
i-Hop Homomorphic Encryption and

Rerandomizable Yao Circuits

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan

IBM T.J. Watson Research Center

Abstract. Homomorphic encryption (HE) schemes enable computing
functions on encrypted data, by means of a public Eval procedure that
can be applied to ciphertexts. But the evaluated ciphertexts so generated
may differ from freshly encrypted ones. This brings up the question of
whether one can keep computing on evaluated ciphertexts. An i-hop
homomorphic encryption scheme is one where Eval can be called on its
own output up to i times, while still being able to decrypt the result. A
multi-hop homomorphic encryption is a scheme which is i-hop for all i.
In this work we study i-hop and multi-hop schemes in conjunction with
the properties of function-privacy (i.e., Eval’s output hides the function)
and compactness (i.e., the output of Eval is short). We provide formal
definitions and describe several constructions.

First, we observe that “bootstrapping” techniques can be used to con-
vert any (1-hop) homomorphic encryption scheme into an i-hop scheme
for any i, and the result inherits the function-privacy and/or compact-
ness of the underlying scheme. However, if the underlying scheme is not
compact (such as schemes derived from Yao circuits) then the complexity
of the resulting i-hop scheme can be as high as nO(i).

We then describe a specific DDH-based multi-hop homomorphic en-
cryption scheme that does not suffer from this exponential blowup. Al-
though not compact, this scheme has complexity linear in the size of
the composed function, independently of the number of hops. The main
technical ingredient in this solution is a re-randomizable variant of the
Yao circuits. Namely, given a garbled circuit, anyone can re-garble it in
such a way that even the party that generated the original garbled circuit
cannot recognize it. This construction may be of independent interest.

1 Introduction

Computing on encrypted data epitomizes the conflict between privacy and func-
tionality, and has been receiving a great deal of attention lately. In the canonical
setting of this problem there are two parties – a client that holds an input x, and
a server that holds a function f . The client wishes to learn f(x) using minimal
interaction with the server and without giving away information about its input.
Similarly, the server may want to hide information about the function f from the
client (except, of course, the value f(x)). This problem arises in a wide variety
of practical applications such as secure cloud computing, searching encrypted
e-mail and so on.
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One way to achieve this goal is via the paradigm of “computing with encrypted
data” [15]: namely, the client encrypts its input x and sends the ciphertext to the
server, and the server “evaluates the function f on the encrypted input”. The
server returns the evaluated ciphertext to the client, who decrypts it and recovers
the result. An encryption scheme that supports computation on encrypted data
is called a homomorphic encryption (HE) scheme. Namely, in addition to the
usual encryption and decryption procedure, it has an evaluation procedure, that
takes a ciphertext and a function and returns an “evaluated ciphertext”, which
can then be decrypted to obtain the value f(x). Over the years there were many
proposals for encryption schemes that support computations of some functions
on encrypted data. In this work, however, we are only interested in schemes that
allow computation of any function on encrypted data.

A trivial implementation of the evaluation procedure is for the evaluated
ciphertext to include both the original ciphertext and the function f , and for the
client to decrypt the original ciphertext and then evaluate f on the result. The
problem with this trivial solution is that it does not hide the server’s function
from the client, and that it does not offload any of the client’s work to the server.
We are therefore interested also in the properties of function privacy (meaning
that the evaluated ciphertext hides the function) and compactness (meaning
roughly that the work involved in decrypting the evaluated ciphertext is less
than in computing the function “from scratch”).

1.1 Homomorphic Encryption vs. Secure Function Evaluation

Cachin, Camenisch, Kilian, and Müller [5] observed that the paradigm of “com-
puting with encrypted data” with function privacy can be instantiated using
any two-message protocol for two-party secure function evaluation (SFE). In-
deed, the specifications of these two primitives are very similar: we can think of
the first message in a 2-message SFE protocol as “encrypting” the first party’s
input, and the second message is the evaluation of a function held by the second
party on that encryption.

Following the observation of Cachin et al., there is a simple folklore construc-
tion of public-key homomorphic encryption scheme from any two-message SFE
protocol and an auxiliary CPA-secure public key encryption (e.g., [10,3], see
also Section 1.3 below). In particular, this construction can be used to convert
a protocol based on Yao’s garbled circuits [19] into a public-key homomorphic
encryption scheme. The resulting scheme is function private but not compact:
the client complexity is linear in the circuit size of the evaluated function f .

Many other schemes for “computing with encrypted data” can be found in the
literature, with client complexity that depends in various forms on the complex-
ity of the evaluated function f (e.g., its truth-table size [11], circuit depth [16],
branching-program length [10], polynomial degree [1], etc.) The new scheme of
Gentry [7] and its variants [18,17] are the first schemes where the client com-
plexity is independent of the complexity of f .
A remark about “fully homomorphic” encryption. We note that the
schemes in [7,18,17] are unique in that evaluated ciphertexts can be made



i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 157

statistically close to freshly encrypted ones. We refer to schemes with this prop-
erty as “fully homomorphic” (as opposed to just “homomorphic” for schemes
without this property). It is easy to see that fully homomorphic schemes are
both compact and function private. Also, all the issues with multi-hop evalu-
ation that we consider in this work are trivialized for such schemes. For that
reason, fully homomorphic schemes are not the focus of the current work.

1.2 Multi-hop Homomorphic Encryption

Beyond the simple client-server setting from above, computing with encrypted
data is useful also in settings where several functions are computed on the same
encrypted data. For example, consider an email message encrypted under the
public-key of Alice, which is sent to alice@yahoo.com and promptly forwarded
to alice@gmail.com. Both Yahoo and Google have their own spam-tagging
algorithms that they want to apply to incoming emails, hence we may want to use
a homomorphic encryption scheme so that they can apply these algorithms to the
encrypted email. In this example, Yahoo can apply its spam-tagging algorithm
to the encrypted email and produce an (encrypted and) tagged email, and then
Google needs to apply its own spam-tagging algorithm to the result.

