
A Zero-One Law for Cryptographic Complexity

with Respect to Computational UC Security�

Hemanta K. Maji1, Manoj Prabhakaran1, and Mike Rosulek2

1 Department of Computer Science, University of Illinois, Urbana-Champaign
{hmaji2,mmp}@uiuc.edu

2 Department of Computer Science, University of Montana
mikero@cs.umt.edu

Abstract. It is well-known that most cryptographic tasks do not have
universally composable (UC) secure protocols, if no trusted setup is avail-
able in the framework. On the other hand, if a task like fair coin-tossing
is available as a trusted setup, then all cryptographic tasks have UC-
secure protocols. What other trusted setups allow UC-secure protocols
for all tasks? More generally, given a particular setup, what tasks have
UC-secure protocols?

We show that, surprisingly, every trusted setup is either useless
(equivalent to having no trusted setup) or all-powerful (allows UC-secure
protocols for all tasks). There are no “intermediate” trusted setups in
the UC framework. We prove this zero-one law under a natural in-
tractability assumption, and consider the class of deterministic, finite,
2-party functionalities as candidate trusted setups.

One important technical contribution in this work is to initiate the
comprehensive study of the cryptographic properties of reactive function-
alities. We model these functionalities as finite automata and develop
an automata-theoretic methodology for classifying and studying their
cryptographic properties. Consequently, we completely characterize the
reactive behaviors that lead to cryptographic non-triviality. Another con-
tribution of independent interest is to optimize the hardness assumption
used by Canetti et al. (STOC 2002) in showing that the common ran-
dom string functionality is complete (a result independently obtained by
Damg̊ard et al. (TCC 2010)).

1 Introduction

Cryptographic tasks provide a fascinating arena to study the interplay of infor-
mation, interaction and computation. Each cryptographic task has a fundamen-
tal “information-control fingerprint” that specifies how various parties involved
in the task can learn and/or influence all the pieces of information in the system.
This work forms part of a study that aims to systematically understand abstract
cryptographic tasks, classifying them by how “cryptographically complex” their
fingerprints are.
� Work supported by NSF grants CNS 07-16626 and CNS 07-47027.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 595–612, 2010.
c© International Association for Cryptologic Research 2010

596 H.K. Maji, M. Prabhakaran, and M. Rosulek

A crisp way to capture the information-control fingerprint of a cryptographic
task is by modeling it as a program carried out by a third party. This program is
simply called a functionality. Modeling tasks this way conveniently separates
the security definition from the information-control fingerprint.1 Understanding
and classifying such functionalities has been the subject, implicitly or explicitly,
of a wealth of literature in theoretical computer science.

In this work, we continue the study of cryptographic complexity of functional-
ities from [30,25,26], which explicitly define cryptographic complexity classes us-
ing various notions of reductions among functionalities. Our focus in this work is
on cryptographic complexity defined using security in the universal composition
(UC) framework.2 We show that under standard computational intractability
assumptions, the universe of functionalities collapse to just two distinct levels of
cryptographic complexity.

For simplicity, first we describe our result in terms of standard UC security
terminology, and then summarize its implications for the theory of cryptographic
complexity developed in [30,25,26].

Main Result. The standard UC framework defines security in a plain model in
which protocols are allowed access only to communication channels. However, the
framework also allows protocols to use access to a trusted setup functionality, in
what is called a hybrid model. It is known that in the plain model, very few tasks
admit UC-secure protocols [6,30]. On the other hand, in certain hybrid models
(say, those corresponding to oblivious transfer or fair coin-tossing functionalities
being used as a trusted setup) all tasks admit UC-secure protocols [7,17].

In this work we classify the strength of a functionality in terms of how useful
it is as a trusted setup in a UC hybrid model. We prove the following surprisingly
simple classification that was conjectured in [30] — under a natural intractability
assumption, every deterministic, finite, 2-party functionality is either:

Trivial: These functionalities already have secure protocols in the plain model.
As such, they are useless as trusted setups; they admit no more tasks to have
UC-secure protocols than in the plain model. Or,

Complete: When any of these functionalities is used as a trusted setup, all
tasks have UC-secure protocols.3

1 For instance, the commitment functionality is specified the same way for various
security settings, independently of considerations in defining security; in contrast,
traditional specification of commitment cannot be divorced from how binding and
hiding are defined, and results in different notions (like statistically binding commit-
ment, or statistically hiding commitment) which are not formally captured as the
same functionality.

2 While using UC security provides a fine resolution picture of cryptographic com-
plexity, weaker security notions also yield meaningful complexity classes. For the
computationally unbounded setting, semi-honest and standalone (as well as UC)
security notions were considered in [25]. For the computationally bounded setting,
results analogous to ours for these weaker security notions follow from the classical
results in [33] and [12]. See related work.

3 Onlywell-formed functionalities are considered here,without any fairness requirement.

A Zero-One Law for Cryptographic Complexity 597

We call this classification our zero-one law. In other words, every such function-
ality is at the extremes of usefulness: either trivial or complete. If a functionality
is unrealizable in the plain model, then it is all-powerful if used as a trusted
setup.

We considerUCsecurity against probabilistic, polynomial-time adversarieswho
corrupt parties statically (non-adaptively). In sharp contrast, when considering
the computationally unbounded setting, [25] shows that there are infinitely many
setups that allow realization of infinitely many distinct classes of functionalities.

