

1
2

3

4

1

6
7
4

9

10

11

12

13
14
15

12

17

18

19

18

10

15

23

24

25

26

27

28

29

30

31

32

33

32

35
36
37

38

29

40

41

42

43
44

44

46

41

48

49

50

51 52

2

0

1

6

7

0

4

11

3

9 17

14

12

19

18

13

15

10

23

24

27

25

26

28

37
0

35

36

31

32

30

29

33

41

42

38

43

50

49

40

48

44

51

46

52

Fig. 3. Different writings of the same Chinese character and the matching of the corresponding
graphs made by “Grad”. Vertices having the same id’s are matched to each other.

As the classification problem, we chose the ETL9B dataset of Chinese characters.
This dataset is well suited for our purposes, since Chinese characters may be naturally
represented by graphs with variable non-trivial structures. Figure 3 illustrates how
“Grad” works on graphs representing Chinese characters. We see that our algorithm
produces a good matching, although not perfect, providing a correspondence between
“crucial” vertices. The characters represented in Figure 3 are however very easy to rec-
ognize, and most classification algorithms show a good performance on them; for ex-
ample, “Grad” produces a classification error rate below 0.2%. To test graph matching
algorithms on more challenging situations, we chose three “hard to classify” Chinese

526 M. Zaslavskiy, F. Bach, and J.-P. Vert

Table 1. Top: Chinese characters from three different classes. Bottom: classification results (mean
and standard deviation of test error over cross-validation runs, with 50 repetitions of five folds)

Method error STD

Linear SVM 0.377 ± 0.090
SVM with Gaussian kernel 0.359 ± 0.076
k-NN (one-to-one, Path) 0.248 ± 0.075
k-NN (shape context) 0.399 ± 0.081
k-NN (shape context+tps) 0.435 ± 0.092
k-NN (Spec) 0.254 ± 0.071
k-NN (Beam) 0.283 ± 0.079
k-NN (Grad) 0.191 ± 0.063

characters, i.e., three characters sharing similar graph structures, as illustrated in Table
1. We ran k-nearest neighbor (k-NN) with graph matching algorithms used as distance
measures. The dataset consists of 600 images, 200 images of each class.

Table 1 shows classification results for the three many-to-many graph matching al-
gorithms. In addition we report results for other popular approaches, namely, a SVM
classifier with linear and Gaussian kernels, one-to-one matching with the Path algorithm
(taken from [4]) and two versions of the shape context method [1], with or without thin
plate spline smoothing. The version named “shape context” computes polar histograms
with further bipartite graph matching. To run the “shape context+tps” method we used
code available online3.

Graph matching algorithms are run using information on vertex coordinates through
(7). The elements of the matrix C are defined as Cij = e−(xi−xj)

2−(yi−yj)
2
. The pa-

rameter λ in (7) as well as k (number of neighbors in k-NN classifier) are learned via
cross-validation. We see that the “Grad” algorithm shows the best performance, outper-
forming other many-to-many graph matching algorithms as well as other competitive
approaches.

5.3 Identification of Object Composite Parts

While the pattern recognition framework is interesting and important for the compari-
son of different graph matching algorithms, it evaluates only one aspect of these algo-
rithms, namely, their ability to detect similar graphs. A second and important aspect is
their ability to correctly align vertices corresponding to the same parts of two objects.
To test this capability, we performed the following series of experiments. We chose ten
camel images from the MPEG7 dataset and we divided by hand each image into 6 parts:
head, neck, legs, back, tail and body (Figure 4). This image segmentation automatically
defines a partitioning of the corresponding graph shown in the column (c) in Figure 4:
all graph vertices are labeled according to the image part which they represent. Figure 4

3 http://www.eecs.berkeley.edu/vision/shape/

http://www.eecs.berkeley.edu/vision/shape/

Many-to-Many Graph Matching: A Continuous Relaxation Approach 527

(a) (b) (c) (d)

Fig. 4. (a) Original images. (b) Manual segmentation (c) Graph-based representation (obtained
automatically from subsampled contours and shock graphs) with induced vertex labels (d) Pre-
diction of vertex labels on the basis of graph matching made by “Grad”. Best seen in color.

Table 2. Identification of object composite parts: mean and standard deviation of prediction error
(see text for details). Note that standard deviations are not divided by the square root of the sample
size (therefore differences are statistically significant).