Another application with similar requirements is the setting of “autonomous
mobile agents” that was considered by Cachin et al. [5]. In this application, a
software agent is originated in some node in the network, and includes within
it an encryption of data from that node. The agent then roams the network,
visiting one node after another, and at each visited node it computes a func-
tion that depends on its current state and on the data from the visited node.
Finally, the agent returns to its originator, and the originator learns the result
of the composed function from all the visited nodes, as applied to the original
data.

What we need in these applications is a multi-hop homomorphic encryption
scheme, where the homomorphic function evaluation can be applied not only to
a fresh ciphertext, but also a ciphertext that was already subjected to another
homomorphic evaluation. We stress that evaluated ciphertexts may be very dif-
ferent from fresh ciphertexts, and it is not clear that the evaluation procedure
of the scheme can process this modified form. (Indeed, homomorphic encryption
schemes that are derived from generic secure computation protocols tend to have
this problem; see below.) Cachin et al. [5] described a solution to the multi-hop
setting based on Yao circuits, and our second construction in this work is an
extension of that solution.

The multi-hop setting implies a new function-privacy requirement, namely
multi-hop function privacy. For example, in the mail-forwarding example above,
Google may worry that Yahoo! will try to collude with the sender and receiver of
the email, in order to learn something about Google’s spam-tagging techniques.
Indeed, the solution of Cachin et al., which is described in Section 1.3 below,
suffers from exactly this problem. Ensuring multi-hop function privacy is the
main focus of our work.
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1.3 Homomorphic Encryption from Yao Circuits

For the sake of concreteness, we now describe the folklore construction of (1-hop)
homomorphic encryption from any two-message SFE protocol, and the extension
of Cachin et al. to the multi-hop setting based on Yao circuits. Consider the
structure of a two-message SFE protocol where a client holds an input x, a
server holds a function f , and the client wishes to receive f(x).
• The client sends to the server a message that “encodes” its input x, and
yet does not reveal x to a computationally bounded server. In other words, the
client’s message acts as an encryption of x.
• The server’s response encodes the result of the computation (namely f(x)),
and yet, reveals no more information to the client about the function f . In
other words, the server essentially performs a function-private evaluation of the
function f on an encrypted input.
• The client recovers the result f(x) from the server’s message, using her secret
randomness. This is the decryption procedure.

The above is still not quite a public-key encryption scheme: in particular,
there is no public key involved, and the same party (the client) is doing both
the encryption and the decryption. In contrast, a public key homomorphic en-
cryption should be thought of as a three-player game: first a recipient publishes
a public key, then a sender (client) encrypts the data x under that public key,
next an evaluator (server) computes a function f on the encrypted data, and
finally the recipient decrypts the result and recovers f(x).

Fortunately, we can get a public key HE scheme from a two-message SFE
protocol by using an auxiliary standard public-key encryption scheme: The re-
cipient chooses a public/secret key pair for some semantically secure encryption
scheme, the sender sends the first-message SFE message and in addition also
the encryption of the SFE randomness under the public key, and the evaluator
forwards the encrypted randomness to the recipient together with the second-
message SFE message. The recipient uses its secret key to decrypt and recover
the SFE randomness, and then uses the SFE procedure with this randomness to
recover f(x).
Extending to more than one hop. Consider next the setting where there
is a sender who holds an input x, two evaluators E1 and E2 who hold functions
f1 and f2 respectively, and the recipient wishes to receive f2(f1(x)). To achieve
this, the client would like to compute an encryption of x and send it to the
first evaluator, who computes an encryption of f1(x) and passes it to the second
evaluator. The question we ask is: Can E2 now compute on the output of E1?
For generic 1-hop homomorphic encryption (such as the construction above from
a generic 2-message SFE protocol), we only offer a partial answer to this ques-
tion: In Theorem 1 we show that “bootstrapping” techniques [7] can be used to
transform a 1-hop HE scheme into an i-Hop scheme for any i, but the size of the
ciphertext could grow by a polynomial factor for every hop (and hence we can
only carry out this procedure for a constant number of hops).
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On the other hand, a scheme based on Yao’s garbled circuits [19] is easy to
extend to many hops without the exponential blowup in complexity. Recall that
in Yao’s garbled circuit construction, the server (who has a function) chooses two
random labels for every wire in the circuit that computes that function, and for
every gate it computes a “gate gadget” that allows the client to learn one of the
output labels if it knows one label on each input wire. The collection of all these
gate gadgets is called the “garbled circuit.” The server sends the garbled circuit
to the client, and engages in an oblivious transfer protocol where it reveals to the
client exactly one of the two labels on every input wire (without learning which
was revealed). The client uses the gadgets to learn one label on each wire, all the
way to the output wires of the circuit. The server also provides the client with
a mapping between the output labels and zero/one, hence allowing the client to
learn the output.

Cachin et al. [5] noted that this construction is extendable to more than one
hop: the second evaluator E2 receives the garbled circuit from the first evalua-
tor E1, and it can now just use E1’s output labels for its own input labels, thus
“connecting” these two circuits and proceeding with the protocol. Moreover this
extension offers a weak form of function privacy: if only the client is corrupted,
then the composed garbled circuit looks as if it was generated “from scratch” on
the compositions of the two circuits, and thus it hides them from the recipient.

However, privacy breaks down completely when E1 colludes with the recipient.
Now, E1 knows both the labels for each input wire of the garbled circuit that
E2 prepares. Thus, from the point of view of E1, the output of E2 is not garbled
at all, in fact E1 can completely recover f2.

Our main technical contribution is a re-randomizable variant of Yao circuits,
allowing E2 to re-randomize the labels of E1’s garbled circuit, thus obtaining
privacy even against a collusion of E1 and the recipient.