The intractability assumption we use is the existence of a protocol for oblivi-
ous transfer secure against standalone semi-honest PPT adversaries (sh-OT as-
sumption). Interestingly, this intractability assumption is both necessary and
sufficient. Then, our main result is formally stated as:

Main Theorem: The sh-OT assumption is true if and only if every
deterministic, finite, 2-party functionality is either trivial or complete.

The class of deterministic, finite, 2-party functionalities is defined formally in
Section 3. Most notably, this class includes reactive functionalities, which receive
inputs, give outputs, and keep internal state over many rounds of interaction with
the parties. An important contribution in this work is to initiate an “automata-
theoretic” study of reactive functionalities. Previous works on multi-party com-
putation are almost exclusively restricted to SFE functionalities, except for the
positive (i.e., triviality) results like in [12], which give secure realization of re-
active functionalities.4 In contrast, we develop techniques to use an arbitrary
reactive functionality in a cryptographic protocol.

Cryptographic Complexity and Intractability. As alluded to above, one way to
think about our main result is by taking a complexity-theoretic view of secure
multi-party computation. Say that a functionality F reduces to another function-
ality G (written F �ppt G) if there is a UC-secure protocol for F in the G-hybrid
model. This reduction is reflexive and transitive (for standard notions of secure
reductions), and is a natural complexity-theoretic reduction to compare the rela-
tive “cryptographic complexities” of cryptographic tasks. Throughout this work,
we use this convenient �ppt notation.

Under this interpretation, “completeness” (as defined above) indeed refers to
�ppt-completeness in the complexity-theory sense. The zero-one law shows that
there are only two degrees of the �ppt reduction.5

While we show that the sh-OT assumption is both necessary and sufficient
for the entire zero-one law, the sh-OT assumption may not be necessary for
all individual reductions of the form F �ppt G. In a companion paper [26], we
also classify which intractability assumptions are necessary for reductions of the
form F �ppt G. Every reduction of the form F �ppt G that we classify turns
4 An important exception is [30] which gives a characterization of trivial functionalities

which is applicable to reactive functionalities as well; however, [30] does not offer an
explicit combinatorial or automata theoretic interpretation of their characterization.

5 The degree of G under reduction � is the set {F | F � G}.

598 H.K. Maji, M. Prabhakaran, and M. Rosulek

out to be unconditionally true or false, or else exactly equivalent to a well-known
computational assumption (the sh-OT assumption or the existence of one-way
functions). This suggests the possibility of defining intractability assumptions in
terms of reductions of the form F �ppt G. Such assumptions are of a fundamental
nature for secure multi-party computation, since they are derived directly from
the definitions of functionalities themselves.

Our results in this work imply that the sh-OT assumption is the maximal
assumption that can emerge in this framework; we conjecture that the existence
of one-way functions is the minimal assumption. A more intriguing question is
whether there are other intermediate assumptions. Put differently, one likely
outcome of this line of investigation is to discover new cryptographically inter-
esting worlds in “Impagliazzo’s multiverse” [15] between Cryptomania (which we
interpret as a world where the sh-OT assumption is true) and Minicrypt (where
only one-way functions exist), or to show there are none.

Related Work. There is a large body of work on complexity of 2-party func-
tionalities in the computationally unbounded setting [18,8,24,2,19,20,21,23,25].
In the computationally bounded setting, the classical results of [33,12] imply
that all functionalities are trivial (i.e., realizable without relying on any other
functionality) for the semi-honest and standalone security notions respectively,
under the sh-OT assumption. Our work could be considered a refinement of these
early results, but for the UC security notion.

Beimel et al. [3], who showed (in the probabilistic polynomial-time setting, and
for the special case of SFE functionalities in which only one party receives the
output) that the sh-OT assumption is implied by the existence of a semi-honest
secure protocol for any functionality that is not unconditionally trivial. [13]
partially extends this result beyond finite functionalities, but is still restricted
to the case of one-sided output. (In the full version, we show that, as in [13],
there is a gap between triviality and completeness when our results are extended
to unbounded-memory functionalities.)

The above results do not apply in a security setting with an arbitrary envi-
ronment. Since Canetti introduced the Universal Composition (UC) framework
[4], there have been several works on cryptographic complexity of functionalities
in this setting. In particular, [5,6,30] characterize trivial functionalities. (For fi-
nite functionalities this class remains the same in computationally bounded and
unbounded settings.)

Less was known about which functionalities were complete under UC-secure
reductions. Results in [18,22,17] establish the completeness of oblivious trans-
fer and many other non-reactive functionalities, for computationally unbounded
adversaries. In the polynomial-time setting, the well-known CLOS construction
[7] demonstrates the completness of the “coin-tossing” functionality, assuming
enhanced trapdoor permutations and dense cryptosystems. Our result improves
this by using the minimal sh-OT assumption, but more significantly by show-
ing the completeness of every non-trivial deterministic functionality. (However,
[7] proves completeness against adversaries which corrupt parties adaptively,
whereas we consider only static security.) Independently of our work, Damg̊ard

A Zero-One Law for Cryptographic Complexity 599

et al. [9] also show the completeness of the coin-tossing functionality under the
minimal sh-OT assumption, as we do. Their construction is similar in spirit to
our protocol for the same task, though more complicated due to the use of an in-
termediate “public-key infrastructure” functionality. Our current protocol is the
result of a simplification to a protocol in an earlier draft of this work, motivated
by their recent result.

2 Overview of Our Techniques

In proving our main result, the more interesting direction is to show that sh-OT
assumption implies the zero-one law. That is, we must construct secure protocols
which demonstrate the completeness of every non-trivial functionality, proving
security using only the sh-OT assumption. We do this in a series of steps, outlined
in Figure 1.