Grad Spec Beam One-to-one
Error 0.303 0.351 0.432 0.342
STD 0.135 0.095 0.092 0.094

gives two illustrations of how this procedure works. A good graph matching algorithm
should map vertices from corresponding image parts to each other, i.e., heads to heads,
legs to legs, and so on. Therefore to evaluate the matching quality of the mapping, we
use the following score. First, we match two graphs and then we try to predict vertex
labels of one graph given the vertex labels of the second one. For instance, if vertex g1

of the first image is matched to vertices h1 and h2 representing the head of the second
image, then we predict that g1 is of class “head”. The better the graph matching, the
smaller the prediction error and vice-versa.

This experiment illustrates a promising application of graph matching algorithms.
Usually segmentation algorithms extract image parts on the basis of different character-
istics such as changing of color, narrowing of object form, etc. With our graph matching
algorithm, we can extract segments which does not only have a specific appearance, but
also have a semantic interpretation defined by a user (e.g., through the manual labelling
of a particular instance).

Table 2 presents mean prediction error over 45 pairs of camel images (we exclude
comparison of identical images). Each pair has two associated scores: prediction error
of the first image given the second one and vice-versa. We thus have 90 scores for
each algorithm, which are used to compute means and standard deviations. Like in
the previous sections, graph matching algorithms are run using information on vertex
coordinates (using Eq. (7)), with Cij = e−(xi−xj)

2−(yi−yj)
2
. The parameter λ in (7)

528 M. Zaslavskiy, F. Bach, and J.-P. Vert

as well as k (number of neighbors in k-NN classifier) are learned via cross-validation.
Here, again we observe that the “Grad” algorithm works better than other methods.

6 Conclusion and Future Work

The main contribution of this paper is the new formulation of the many-to-many graph
matching problem as a discrete optimization problem and new approximate algorithms
“Grad” and “SDP” based on two alternative continuous relaxation. The success of the
proposed methods compared to other competitive approaches may be explained by two
reasons. First, methods based on continuous relaxations of discrete optimization prob-
lems often show a better performance than local search algorithm due to their ability
to better explore the optimization set with potentially large moves. Second, “Grad”
and “SDP” algorithms aim to optimize a clear objective function naturally representing
the quality of graph matching instead of a sequence of unrelated steps. It is still diffi-
cult to run the “SDP” algorithm on real world datasets due to its time complexity, but
we think a significant progress may be made by employing approximate SDP solvers.
The hard limit on the number of iteration in SeDuMi is probably not the best way to
find an approximate solution, we are planning to see other alternatives such as SDPA
(http://sdpa.indsys.chuo-u.ac.jp/sdpa/) and CSDP (https://projects.coin-or.org/Csdp/).
The reformulation of the gradient minimization as a linear assignment problem made
possible the use of the “Grad” algorithm in large-scale graph matching problems. Prob-
ably, the special structure of the optimization set in the “SDP” relaxation may also
represent an important clue for the further acceleration of the “SDP” algorithm. In par-
ticular, this direction seems to be interesting since “SDP” was able to find better match-
ings than “Grad” in numerical tests (Section 5.1). Another interesting direction is to try
to construct a theoretical bound on the quality of the proposed approximate algorithms.

Besides a natural application of graph matching as a similarity measure between
objects with complex structures, graph matching can also be used for object alignment.
However, the structural noise usually encountered in graph-based representations have
slightly hampered its application to natural images; but we believe that the many-to-
many graph matching framework presented in this paper can provide an appropriate
notion of robustness, which is necessary for many machine learning applications.

Acknowledgments

This paper was supported in part by a grant from the Agence Nationale de la Recherche
(MGA Project).

Mikhail Zaslavskiy thanks Cellectis S.A.4, a genome engineering company, for kindly
provided travel and registration grants.