1.4 Summary of Our Results

Definition of multi-hop homomorphic encryption. Informally, in an i-
hop HE scheme, a sequence of i functions f1, . . . , fi can be homomorphically
evaluated one by one on a ciphertext c produced by encrypting a message x.
This is pictorially depicted as follows. (Here E1, . . . , Ei denote the i players –
evaluators – that hold the functions f1, . . . , fi).

Encryptor(x)
c0=Enc(x)→ E1(f1, c0)

c1→ . . . → Ej(fj , cj−1)
cj→ . . .

ci→ Decryptor

A multi-hop HE scheme is simply an i-hop scheme that works for any (polyno-
mial) i.

The definition of multi-hop function privacy requires that for every j ∈ [d],
even if all the evaluators except Ej combine their information, they still learn no
information about fj (other than its input and output). The formal definition
is simulation-based, extending the (1-hop) definition of Ishai and Paskin [10]. In
this work we only deal with the honest-but-curious setting, and only consider
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the case where all but one of the evaluators are corrupted (as opposed to an
arbitrary subset of them). Treatment of the more general cases is left for future
work.
Construction I: 1-hop → i-hop. In Section 3, we show how to convert a
1-hop HE scheme into an i-hop HE scheme for any i. This construction uses
a bootstrapping technique, similar to [7]: given a function f and an evaluated
ciphertext c that decrypts to some value x, we can express the value f(x) as a
function of the secret key, Ff,c(sk) def= f(Dec(sk, c)) = f(x). If we add to the
public key a fresh encryption of the secret key, we can then use the evaluation
procedure of the scheme to evaluate Ff,c on this fresh encryption, thus obtaining
a ciphertext that decrypts to f(x). As described, this construction relies on
circular security of the underlying scheme (since we publish an encryption of
the secret key). Just as in [7], we can avoid relying on circular security and still
support up to i hops, by having i public/secret key pairs and encrypting the j’th
secret key under the j + 1’st public key.

We note, however, that for non-compact HE schemes, the size of the evaluated
ciphertext can be polynomially larger than the size of the evaluated function.
Hence the ciphertext in the resulting i-hop scheme could grow by a factor of up
to kO(i) after i hops, where k is the security parameter. Thus, this construction
is viable only for a constant number of hops. Since by the folklore construction
(described in section 1.3), the existence of 1-hop HE schemes is equivalent to
the existence of two-message SFE protocols, we get:

Theorem 1 (Informal). If two-message secure function evaluation protocols
exist, then for any constant i there is a public key encryption scheme H(i) which
is i-hop homomorphic and i-hop function-private. There is a fixed polynomial
q(k) in the security parameter k such that on evaluating functions f1, . . . , fi on
a fresh ciphertext of H(i), the resulting evaluated ciphertext has size at most( ∑i

j=1 |fj |
) · q(k)i.

We also note that if the underlying 1-hop HE scheme is compact, then the
construction above can be carried out without the exponential blowup, hence
we can extend it to an i-hop scheme for any polynomial i. Moreover, similar
bootstrapping techniques can be used to combine two 1-hop HE schemes – one
compact but not private and the other private but not compact – into a single 1-
hop scheme which is both private and compact. Using the construction above we
can then extend it to a compact and private i-hop scheme for any polynomial i.

Theorem 2 (Informal). Assume that there exist a 1-hop compact HE scheme,
and a (possibly different) 1-hop function-private HE scheme. Then, for every
polynomial p(k) there is an encryption scheme H(p), which is p(k)-hop homo-
morphic and p(k)-hop private. There is a fixed polynomial q(k) such that on
evaluating functions f1, . . . , fp(k) on a fresh ciphertext of H(p), the resulting ci-
phertext has size q(k) (independent of the size of the functions fj).

Construction II: Re-randomizable Yao → multi-hop. In Section 5, we
describe a scheme that can handle any polynomial number of hops, and is
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semantically secure and function private under the decisional Diffie Hellman
assumption. The size of the ciphertext in this scheme grows linearly with the
size of the functions that are evaluated on the ciphertext, but independently of
the number of hops.

This encryption scheme essentially amends the Yao-garbled-circuit construc-
tion from the previous section, which only offered a weak form of function pri-
vacy. The problem there was that the garbled circuit produced by the second
evaluator E2 contains (as a sub-circuit) the garbled circuit produced by E1; this
reveals non-trivial information about the function f2 to the first evaluator. The
solution to this problem is to come up with a way to re-randomize Yao garbled
circuits. Roughly speaking, this is a procedure that takes a garbled circuit and
constructs a random garbled circuit for the same function.

We describe a variant of the garbled circuit construction that allows such
re-randomization. For the construction, we rely on the encryption scheme of
Boneh-Halevi-Hamburg-Ostrovsky [4], and on the oblivious-transfer protocol of
Naor-Pinkas and Aiello-Ishai-Reingold [13,2] (both of which are based on the
decisional Diffie-Hellman assumption, and have “nice” additive homomorphic
properties).

Theorem 3 (Informal). Under the decisional Diffie-Hellman assumption, there
is a public-key multi-hop homomorphic encryption scheme H∗ which is function-
private for any number of hops. Moreover, there is a fixed polynomial q(k) in the
security parameter such that on evaluating functions f1, . . . , fd on a fresh cipher-
text, the resulting ciphertext has size

( ∑d
i=1 |fi|

) · q(k).

2 Definitions of Homomorphic Encryption

Nearly all our definitions rely on a security parameter, which is usually implicit.
By x ← X and x ∈R S we denote drawing from a distribution and choosing
uniformly from a set. We call a procedure efficient if it runs in time polynomial
in the length of its input. We say that two distributions are computationally
indistinguishable if any efficient distinguisher has only a negligible advantage in
distinguishing them. Throughout the writeup, adversarial algorithms are always
nonuniform.