Nontrivial
function-
alities

Nontrivial
SFE func-
tionalities

Fcc

Fot

Fxor

Fextcom Fcom

any F
[k88,ips08]

Theorem 3

OWF

Theorem 2

sh-OT

Theorem 3

OWF

[gmw87,clos02] sh-OT

Theorem 4

Theorem 1

Fig. 1. Overview of protocol constructions. An arrow from functionality G to F denotes
a secure protocol for F using ideal access to G (that is, F � G). Arrows not labeled by
a computational assumption indicate unconditionally secure protocols.

Approach: Behavioral Components of Functionalities. Our approach of prov-
ing the zero-one law centers around identifying four distinct behaviors of func-
tionalities that lead to non-triviality. For each behavior we associate a familiar
“canonical” functionality which is non-trivial for only that reason:
– Allowing simultaneous exchange of information, exemplified by the boolean

xor functionality Fxor. In this functionality, one party’s output completely
determines the other’s input. Thus its cryptographic non-triviality stems not
from hiding information, but ensuring that both party’s inputs are chosen
independent of the other’s.

– Selectively hiding one party’s inputs from the other, exemplified by a simple
SFE functionality we introduce called simple cut-and-choose (Fcc). In this

600 H.K. Maji, M. Prabhakaran, and M. Rosulek

functionality, Alice gives a bit as input, and Bob gives an input indicating
whether he wants to learn Alice’s bit or not. Furthermore, Alice is told
whether Bob learned her bit. Thus Fcc embodies selective hiding of Alice’s
input alone.

– Selectively hiding both party’s inputs simultaneously, exemplified by the(
2
1

)
-oblivious transfer functionality Fot. Recall that Fot hides meaningful

information about both parties from the other.
– Holding meaningful information hidden in internal memory between rounds,

exemplified by the commitment functionality Fcom. This functionality holds
the sender’s data in memory between the commit phase and reveal phase.
This component can appear only in a reactive functionality.

To show the zero-one law, we do the following: First, we formally define what
it means for a functionality to exhibit each of these four fundamental behav-
iors. Next, we show that these four behaviors are in fact an exhaustive char-
acterization of non-triviality: in Theorems 1 and 4, we show that a reactive
functionality G is non-trivial if and only if F � G unconditionally for some
F ∈ {Fxor,Fcc,Fot,Fcom}.6 In other words, every non-trivial functionality must
exhibit at least one of the above four behaviors. Finally, we show that each of
the four canonical functionalities (Fxor, Fcc, Fot, Fcom) is complete under the
sh-OT assumption.

Since our definitions of these four component behaviors are all combinatorial,
we are able to give the first complete combinatorial characterization of non-
triviality (and consequently completeness) for reactive functionalities. Further,
this characterization holds even with respect to computationally unbounded
adversaries.

Non-Reactive Behaviors (Section 4). Of the four behaviors enumerated above,
only the Fcom behavior is exclusive to reactive functionalities. For the other three,
which can apply to non-reactive functionalities, we give formal combinatorial
definitions in terms of the input/output function table. Then it suffices to show
that any non-reactive functionality not meeting one of these three criteria is in
fact trivial (Theorem 1).

Next, we show that Fxor, Fcc, and Fot are each complete. It is well-known
that Fot is (unconditionally) complete, even under the strong notion of reduc-
tion that we consider [18,17]. For the other two cases, we use the fact that
the commitment functionality Fcom is complete in the UC framework under the
sh-OT assumption. This follows directly from the well-known CLOS construction
[7]. Thus, to complete our claim, it suffices to show that the sh-OT assumption
implies Fcom �ppt Fxor and Fcom �ppt Fcc.

We give new commitment protocols in the Fxor- and Fcc-hybrid models (The-
orems 2 and 3), secure under the sh-OT and OWF assumptions, respectively. We
6 Indeed just Fxor and Fcc by themselves are an exhaustive characterization of non-

triviality, as they can both be unconditionally obtained from Fot and Fcom. However,
we include all four functionalities in our list of fundamental behavioral components
because we prove the complete of each one differently.

A Zero-One Law for Cryptographic Complexity 601

note that [7] shows (implicitly) that Fxor is complete;7 however, their protocol
focuses on achieving adaptive security and, as such, depends on a hardness as-
sumption that is not known to be implied by sh-OT assumption. Our new pro-
tocol achieves static security using a new protocol and under the minimal sh-OT
assumption.

Reactive Behaviors (Section 5). To complete the classification of reactive func-
tionalities, we show that every reactive functionality is either trivial, contains
a non-reactive behavioral component (Fxor, Fcc, Fot), or else can be used
for a commitment (Fcom) protocol (Theorem 4). As mentioned above, Fcom is
complete under the sh-OT assumption, thus we establish the exhaustiveness of
the four behavioral components, as well as the completeness of their respective
canonical functionalities.

The bulk of our technical contributions for reactive functionalities involves
formally defining this fourth behavioral component; namely, defining when an
arbitrary functionality keeps meaningful information about a party’s input hid-
den in memory between rounds. We model reactive functionalities as finite-state
automata, and initiate an automata-theoretic analysis of their input/output be-
havior. This classification involves identifying states and transitions of an au-
tomaton which have specific cryptographic consequences, and then showing how
such features can be leveraged to give a protocol for Fcom.