References

1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

4 www.cellectis.com

http://sdpa.indsys.chuo-u.ac.jp/sdpa/
https://projects.coin-or.org/Csdp/
www.cellectis.com

Many-to-Many Graph Matching: A Continuous Relaxation Approach 529

2. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph
edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A.L.N., Roli, F., de Ridder, D. (eds.) SSPR
2006 and SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006)

3. Almohamad, H.A., Duffuaa, S.O.: A linear programming approach for the weighted graph
matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 522–525 (1993)

4. Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for the graph matching prob-
lem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2227–2242 (2009)

5. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems.
IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

6. Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph match-
ing. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 515–519 (2004)

7. Carcassoni, M., Hancock, E.: Spectral correspondence for point pattern matching. Pattern
Recogn. 36(1), 193–204 (2003)

8. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Advanced in Neural Informa-
tion Processing Systems (2006)

9. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pair-
wise constraints. In: International Conference of Computer Vision (ICCV), vol. 2, pp. 1482–
1489 (October 2005)

10. Duchenne, O., Bach, F., Kweon, I., Ponce, J.: A tensor-based algorithm for high-order graph
matching. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition CVPR
2009, June 20-25, pp. 1980–1987 (2009)

11. Berretti, S., Del Bimbo, A., Pala, P.: A graph edit distance based on node merging. In: Proc.
of ACM International Conference on Image and Video Retrieval (CIVR), Dublin, Ireland,
July 2004, pp. 464–472 (2004)

12. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging,
and its application to diatom idenfication. In: GbRPR, pp. 95–106 (2003)

13. Keselman, Y., Shokoufandeh, A., Demirci, M.F., Dickinson, S.: Many-to-many graph match-
ing via metric embedding. In: CVPR, pp. 850–857 (2003)

14. Bertsekas, D.: Nonlinear programming. Athena Scientific (1999)
15. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research 2, 83–97

(1955)
16. Nesterov, Y., Nemirovsky, A.: Interior point polynomial methods in convex programming:

Theory and applications. SIAM, Philadelphia (1994)

Appendix A

Here we present how the gradient minimization step in the “Grad” method can be re-
formulated as a linear assignment problem. Let ∇F1 and ∇F2 denote the gradient of
the function F (P1, P2) with respect to matrices P1 and P2 (∇F1 is a NK × NG

matrix and ∇F2 is a NK × NH matrix). Recall that our objective is to minimize
trFT

1 P1 + trFT
2 P2 over (4). Note that two terms of the gradient are independent linear

functions and can be minimized one by one. Let us consider the first term (we drop the
subscript 1 for simplicity)

min
P

tr∇FT P subject to

P ∈ {0, 1}NK×NG , P1NG ≤ kmax1NK , P�1NK = 1NG .
(11)

Matrix P is a NK ×NG binary matrix with up to kmax “ones” in each row, and one and
only one “one” in each column. Let Q be a kmaxNK ×NG binary matrix with up to one

530 M. Zaslavskiy, F. Bach, and J.-P. Vert

“one” in each row (may be zero), and exactly one “one” in each column. Q may be seen
as a splitted version of matrix P , the first kmax rows of the matrix Q correspond to the
first row of P , then rows with indexes kmax + 1, . . . , 2kmax correspond to the second
row of P and so on. We can always construct P from Q by merging corresponding rows,
the reverse operation corresponds to splitting the rows of matrix P . We will write P ↔
Q to denote pairs (P , Q) which may be transformed to each other by merging/splitting
operations, of course the same matrix P may correspond to many matrices Q’s. Now,
let Fq denote a kmaxNK × NG real valued matrix constructed from the matrix F by
duplicating every row kmax times i.e. first kmax rows of Fq are copies of the first row
of F and so on.

This is easy to see, that if P ↔ Q then trFT
q Q = trFT P (the left side is just a

splitted version of the right side) and therefore if P ∗ = arg minP trFT P and Q∗ ↔ P ∗

then Q∗ = argminQ trFT
q Q and vice versa. Indeed, if Q∗ �= arg min trFT

q Q then
∃Q+ such that trFT

q Q+ < trFT
q Q∗, then we can construct P+ ↔ Q+ such that

trFT P+ < FT P ∗.
We showed that minP FT P is equivalent to minQ FT

q Q which is nothing else than
a linear assignment problem. Now, we can run the Hungarian algorithm to minimize
FT

q Q and then transform the optimal Q-solution to a P -solution by merging corre-
sponding rows.

	Many-to-Many Graph Matching: A Continuous Relaxation Approach
	Introduction
	Many-to-Many Graph Matching as an Optimization Problem
	Continuous Relaxations of the Many-to-Many Graph Matching Problem
	Method 1: Gradient Descent
	Method 2: SDP Relaxation

	Related Methods
	Experiments
	Synthetic Examples
	Chinese Characters
	Identification of Object Composite Parts

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