A homomorphic encryption scheme consists of four procedures, E = (KeyGen,
Enc, Dec, Eval). KeyGen takes as input the security parameter and outputs a
public/secret key-pair, Enc takes the public key and a plaintext and outputs a
ciphertext, and Dec takes the secret key and a ciphertext and outputs a plaintext.
The Eval procedure takes a description of a function, the public key, and a
ciphertext, and outputs another ciphertext.
Multi-hop evaluation. We extend the Eval procedure from a single function
to a sequence of functions in the natural way. Below we say that an ordered
sequence of functions f = 〈f1, . . . , ft〉 is compatible if the output length of fj is
the same as the input length of fj+1 for all j. If f is a compatible sequence of t
functions, we denote its jth prefix by f j = 〈f1, . . . , fj〉. The composed function
ft(· · · f2(f1(·)) · · · ) is denoted (ft ◦ · · · ◦ f1).
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We define an extended procedure Eval∗ that takes as input the public key, a
compatible sequence f = 〈f1, . . . , ft〉, and a ciphertext c0. For i = 1, 2, . . . , t it
sets ci ← Eval(pk, fi, ci−1), outputting the last ciphertext ct.

Definition 1 (i-Hop Homomorphic Encryption). Let i = i(k) be a function
of the security parameter. A scheme E = (KeyGen, Enc, Dec, Eval) is an i-hop ho-
momorphic encryption scheme if for every compatible sequence f = 〈f1, . . . , ft〉
with t ≤ i functions, every input x to f1, every (pk, sk) in the support of KeyGen,
and every c in the support of Enc(pk; x),

Dec
(
sk, Eval∗(pk, f , c)

)
= (ft ◦ · · · ◦ f1)(x)

We say that E is a multi-hop homomorphic encryption scheme if it is i-hop for
any polynomial i.

We note that 1-hop homomorphic encryption is just the usual notion of homo-
morphic encryption, as formalized, e.g., in [10, Def 5].
Function privacy and compactness. Semantic security [9] is defined exactly
as for regular public-key encryption schemes (without regard to Eval). We omit
this definition due to space limitations.

To define function privacy, we view the operation of Eval∗ as a multi-party
protocol with one party per function, and formalize function-privacy as the usual
input-privacy property for these parties: roughly speaking, we require that even
if the recipient who holds the secret key colludes with all the parties but one,
the function of that one party still remains hidden, except perhaps (its size and)
the value that this function assumes on a single input.

Definition 2 (function privacy - honest-but-curious). An i-hop homo-
morphic encryption scheme E = (KeyGen, Enc, Dec, Eval) is function-private if
there exists an efficient simulator Sim such that for every compatible sequence
of functions f = 〈f1, . . . , ft〉 with t ≤ i, every j ≤ t, every input x for f1, every
(pk, sk) in the support of KeyGen, and every ciphertext cj−1 in the support of
Eval∗

(
pk, f j−1, Enc(pk; x)

)
, the following two distributions are indistinguishable

(even given x, fj and sk):

Eval(pk, fj , cj−1) and Sim
(
pk, cj−1, 1|fj |, (f1 ◦ · · · ◦ fj)(x)

)

We remark that Definition 2 can be extended in several different ways. An obvi-
ous extension would be to consider the malicious case (with or without assuming
that the public key and the initial ciphertext were created honestly). A second
possible extension is to consider a more general adversarial structure, where
the attacker can corrupt an arbitrary subset of the players (the encryptor, the
evaluators, and the decryptor), and we still want to ensure the privacy of the
non-corrupted ones. Yet another extension to Definitions 1 and 2 is to consider
an arbitrary network of functions (and not just a single chain). Finally, one could
strengthen the privacy guarantee, requiring that Eval∗ hides not only the func-
tions that the nodes compute but also the structure of the network itself (e.g.,
the number of functions in the chain). We leave all of these extensions to future
work.
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Definition 3 (Compactness). A scheme E = (KeyGen, Enc, Dec, Eval) is i-hop
compact homomorphic if there exists a polynomial p(·) in (only) the security
parameter k, such that decryption of any ciphertext (even one that is the output
of Eval∗) w.r.t. the security parameter k can be implemented by a circuit of size
at most p(k).

Namely, for every value of k, there exists a circuit Dec(k) of size at most p(k),
such that the i-Hop property from Definition 1 holds for that decryption circuit.

The name “compactness” is justified by the fact that the length of the evaluated
ciphertexts cannot grow beyond p(k) (regardless of f), if they are to be decrypted
by a p(k)-size circuit. We comment that compactness and function privacy to-
gether are still formally weaker than the Ishai-Paskin notion of “privacy with
size hiding” [10, Def 8].

3 From 1-Hop to i-Hop Homomorphic Encryption

Below we show how to transform a 1-hop HE scheme to an i-hop scheme for any
constant i > 0. The price that we pay, however, is that the complexity of the
i-hop scheme (and in particular, the length of the evaluated ciphertexts) may
grow as large as kO(i) (for security parameter k).

The idea is that each evaluator (with function f) in the chain, upon receiving
the “evaluated ciphertext” c from its predecessor, applies again the evaluation
procedure, but not to its original function f . Rather, it applies the evaluation
procedure to the concatenation of f with the decryption function, namely to
the function Ff,c(sk) def= f

(
Dec(sk, c)

)
. This technique, which is reminiscent of

Gentry’s “bootstrapping” technique [7], works because (by induction) applying
Dec(sk, c) on the previous evaluated ciphertext outputs the value (fj−1 ◦ · · · ◦
f1)(x).
The Construction. Let H = (KeyGen, Enc, Eval, Dec) be a function-private
homomorphic 1-hop encryption scheme (that need not be compact). Let i be a
constant parameter of the system (that represents the number of hops that we
are shooting for). We construct a function-private i-hop homomorphic encryption
scheme H(i) = (KeyGen(i), Enc(i), Eval(i), Dec(i)) as follows.