3 Preliminaries

Model and Security Definition. Our security definitions are grounded in the
framework of Universal Composable (UC) security [4], with which we assume
the reader has slight familiarity. For concreteness we consider the model used in
[30], which in turn is based on that in [29]. However, we emphasize that very few
specifics of the model (including ideal functionalities, an interactive environment
and simulation based security) are important for the results.

The UC model allows a large class of MPC functionalities, not all of which
are “natural.” For instance, a functionality that announces the identities of the
corrupt parties is not natural; a reactive functionality which introduces a race
condition depending on the order in which it receives inputs from parties is
also not natural. Following the convention in all previous works (to the best
of our knowledge), we do not consider such functionalities. We note that the
functionalities we consider do not offer a guarantee of output fairness; that is,
they allow the adversary to control the delivery of outputs.

We write F � G if there is a protocol that securely realizes F in the “G-
hybrid model;” see [4] or [29] for a formal definition. In the G-hybrid model,
the parties in the protocol can interact with any number of (asynchronous)
copies of G, and can access G in any “role”. This second convention is crucial
to our results (see Section 7). We consider only efficient protocols, but make
7 They show that the coin-tossing functionality, for which there is an elementary pro-

tocol using Fxor, is complete.

602 H.K. Maji, M. Prabhakaran, and M. Rosulek

a notational distinction between unconditionally (statistically) secure protocols
(denoted by �stat) and protocols whose security depends on a computational
assumption (denoted by �ppt). As is standard, we require security against active
(i.e., malicious) adversaries. However, as we point out in Section 7, our results
extend to a stronger definition where security is required against both active and
semi-honest adversaries.8

By default, we also allow protocols access to a communication channel. Fol-
lowing [30], we consider the natural model of a private communication channel,
in which parties can send fixed-length messages (with the adversary controlling
delivery). The choice of public vs. private channel is not crucial to our results
(see Section 7).

All results in this work are restricted to static corruption (where the adversary
has to corrupt any parties before the protocol begins). In fact, we leave open the
possibility that our main theorem breaks down in the case of adaptive corruption.

Classes of functionalities. In this work we restrict our attention to finite, de-
terministic, 2-party, reactive functionalities. We formally model such func-
tionalities as finite automata. Each state transition is labeled by a tuple in
X × Y × Z × Z, where X , Y , and Z are finite sets. A transition from q to
q′ with label (x, y, s, t) means that upon receiving input x from Alice and y from
Bob in state q, the functionality will deliver output s to Alice and t to Bob, and
change to state q′. We require the automaton to be deterministic; that is, for
every state q and every (x, y) ∈ X × Y , there is at most one transition leaving
q whose label begins with (x, y). We consider an asynchronous network setting
in which the adversary has control over the timing of input/output delivery. In
Figure 2 we give an example of how the (reactive) commitment functionality
Fcom can be expressed in such a way.

We say that a functionality is a secure function evaluation (SFE; or non-
reactive) functionality if it engages only one round of interaction; that is, all
transitions leading from the start state lead to a dead state with no transitions.

q0start

q1

q2

q3

(“commit 0”,⊥,⊥,committed)

(“commit 1”,⊥,⊥,committed)

(reveal,⊥,⊥, “reveal 0”)

(reveal,⊥,⊥, “reveal 1”)

Fig. 2. Commitment functionality Fcom modeled as a deterministic finite functionality

8 Note that when considering security against semi-honest adversaries, the simulator
must also be semi-honest.

A Zero-One Law for Cryptographic Complexity 603

Alternatively, an SFE functionality is completely specified by a pair of functions
(fA, fB), where Alice’s output is fA(x, y) and Bob’s output is fB(x, y).

The sh-OT assumption. The primary intractability assumption we consider is
the existence of a protocol for Fot secure against semi-honest, PPT adversaries
(sh-OT assumption, for short). It is possible to express this assumption using
the definition of UC security restricted to semi-honest adversaries (in both the
real and the ideal executions). However, we point out that the traditional (stan-
dalone) security definition is equivalent to the UC security definition, since the
simulation required by semi-honest security does not, and need not, extract the
inputs of the corrupt players; it simply uses the input given by the environment.

Some of our protocol constructions additionally rely on statistically binding
(standalone secure) commitment schemes, pseudorandom generators, (standalone
secure) witness-indistinguishable proofs or zero-knowledge proofs of knowledge
for NP. All of these primitives have well-known constructions assuming the exis-
tence of one-way functions [27,14,10]. One-way functions are in turn implied by
the sh-OT assumption [16].

4 Zero-One Law for Non-reactive Functionalities

Three “Canonical” Non-Reactive Functionalities. The following three SFE func-
tionalities exemplify the three different behaviors that lead to cryptographic
non-triviality for non-reactive functionalities:

Fxor (exclusive-or): Alice gives input x ∈ {0, 1} and Bob gives input y ∈ {0, 1}.
Both parties receive output x⊕ y.

Fcc (simple cut-and-choose): Alice gives input x ∈ {0, 1} and Bob gives input
y ∈ {0, 1}. If y = 0, then both parties receive output x. If y = 1, then
both parties receive output 2. Thus, Bob decides whether to learn Alice’s
bit, while Alice always learns Bob’s choice.

Fot (oblivious transfer): Alice gives inputs x0, x1 ∈ {0, 1} and Bob gives input
y ∈ {0, 1}. Bob receives output xy and Alice receives output ⊥.

We show that these three fundamental behaviors completely characterize non-
triviality (for non-reactive functionalities), as follows:

Theorem 1. Let F be an SFE functionality. Then F is non-trivial if and only
if Fxor �stat F or Fcc �stat F or Fot �stat F .