KeyGen(i): Run KeyGen for i + 1 times, to get for j = 0, 1, . . . , i:

(pkj , skj)← KeyGen, and for j < i also: αj ← Enc
(
pkj+1︸ ︷︷ ︸

key

; skj︸︷︷︸
ptxt

)

Defining αi =⊥, the public key is the set pk
(i) = {(pkj , αj) : j = 0, 1, . . . , i},

and the secret key is sk
(i) = (sk0, sk1, . . . , ski).

Enc(i)(pk(i); x): Set c0 ← Enc(pk0; x) and output
[
level-0, c0

]
.

Eval(i)(pk(i), c̃, fj+1): Parse the ciphertext as c̃ =
[
level-j, cj

]
. Compute the de-

scription of the function Ffj+1,cj (s)
def= fj+1(Dec(s; cj)), and set cj+1 ←

Eval(pkj+1; Ffj+1,cj , αj). Output
[
level-(j + 1), cj+1

]
.
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Dec(i)(sk(i); c̃): Parse the ciphertext as c̃ =
[
level-j, cj

]
. Compute and output

y ← Dec(skj ; cj).

Theorem 4. The scheme H(i) above is an i-hop function private homomorphic
encryption scheme.

Proof. (sketch) Correctness is easy to establish by induction. The correctness
of the underlying 1-hop homomorphic encryption scheme H implies that for all
j ≤ i we have

Dec(skj , cj) = Dec(skj , Eval(pkj ; Ffj ,cj−1 , αj−1))
(a)
= Ffj ,cj−1(skj−1)

(b)
= fj(Dec(skj−1, cj−1))

(c)
= (fj ◦ . . . ◦ f1)(x),

where fj is the function that was used in the j’th hop, Equality (a) holds by
correctness of the underlying 1-hop scheme, Equality (b) holds by definition of
Ffj ,cj−1 , and Equality (c) holds by the induction hypothesis.

Semantic security of H(i) follows trivially from that of the underlying (1-hop)
encryption scheme. Similarly, i-hop function privacy follows easily from the 1-
hop privacy of the underlying scheme (and the fact that the size of Ffj ,cj−1 that
the H simulator needs can be computed easily from the size of fj and the size
of cj−1 both of which the simulator for H(i) knows).

Complexity. For “generic” 1-hop encryption schemes (such as the one that we
can obtain from two-message SFE using the folklore construction described in
Section 1.3), the size of the ciphertext resulting from Eval(f, c) is larger than
the input length |c| + |f | by some factor K which is polynomial in the security
parameter k. Hence the size of the circuit for Ffj ,cj−1 in our construction is at
least

K(· · ·K(K(|c0|+|f1|)+|f2|) · · · )+|fj |= |c0|Kj−1+
j∑

t=1

|ft|Kj−t =
( j∑

t=1

|fj |
)·kO(j)

which means that after i hops the ciphertext grows as kO(i).

3.1 Compact and Function-Private Homomorphic Encryption

Recall that the exponential blowup in the construction above is due to the fact
that the ciphertext that results from Eval is larger than the function size (by
a multiplicative factor). On the other hand, if the underlying 1-hop scheme
is compact (and function-private), then the construction above would yield a
compact (and function-private) i-hop scheme.

Below we show that given a 1-hop scheme which is compact but not private,
and another 1-hop scheme which is private but not compact, we can combine
them to get a 1-hop scheme which is both compact and private (and thus also
i-hop compact and private scheme for all i, by the observation above).
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The idea is to iterate the two schemes at every hop. First we apply the private
scheme to the function f that we want to evaluate, thus getting a “private
ciphertext” which is large but does not reveal information about f . Then we
apply the compact scheme to the decryption function of the private scheme,
in essence “compressing” the large ciphertext into a compact one which is still
decrypted to the same value. The result is clearly compact (since it outputs the
“compact ciphertext”). It is also function-private since the only dependence of
the compact ciphertext on the function f is via the value of the intermediate
“private ciphertext”, and even if we were to give the adversary the “private
ciphertext” itself, it would still not violate the function-privacy of f .1

We note that when using this technique, we again get a “hard-wired” pa-
rameter i that limits the number of hops that we can handle: to get an i-hop
scheme, the public key must have size linear in i. Thus, the resulting scheme is
not multi-hop, according to Definition 1. This limitation can be circumvented
by relying on the circular security of the resulting 1-hop schemes; the details are
deferred to the full version.

4 Extendable and Re-randomizable Secure Computation

Below we define the tool of “extendable and re-randomizable SFE”, and show
how it is used for multi-hop homomorphic encryption. In the next section we
show that this tool can be implemented under the decisional Diffie-Hellman
assumption. We begin with definitions (which are similar to Ishai et al. [10]).

We fix a particular “universal circuit evaluator” U(·, ·), taking as input a
description of a function f and an argument x, and returning f(x). Using U
we can view every bit-string f as describing a function (where f(x) is just a
shorthand for U(f, x)).

A two-message protocol for secure two-party computation to be run by Al-
ice (the client) and Bob (the server), is implemented by three polynomial-time
procedures Π = (SFE1, SFE2, SFE-Out), where:

1. The procedure SFE1(x) is run by the client with input x and randomness
r1 to get the “first message” m1. m1 is then sent to the server and r1 is kept
for later. We assume that r1 includes in particular all the randomness that the
client uses.

2. The procedure SFE2(f, m1) is run by the server with input a function f and
randomness r2. The output of this procedure m2 is then sent to the client.

3. Finally, the client runs the procedure SFE-Out(r1, m2) to recover an output
y. Correctness of the SFE protocol demands that the value y is equal to f(x).

By SFE1(x) (resp. SFE2(m1, f)), we mean the distribution generated by the
respective algorithms (over the choice of their randomness). We also say that

1 We comment that iterating the two systems in the opposite order also works: we
can apply the compact scheme to the function f and the private scheme to the
decryption of the compact one.
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(m1, r1) ∈ SFE1(x) (resp. (m2, r2) ∈ SFE2(m1, f)) to denote a particular element
in the support of the distribution (together with the randomness involved).

Definition 4 (Client and (honest-but-curious) Server privacy). A pro-
tocol Π = (SFE1, SFE2, SFE-Out) is said to be:

– Client-private, if for any two inputs x, x′ of the same length, the distributions
SFE1(x) and SFE1(x′) are indistinguishable (even given x, x′).

– Server-private in the honest-but-curious model, if there exists a polynomial
time simulator Sim such that for every input x and function f , and every
(m1, r1) ∈ SFE1(x), the distributions SFE2(f, m1) and Sim(m1, 1|f |, f(x))
are indistinguishable (even given f, x, m1 and r1).

We now define the notion of an extendable SFE protocol.

Definition 5 (Extendable SFE, honest-but-curious). A two-message SFE
protocol Π = (SFE1, SFE2, SFE-Out) is extendable, if there exists an efficient
procedure Extend such that for any two compatible functions f and f ′, any input x
to f , and for every (m1, r1) ∈ SFE1(x), the distributions Extend(SFE2(m1, f), f ′)
and SFE2(m1, f

′ ◦ f) are indistinguishable (even given x, f, f ′, m1 and r1).

Extendable SFE from Yao Circuits. The construction of Cachin et al. [5,
Sec. 5] can be cast in our language as describing an extendable SFE protocol
based on Yao’s garbled circuit construction [19]. As described in the introduction,
the idea is that since the garbled circuit for f includes both the 0-label and the
1-label on any output wire, it can be extended by treating these labels as the
input labels for f ′.

We comment that garbling the gates hides only the type of these gates and
not the topology of a circuit. To hide the function we must also use some form of
canonicalization of circuits, so that all circuits of a given size will have the same
topology. Moreover, to meet our definition of extendibility, it must be the case
that canonicalizing f , then extending it with f ′ and canonicalizing the whole
thing yields the same topology as canonicalizing the composed function f ′ ◦ f .

We note that such canonicalization is possible, and the size of the canonical-
ized circuits does not grow much. For example, a circuit of maximum width w
can be canonicalized to a leveled circuit with width w at every level, and a big
“multiplexer gate” between every two successive levels that determines what
output from the lower level goes to what input in the upper one. To get the
additional property that we need (where the order of canonicalization does not
matter) we would also have w output wires in the circuit, where the redundant
output wires have both labels set to 0. (We may also need to supply some dummy
gates that take as input the input wires and have both output labels set to 0, to
be able to pad the circuit if the maximum width of f ′ is larger than that of f .)
From Extendable to Re-randomizable. Note that extendable SFE by itself
already yields multi-hop homomorphic encryption with a weak form of function-
privacy: to a recipient that does not know the intermediate values (namely, the
output of SFE2(m1, f)), the output of Extend looks just as if it was generated
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“from scratch” by running SFE2 with input f ′ ◦f , so Extend hides the function if
SFE2 does. This means that when the protocol Π is used for many hops, then as
long as all the intermediate hops are “trusted” not to reveal their intermediate
results (and only the sender and the recipient are honest-but-curious), using
Extend would maintain the privacy of everyone’s functions.

However, this solution still falls short of our function-privacy goal, since a col-
lusion between the recipient and the node that computed SFE2(m1, f) can reveal
the function f ′. In other words, the output of Extend may not be distributed like
SFE2(m1, f

′ ◦ f) given also the intermediate results from SFE2(m1, f). To over-
come this problem, we introduce the notion of a re-randomizable SFE: In a
nutshell, we want to transform the second message m2 ← SFE2(m1, f) into m′2
such that even if the recipient and the party that computed m2, they cannot
distinguish m′2 from random. Then, a node can re-randomize the message from
its predecessor, thus rendering the intermediate results held by the predecessor
irrelevant.

Definition 6 (Re-randomizableSFE,honest-but-curious).Atwo-message
SFE protocol Π is re-randomizable if there exists an efficient procedure reRand such
that for every input x and function f and every (m1, r1) ∈ SFE1(x) and (m2, r2) ∈
SFE2(m1, f), the distributions reRand(m1, m2) and SFE2(m1, f) are indistinguish-
able, even given x, f, m1, r1, m2, r2.

From Extendable and Re-randomizable SFE to Multi-hop HE. Let
Π = (SFE1, SFE2, SFE-Out) be an extendable and re-randomizable two message
SFE protocol with client and server privacy, and let E = (KeyGen, Enc, Dec) be a
semantically secure public-key encryption scheme. We now describe the construc-
tion of the multi-hop homomorphic scheme H∗ = (KeyGen∗, Enc∗, Dec∗, Eval∗).

The key generation KeyGen∗ is the same as KeyGen for the underlying en-
cryption. The encryption procedure Enc∗(pk; x) first runs (m1, r1) ← SFE1(x),
then encrypts r1 using E to get c ← Enc(pk; r1), and finally, computes m2 ←
SFE2(m1, fID) (where fID is the identity function). The ciphertext is (c, m1, m2).

To evaluate a function fj on an H∗-ciphertext cj−1, first parse cj−1 as a tuple
(c, m1, m

(j−1)
2 ), then set m′2 ← Extend(m(j−1)

2 , fj) and m
(j)
2 ← reRand(m1, m

′
2).

The evaluated ciphertext is (c, m1, m
(j)
2 ). Decrypting cj = (c, m1, m

(j)
2 ) con-

sists of using the decryption of E to get r1 ← Dec(sk, c), then outputting
y ← SFE-Out(r1, m

(j)
2 ).

Theorem 5 (Extendable+Re-randomizable ⇒ Multi-hop). Assume that
the encryption scheme E is semantically secure, the SFE protocol Π is extendable
and re-randomizable with client and server privacy, and in addition that the size
of any function f can be efficiently determined from the output of SFE2(m1, f).