Proof (Sketch). (⇐) Each of Fxor, Fcc, and Fot is unconditionally non-trivial,
from the characterization of trivial SFE functionalities in [30].

(⇒) Kraschewski and Müller-Quade [22] identify a 2 × 2 minor within the
function table of an SFE, which generalizes the (symmetric-output) boolean or

functionality 0 1
1 1 that is known to be complete. They show that an SFE F can

be used to construct an unconditionally UC-secure protocol for Fot if and only
if F contains such a minor.

604 H.K. Maji, M. Prabhakaran, and M. Rosulek

Similarly, we also identify another important 2×2 minor called a generalized-
cc minor. A minor a generalized-cc if, when restricted to the minor, one party
can choose whether to learn the other’s input, and this choice is revealed to the
other party in the function’s output. We show that if F has such a minor, then
the protocol in which the parties simply restrict their inputs to that minor while
accessing F is a UC-secure protocol for Fcc.9

Finally, it is easy to see that if F does not have either kind of 2 × 2 minor
mentioned above, then F must simply be (equivalent to) a function that takes
inputs x ∈ X from Alice and y ∈ Y from Bob, then outputs (x, y) to both
parties. If max{|X |, |Y |} ≥ 2, then there is an elementary UC-secure protocol
for Fxor in the F -hybrid model. Otherwise, F is trivial: the protocol in which
one party simply sends their input to the other party is a UC-secure protocol
for F (without any set-up).

Completeness of the Three Canonical Non-Reactive Functionalities. Since Fot is
unconditionally complete (even with respect to UC secure protocols) [18,17], and
the commitment functionality Fcom is complete under the sh-OT assumption [7],
it suffices to prove the following two theorems:

Theorem 2. If the sh-OT assumption is true, then Fcom �ppt Fxor.

Proof (Sketch). We first observe that the coin-tossing functionality Fcoin
10 has

an elementary, unconditionally secure protocol in the Fxor-hybrid model. Thus
it suffices to show that Fcom �ppt Fcoin. The well-known CLOS construction [7]
proves exactly this; however, their focus was on achieving adaptive security, and
their protocol relied on a stronger computational assumption than the sh-OT
assumption. Thus we must use an entirely different approach for achieving Fcom

(with static security) from Fcoin. We sketch an overview of our protocol below:
Suppose ψsh is the semi-honest protocol for Fot guaranteed by the sh-OT

assumption. We suppose that the sender in ψsh provides two bits (x0, x1), the
receiver provides a bit y, and the receiver learns xy .

Our commitment protocol is as follows, when Alice is committing to b ∈ {0, 1}.
First, both parties use Fcoin to generate a sequence of random coins σ. The
sender Alice and receiver Bob interact in an instance of ψsh, with Alice using
inputs (x0 = 0, x1 = b), and Bob using input y = 0. To ensure that both parties
provide inputs of the required form, we “compile” the ψsh subprotocol using
a variant of the standard GMW compiler [12]. Unlike the GMW compiler, at
each step we make the parties give a witness-indistinguishable proof that either
they are following the protocol honestly with the appropriate inputs, or the
public coins σ are from a pseudorandom distribution. In the reveal phase, Alice

9 Note that, in general, restricting inputs to a minor of F does not give a secure
protocol (against malicious adversaries) for the SFE corresponding to that minor,
since a malicious adversary may send inputs to F outside of the prescribed minor.

10 Fcoin is a functionality which, upon activation, samples an unbiased coin b← {0, 1}
and outputs it to both parties. It does not fall in our class of deterministic finite
functionalities, but we use it as an intermediate step in our protocol construction.

A Zero-One Law for Cryptographic Complexity 605

gives a witness-indistinguishable proof that either σ was from a pseudorandom
distribution, or all her messages in the ψsh subprotocol were consistent with her
having input x1 = b.

In the real interaction, σ is generated honestly using Fcoin and is therefore in
the pseudorandom distribution with negligible probability. Thus the GMW-style
compilation ensures that both parties are executing the ψsh subprotocol honestly
as stated. Then applying the semi-honest security of ψsh, we see that Bob learns
nothing about b in the commit phase, and Alice can only open the commitment
to the value of b that she used in the commit phase.

However, when the simulator is corrupt it can choose σ from a pseudorandom
distribution. If Alice is corrupt, the simulator can play the role of Bob using
input y = 1 to the ψsh subprotocol, while still giving convincing GMW proofs.
By the correctness of the ψsh protocol, the simulated Bob obtains x1 = b from
ψsh (i.e., the simulator extracts b), and by the security of ψsh, the simulation is
indistinguishable from the real interaction.

If Bob is corrupt, the simulator can give a commitment to 0 in the commit
phase, but open it to any value in the reveal phase (using the clause in the
witness-indistinguishable proof related to σ). Thus the simulator can successfully
equivocate to a corrupt Bob.

To show that both of these simulations are sound, we must apply the semi-
honest security of ψsh, which is the most delicate part of the proof, since the
simulator exists in the UC setting. We construct a sequence of hybrid interactions
between the real and ideal UC (straight-line) interactions, and show that if
any adversary can distinguish between certain hybrids, then we can construct
a corresponding adversary (possibly using rewinding) which violates the semi-
honest security properties of ψsh. For technical reasons in this part, we require
the interactive proofs to be proofs of knowledge.

Theorem 3. If one-way functions exist, then Fcom �ppt Fcc.