Then the scheme H∗ above is a multi-hop function-private homomorphic en-
cryption scheme. Moreover, the size of an evaluated ciphertext in H∗ does not
depend on the number of hops, but only on the size of the composed function.

Proof. (sketch) Correctness of H∗ follows from the the correctness of Π , and
its extendability and re-randomizability: we know that SFE-Out would recover
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the right y when given the second message from SFE2, and by extendability
the output of Extend is the same as that of SFE2, no matter how many hops
were used. Semantic security follows from semantic security of the underlying
encryption and from the client-privacy of Π .

To show function privacy, we need to describe a simulator SimH∗ that on input
cj−1 = (c, m1, m

(j−1)
2 ), |fj |, and yj = (f1 ◦ · · · ◦ fj)(x), generates a distribution

indistinguishable from cj = (c, m1, m
(j)
2 ). The simulator recovers from m

(j−1)
2 the

size |f1◦· · ·◦fj−1| and adds it to |fj | to get γ = |f1◦· · ·◦fj|. Then SimH∗ uses the
simulator for Π to get m

(j)
2 ← SimΠ(m1, γ, yj) and outputs cj = (c, m1, m

(j)
2 ).

By the server-privacy of Π , the distribution of m
(j)
2 so generated is indistin-

guishable from SFE2(m1, f1 ◦ · · · ◦ fj). On the other hand, by the extendability
and re-randomizability properties of Π , the distribution of m

(j)
2 in H∗ is also

indistinguishable from the same SFE2(m1, f1 ◦ · · · ◦ fj). Hence these two distri-
butions are indistinguishable from each other. ��

5 Extendable and Re-randomizable SFE from DDH

Given Theorem 5, we now focus on building an extendable and re-randomizable
SFE protocol. Our starting point is Yao’s garbled circuit construction [19], which
is extendable, but not re-randomizable. We seek a re-randomizable implemen-
tation of this scheme by using building blocks that are “sufficiently homomor-
phic” to support the randomization that we need. Specifically, we rely on the
oblivious-transfer protocol of Naor-Pinkas/Aiello-Ishai-Reingold [13,2], and on
the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky [4], the security of
both of which is equivalent to the decisional Diffie-Hellman assumption. Below
we briefly summarize some properties of these building blocks; a slightly longer
description (and the definitions of OT) can be found in the full version of this
paper [8].
Re-randomizable oblivious transfer. The protocol in [13,2] is a two-
message protocol. The receiver that has a choice bit σ ∈ {0, 1} sends the first
message m1 ← OT 1(σ), the sender that has two bits γ0, γ1 ∈ {0, 1} replies with
m2 ← OT 2(m1, γ0, γ1), and the receiver can recover the bit γσ from m2 and
the state that it keeps. Receiver security means that OT 1(0), OT 1(1) are indis-
tinguishable, and sender security means that OT 2(m1, γ0, γ1) can be simulated
knowing only m1 and γσ. We note that if the sender has two strings γ0, γ1,
(rather than just two bits) then it can use the same m1 from the receiver and
send many m2’s in reply, one for every bit position in the input vectors.

Another property we use is that the protocol from [13,2] is re-randomizable:
given m1, m2, anyone can re-randomize the reply, computing another random
m′2 from the distribution OT 2(m1, γ0, γ1) (even without knowing γ0, γ1).
Key and plaintext additively homomorphic encryption. The BHHO
scheme [4] is a semantically secure public key encryption scheme where the se-
cret key is a string s ∈ {0, 1}� and the plaintext is also a string x ∈ {0, 1}n.
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(In our application we use n = 2�.) The public key and ciphertexts are vectors
of elements over a group of some prime order q.

The BHHO scheme has the following “additively homomorphic” property: Let
T, T ′ be two known affine transformations on vectors over Zq that map 0-1 vectors
to 0-1 vectors of the same length. Then, given a public key pk corresponding
to some secret key s and a ciphertext c ∈ Enc(pk; x), anyone can generate a
random public key pk

′ corresponding to T (s) and a random ciphertext c′ ∈
Enc(pk′; T ′(x)). In particular, this means that anyone can XOR known strings
Δ, Δ′ into s and x, and also anyone can permute the bits in either s or x (or
both) according to known permutations.

5.1 Our Construction

Our construction closely follows Yao’s original garbled circuit construction [19].
The client (Alice) on input x = 〈x1, . . . , xn〉, sends n first messages of the OT
protocol from above, using her input bit xi as the choice bit for the i’th message,
m1[i]← OT 1(xi).

The server (Bob) has a boolean circuit with fan-in-2 gates. Bob’s circuit has
n input ports, some number of output ports, and some number of internal gates.
Each wire in the circuit is therefore either an input wire (connecting an input port
to some internal gates and/or output ports), or a gate-output wire (connecting
the output of one internal gate to some other internal gates and/or output ports).
We stress that we allow the same wire to be used as input to several internal
gates or output ports.2

Bob receives from Alice the n OT first messages, m1[1], . . . , m1[n]. He begins
by choosing at random two �-bit labels Lw,0, Lw,1 for every wire w, each having
exactly 
�/2� 1’s. (Here � is the length of the BHHO secret key.) For each input
wire wi, corresponding to Alice’s first message m1[i], Bob computes the OT
second message for the two labels on the corresponding input wire, m2[i] ←
OT 2(m1[i]; Lwi,0, Lwi,1).

Then, for an internal fan-in-2 gate (computing the binary operation �), Bob
computes four pairs of ciphertexts as follows: Let w1, w2 be the two input wires
for this gate and w3 be the output wire. Bob chooses four fresh random 2�-bit
masks δi,j for i, j ∈ {0, 1} and computes the four pairs:

{(
EncLw1,i(δi,j), EncLw2,j ((Lw3,k|0�)⊕ δi,j)

)
: i, j ∈ {0, 1}, k = i � j

}
(1)

Namely, Bob uses the secret key Lw1,i to encrypt the mask δi,j itself, and the
other secret key Lw2,j to encrypt the masked label (concatenated with � zeros).
The “gadget” for this gate consists of the four pairs of ciphertexts from Eq. (1)
in random order. The garbled circuit that Bob sends back to Alice consists of
the n OT second messages m2[1], . . . , m2[n], and the gadgets for all the gates in
the circuit (which we assume include an indication of which wire connects what
2 We assume that the two input wires at each gate are always distinct. This can be

enforced, e.g., by implementing a fan-in-1 gate (i.e., NOT) via a fan-in-2 XOR-with-
one gate.
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gates). In addition, for each output wire w with labels Lw,0 and Lw,1, Bob sends
an ordered pair of public keys, the first corresponding to Lw,0 and the second to
Lw,1. (We chose this particular mapping to enable re-randomization.)

Upon receiving this garbled circuit, Alice first uses the recovery procedure of
the OT protocol to recover one of the labels for each input wire. Then she goes
over the garbled circuit gate by gate as follows: For a fan-in-2 gate where she
knows the labels L1, L2 for the two inputs, she uses the key L1 to decrypt the
first component in each of the four pairs and uses the key L2 to decrypt the
second component of the four pairs. Then she XORs the two decrypted strings
from each pair, and if any of the resulting strings is of the form L∗|0� then she
takes L∗ to be the label of the output wire. (If more than one string has the
form L∗|0 then Alice takes the first one, and if none has this form then she sets
L∗ = 0�.) Upon recovering a label on an output port, she checks if this label
corresponds to the first or the second public keys that were provided for this
port, outputting zero or one accordingly. (Or ⊥ if it does not correspond to any
of them.) The proof of the following theorem is very similar to [12], and is given
in the full version.

Theorem 6. The protocol from above, using the BHHO encryption scheme, en-
joys both client and server privacy, under the DDH assumption.

Remark: balanced secret keys. We note that the BHHO scheme is used here
with secret keys that have exactly �/2 1’s in them, rather than with completely
uniform secret keys. This is used for the purpose of re-randomization, as de-
scribed in Section 5.2. We note that this variant of BHHO is also semantically
secure: In fact, Naor and Segev proved that under DDH, the BHHO scheme is
semantically-secure for every secret-key distribution with sufficient min-entropy
(cf. [14, Sec 5.2]). We use this stronger result in our proof of the re-randomization
property in Section 5.2.

5.2 Re-randomizing Garbled Circuits

We proceed to show how garbled circuits from above can be re-randomized.
We begin by observing that a simple re-randomization method that only XORs
random masks into the labels does not work: Observe that the re-randomizer
does not know which of the two labels on a wire was used as key (or input)
in what ciphertext, so it cannot use two different masks to randomize the two
different labels on a wire. Rather, it can only apply the same mask Δw to both
labels on a wire. But this is clearly not sufficient for randomization, since it
leaves the XOR of the two labels on each wire as it was before.

Moreover, such “partial randomization” is clearly insecure in our application:
Note that the predecessor of a node knows the two “old labels” for every wire in
its circuit, including the labels for the output wires (which are the current node’s
input wires). Also, the receiver (Alice) would learn one of the “new labels” on
these wire upon evaluation. Hence between the predecessor and Alice, they will
be able to reconstruct both new labels for every input, thus un-garbling the
circuit of the current node.
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To overcome this problem, we rely on stronger homomorphic properties of
BHHO: Namely, viewing keys and plaintexts as vectors, it is homomorphic with
respect to any affine function over Zq. This means, in particular, that it is ho-
momorphic with respect to permutations (i.e., multiplications by permutation
matrices). Namely, we can transform a ciphertext EncL(L′) into Encπ(L)(π′(L′))
for any two permutations π, π′ of the bits. We therefore work with balanced
secret keys that have exactly �/2 1’s, and use permutations to randomize them.

Note that in the attack scenario from above, where a predecessor colludes
with the recipient, they will now know the old labels L, L′, and also one new
label, computed as π(L). In Lemma 1 we show that given these three values, the
other new label π(L′) still has a lot of min-entropy, provided that the Hamming
distance between L, L′ is not too small. In the honest-but-curious model, L and
L′ will be about �/2 apart, hence π(L′) will have min-entropy close to � (see
Lemma 1 below). The Naor-Segev result [14] then implies that it is safe to use
π(L′) as a secret key, which is indeed the way that it is used in the re-garbled
circuit. Putting all these arguments together, we have the following theorem:

Theorem 7. Under the DDH assumption, the BHHO-based protocol from above
is computationally re-randomizable.

The permutations lemma. Let HW�,k ⊆ {0, 1}� denote the set of all �-bit
strings with Hamming weight exactly k, and also let S� denote the set of all
permutations over � elements. Assume that � is even from now on. The lemma
below shows that for two strings L1 and L2, chosen uniformly at random from
HW�,�/2, and a random permutation π : [�] → [�], the string π(L2) has large
residual min-entropy even given L1, L2 and π(L1). For the lemma below, let
H̃∞(X |Y ) be the average min-entropy of X given Y (cf. [6]), that is

H̃∞(X |Y ) def= − log E
y←Y

(
max

x
Pr[X = x|Y = y]

)
= − log E

y←Y

(
2−H∞(X|Y =y)

)

Lemma 1. Let L1, L2 ∈R HW�,�/2, and π ∈R S� be uniformly random. Then:

H̃∞
(
π(L2) | L1, L2, π(L1)

) ≥ �− 3
2

log �

The proof is in the full version. It follows easily from the observation that given
L1, L2 and π(L1), the string π(L2) is distributed uniformly from among all
strings in HW�,�/2 whose Hamming distance from π(L1) equals the Hamming
distance between L1 and L2. ��
Acknowledgments. We thank Yuval Ishai for several inspiring discussions.
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