Proof (Sketch). The simulator for a UC-secure commitment protocol has two
main tasks: (1) to extract the committed value from a corrupt sender during the
commit phase, and (2) to give an equivocal commitment to a corrupt receiver
that can then be convincingly opened to any value during the reveal phase.
Our construction of a UC-secure commitment protocol is broken into two ma-
jor conceptual steps, which tackle these two properties in a somewhat modular
fashion.

We first define an intermediate “extractable commitment” functionality called
Fextcom. The complete formulation of Fextcom is highly non-trivial, and is def-
ered to the full version. Fextcom succinctly expresses the requirements of a sta-
tistically binding, computationally hiding commitment scheme (in the traditional
standalone-secure sense) which also admits a straight-line extracting simulator.
We believe that this method of expressing a combination of standalone and uni-
versally composable security properties may be of independent interest. Using a
technique similar in spirit to the

(
2
1

)
-commitments of Nguyen and Vadhan [28],

we show that if one-way functions exist, then Fcom �ppt Fextcom.

606 H.K. Maji, M. Prabhakaran, and M. Rosulek

Thus it suffices to construct a commitment protocol which has a UC extrac-
tion property, but only a standalone-secure hiding property. This commitment
protocol is as follows. To commit to a bit b, Alice first chooses a random bitstring
s and then applies a good linear error-correcting code to obtain a codeword t.
She commits to t using a statistically binding (standalone-secure) commitment
protocol. For each bit ti of t, Alice gives ti as input to Fcc, and Bob chooses
to learn it with some probability. Recall that in Fcc, Alice learns whether Bob
choses to see her input. Alice ensures that Bob only learned sufficiently few bits
of t so that some uncertainty about s remains. This remaining uncertainty can
be deterministically extracted (as a linear function of s), and Alice uses it as a
one-time pad to mask b. She sends the masked b to Bob to complete the com-
mitment phase. In the reveal phase, Alice opens the commitment to t, and Bob
checks for consistency with the bits that he learned in the commit phase.

Intuitively, the protocol is computationally hiding and statistically binding
because the deterministic extraction of the mask is perfect (using a simple linear
function). The only information about the mask is given in a statistically-binding
standalone-secure commitment to t.

However, the simulator provides the interface for Fcc to a corrupt Alice. Con-
sequently, the simulator can see all of Alice’s inputs to Fcc, which are the (pur-
ported) bits of t. Because Bob has a certain probability of revealing each one of the
bits of t and he verifies them against Alice’s statistically binding commitment to
t, we argue that Alice could not supply too many incorrect values to Fcc. In par-
ticular, Alice cannot give more incorrect bits than can be corrected by the error
correcting code, except with negligible probability. Thus the simulator can per-
form a noisy decoding to obtain s and then easily extract b.

5 Classifying Reactive Functionalities

We show that a reactive functionality can be non-trivial only for two simple
reasons: (1) behaving like a non-trivial SFE functionality during a single round,
or (2) using its internal memory in a non-trivial way. Formally defining condition
(2) requires a careful new automata-theoretic analysis of reactive behaviors.
Intuitively, memory is used in a non-trivial way when some part of the memory
is both hidden (has not yet affected its external behavior) and meaningful (may
eventually influence its future external behavior). Such usage of internal memory
is exemplified by the commitment functionality Fcom (between the commit and
reveal phases).

Automata-theoretic Characterization. We develop three new important proper-
ties of reactive functionalities, all defined combinatorially.

Say that an input x̂ dominates another input x if Alice can use x̂ as her
input to F in the first round of interaction, but then convince any environment
that she had really used x. In other words, any behavior that can be induced
by sending x to F in the first round can also be induced by instead sending x̂
and thereafter engaging in some local “translation” protocol. We emphasize that

A Zero-One Law for Cryptographic Complexity 607

Alice must perform this translation online, without knowledge of the inputs that
the environment will provide in future rounds. When x̂ dominates x, Alice can
use x̂ in place of x in the first round without loss of generality. The condition of
x̂ dominating x can be defined directly in terms of the UC security condition.

The input-output behavior of each state in the functionality naturally defines
a corresponding SFE. Take any SFE and say that x ∼ x′ if Alice inputs x and
x′ always induce the same output for Bob. In an SFE, Bob’s output may reveal
information about Alice’s output, but up to ∼-equivalence at most. However,
in a trivial SFE, Bob’s output always reveals exactly the ∼-equivalence class of
Alice’s input. We say that the start state of F is simple if: (1) its associated SFE
is a trivial SFE, and (2) each equivalence class of ∼ (for Alice inputs and Bob
inputs) contains some input that dominates all other inputs in its class.

To understand this definition, suppose the start state of F is simple. Then just
by looking at his own output from the first round, Bob can exactly determine
the ∼-class of the input Alice used. There is some input, say, x̂, which dominates
all Alice inputs in this ∼-class. No matter how the environment instructs Alice
to behave in the future, she could have achieved the same effect if she had used
input x̂ in the first round. Thus, Bob can assume without loss of generality that
Alice in fact used x̂. The same is true for Alice; she can determine, given her
output, an input ŷ for Bob, and assume without loss of generality that Bob
supplied ŷ in the first round.

Thus we can assume without loss of generality that Alice and Bob only use
inputs x̂ and ŷ of this special kind (they dominate their respective ∼-equivalence
classes). We call the transition from the start state on such inputs (x̂, ŷ) a safe
transition. Intuitively, only safe transitions are relevant; furthermore, after a
safe transition, neither party has uncertainty about the functionality’s resulting
state.

We can now state our main automata-theoretic characterization:

Theorem 4. Let F be a deterministic, finite (reactive) functionality. Then the
following are equivalent:
1. F is non-trivial.
2. Fcom �stat F or G �stat F for some non-trivial SFE functionality G.
3. There is a non-simple state in F that is reachable from the start state via a

sequence of safe transitions.

The automata-theoretic properties defined above, and subsequently condition (3)
of this theorem, can be expressed completely combinatorially, giving the first
combinatorial characterization of triviality (and thus completeness) for any class
of arbitrary reactive functionalities.

Proof (Sketch). 2 ⇒ 1 follows from the non-triviality of Fcom.
(1 ⇒ 3) Consider all the states of F reachable via a sequence of safe tran-

sitions; intuitively, these are the only states that matter. If all such states are
simple, then F has the following trivial protocol: repeatedly evaluate the (triv-
ial) SFE corresponding to F ’s current state, using that SFE’s trivial protocol.
Without loss of generality we can assume a safe transition was taken; thus, each

608 H.K. Maji, M. Prabhakaran, and M. Rosulek

party’s output in the round determines the next state of F , and the protocol
can be repeated for each round.

(3 ⇒ 2) Assume that one of the safely reachable states of F is non-simple;
without loss of generality, we can take the start state to be non-simple. The
definition of a simple state requires two conditions, so we consider two cases:
(1) If the start state is non-simple because of its input-output behavior, then
there is an elementary protocol which securely realizes that associated SFE in
the F -hybrid model (simply interact with F for one round only). (2) Otherwise,
the start state is non-simple because there exist two inputs for (by symmetry)
Alice, say x0 and x1, for which x0 ∼ x1 (that is, these inputs always induce the
same output for Bob in the first round), but no Alice input dominates both of
{x0, x1}. In other words, Alice’s first-round input “binds” her to the behaviors
consistent with x0 or to those consistent with x1, but not both.

We formalize this natural connection to commitment by constructing a pro-
tocol for Fcom, as follows. Alice commits to b by sending xb to F in the first
round. The commitment is perfectly hiding since x0 ∼ x1. To reveal, Alice must
convince Bob that in the first round she used an input that dominates xb, since
no input can dominate both x0 and x1.

Suppose x does not dominate x′. Then for every strategy for Alice which uses
input x in the first round, there is some environment that can distinguish between
Alice’s strategy and one which uses input x′ in the first round and thereafter runs
the dummy protocol. Using an automata-theoretic characterization, we show
that these quantifiers can be exchanged: there is a fixed environment such that
for every x not dominating x′ and every Alice strategy that uses input x in the
first round, the environment has a constant probability of “catching” Alice.11

Our commitment protocol instructs Bob to play the role of such an environment
in the reveal phase, sending a sequence inputs to F himself and a sequence of
“challenge” inputs to Alice. Just like in the definition of domination, Alice must
report back to Bob her own purported responses from F , in an online manner. If
Alice’s first-round input did not dominate xb, she is guaranteed to be caught with
constant probability. By repeating this basic protocol in parallel an appropriate
number of times, Bob can be assured of catching an equivocating Alice with
overwhelming probability.

6 Necessity of the sh-OT Assumption

Finally, we show that the sh-OT assumption is not only sufficient but also nec-
essary for the zero-one law to hold.

Theorem 5. If the zero-one law is true, then the sh-OT assumption is true.

11 This environment results in a protocol for Fcom whose worst-case O(k) efficiency
hides very large constants. However, it is usually possible to tailor such a distin-
guishing environment for a particular F to achieve much better efficiency bounds,
resulting in a very practical commitment protocol.

A Zero-One Law for Cryptographic Complexity 609

Proof. If the zero-one law holds, then Fxor is complete, since it is uncondition-
ally non-trivial. Thus Fot �ppt Fxor. Fot has the property that any protocol
that securely realizes Fot (against active adversaries) is also secure against semi-
honest adversaries (see [30] for more details). Hence the given Fot protocol is
secure against semi-honest adversaries, in the Fxor-hybrid model. Since Fxor

has an elementary plain protocol unconditionally secure against semi-honest ad-
versaries, we can compose these two protocols to obtain a plain protocol that
securely realizes Fot against semi-honest adversaries.

More generally, ifF has an unconditionally secure protocol against semi-honest
adversaries, then the �ppt-completeness of F implies the sh-OT assumption.

7 Extensions, Limitations, and Open Problems

We discuss several natural extensions of our main theorem, discussed in greater
detail in the full version:

Strengthening the Reduction. As the definition of a reduction is strengthened,
fewer functionalities reduce to one another. In the extreme, the reduction could
be made so restrictive that no functionality reduces to another. On the other
hand, it is relatively easy to see that the zero-one law still applies as stated in
this work if protocols are given only public channels instead of private channels,
or if security is simultaneously required against both active and semi-honest
adversaries.

If the reduction requires security against computationally unbounded adver-
saries, then the zero-one law breaks down. In fact, there exist infinitely many
distinct intermediate (between trivial and complete) complexities with respect
to this stronger reduction [25].

If the reduction requires parties to use the given ideal functionality with only
fixed roles (i.e., Alice can access F only in the role of Alice), then Fcom
� Fcc

(note that the behavior of Fcc is not symmetric with respect to the two parties),
so the zero-one law does not hold under this strong reduction. This impossibility
highlights the fact that Fcc indeed has rather low complexity, and justifies our
somewhat complicated protocol used to realize Fcom using Fcc.

We leave open the question of whether the zero-one law holds if the reduction
is strengthened to require security against adaptive corruption.

Larger Classes of Functionalities. We restricted our attention to a class of deter-
ministic functionalities with finite memory and inputs. In fact, the zero-one law
does not extend if we relax the restriction on finiteness. Let F be a channel which
accepts an arbitrary-length string x from Alice and sends f(x) to Bob for a fixed
function f . Assuming one-way functions exist, one can construct an f so that
the resulting functionality is neither trivial nor complete.12 The construction

12 Of course, if one-way functions do not exist, then the sh-OT assumption, and subse-
quently the zero-one law, is again false.

610 H.K. Maji, M. Prabhakaran, and M. Rosulek

of this intermediate F is admittedly contrived, and we leave open the impor-
tant problem of identifying the largest “natural” class of unbounded-memory
functionalities that still satisfies the zero-one complexity law.

The other natural way to extend the scope of our results is to consider ran-
domized functionalities. However, very little is known about randomized func-
tionalities, even in the simplest case of SFE functionalities and considering
perfect security against computationally unbounded, semi-honest adversaries;
for comparison, the corresponding characterization for deterministic SFE has
been known for 20 years [24,2].

Optimizing Hardness Assumptions. While our main theorem relies on the min-
imal sh-OT assumption, our use of the assumption itself is non-black-box. In
Theorems 2 and 3 we use interactive proofs of statements regarding various
cryptographic primitives (ultimately derived from the sh-OT assumption). We
do not know whether such non-black-box usage of the assumption is necessary,
although it seems that a fundamentally different approach is required to avoid
the use of interactive proofs.

Acknowledgments

We acknowledge helpful discussions with Ran Canetti, Yuval Ishai, Yehuda Lin-
dell and Amit Sahai, as well as helpful suggestions from anonymous conference
referees. The protocol in Theorem 2 was simplified from its original form in an
earlier manuscript, partly motivated by the recent results of [9].

References

1. Proc. 30th FOCS. IEEE, Los Alamitos (1989)
2. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt,

M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryp-
tography, vol. 2, pp. 65–77. American Mathematical Society, Providence (1989)

3. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version. A unified framework for analyzing security of proto-
cols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS (2001)

5. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

6. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

A Zero-One Law for Cryptographic Complexity 611

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable twoparty
computation. In: Proc. 34th STOC, pp. 494–503. ACM, New York (2002)

8. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy (extended abstract).
In: STOC, pp. 62–72. ACM, New York (1989)

9. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient assumptions
for UC computation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 109–
127. Springer, Heidelberg (2010)

10. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001), Earlier version available on,
http://www.wisdom.weizmann.ac.il/~{}oded/frag.html

11. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM
(ed.) Proc. 19th STOC, pp. 218–229. ACM, New York (1987), See 11, Chap. 7 for
more details

13. Harnik, D., Naor, M., Reingold, O., Rosen, A.: Completeness in two-party secure
computation: A computational view. J. Cryptology 19(4), 521–552 (2006)

14. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999); Preliminary
versions appeared in STOC 1989 and STOC 1990

15. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, pp. 134–147 (1995)

16. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: Proc. 30th FOCS [1], pp. 230–235

17. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner (ed.) [32], pp. 572–591

18. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

19. Kilian, J.: A general completeness theorem for two-party games. In: STOC, pp.
553–560. ACM, New York (1991)

20. Kilian, J.: More general completeness theorems for secure two-party computation.
In: Proc. 32th STOC, pp. 316–324. ACM, New York (2000)

21. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness
in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)

22. Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive
proofs for symmetric, asymmetric and general 2-party-functions, 2008 (2008) (Un-
published Manuscript), http://iks.ira.uka.de/eiss/completeness

23. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in the
it setting with dishonest majority and applications to long-term security (2009)

24. Kushilevitz, E.: Privacy and communication complexity. In: FOCS [1], pp. 416–421
25. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation

problems: The case of 2-party symmetric secure function evaluation. In: Reingold
(ed.) [31], pp. 256–273

26. Maji, H.K., Prabhakaran, M., Rosulek, M.: Cryptographic complexity classes and
computational intractability assumptions. In: Yao, A.C.-C. (ed.) Innovations in
Computer Science, pp. 266–289. Tsinghua University Press, Beijing (2010)

27. Naor, M.: Bit commitment using pseudorandomness 4(2), 151–158 (1991), Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg
(1990)

28. Nguyen, M.-H., Vadhan, S.P.: Zero knowledge with efficient provers. In: STOC,
pp. 287–295. ACM, New York (2006)

http://www.wisdom.weizmann.ac.il/~{}oded/frag.html
http://iks.ira.uka.de/eiss/completeness

612 H.K. Maji, M. Prabhakaran, and M. Rosulek

29. Prabhakaran, M.: New Notions of Security. PhD thesis, Department of Computer
Science, Princeton University (2005)

30. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party com-
putation problems: Classifications and separations. In: Wagner (ed.) [32],
pp. 262–279

31. Reingold, O. (ed.): TCC 2009. LNCS, vol. 5444. Springer, Heidelberg (2009)
32. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
33. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–

167. IEEE, Los Alamitos (1986)

	A Zero-One Law for Cryptographic Complexity with Respect to Computational UC Security
	Introduction
	Overview of Our Techniques
	Preliminaries
	Zero-One Law for Non-reactive Functionalities
	Classifying Reactive Functionalities
	Necessity of the sh-OT Assumption
	Extensions, Limitations, and Open Problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

