
Improved Differential Attacks

for ECHO and Grøstl

Thomas Peyrin

Ingenico, France
thomas.peyrin@ingenico.com

Abstract. We present improved cryptanalysis of two second-round
SHA-3 candidates: the AES-based hash functions ECHO and Grøstl. We
explain methods for building better differential trails for ECHO by in-
creasing the granularity of the truncated differential paths previously
considered. In the case of Grøstl, we describe a new technique, the in-
ternal differential attack, which shows that when using parallel computa-
tions designers should also consider the differential security between the
parallel branches. Then, we exploit the recently introduced start-from-
the-middle or Super-Sbox attacks, that proved to be very efficient when
attacking AES-like permutations, to achieve a very efficient utilization of
the available freedom degrees. Finally, we obtain the best known attacks
so far for both ECHO and Grøstl. In particular, we are able to mount a
distinguishing attack for the full Grøstl-256 compression function.

Keywords: hash function, cryptanalysis, ECHO, Grøstl, AES, internal
differential attack.

1 Introduction

Cryptographic hash functions are very important tools in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. Informally, a hash function H is a function that takes an arbitrarily
long message as input and outputs a fixed-length hash value of size n bits. The
classical security requirements for such a function are collision resistance and
(second)-preimage resistance. Namely, it should be impossible for an adversary
to find a collision (two distinct messages that lead to the same hash value) in
less than 2n/2 hash computations, or a (second)-preimage (a message hashing to
a given challenge) in less than 2n hash computations. Moreover, those primitives
are traditionally used to simulate the behavior of a random oracle [2] and while
the community is divided on such a requirement, in the ideal case an attacker
should not be able to distinguish a hash function from a random oracle.

As many standardized hash functions [41, 31] have been broken a few years
ago [45, 44], the NIST launched in 2008 the SHA-3 competition [33] that will
lead to the future hash function standard. 14 candidates among 51 have been
selected for the second round and many of them (like ECHO [3], Grøstl [14] or
SHAvite-3 [5]) are actually using some parts of the standardized block cipher
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AES [32, 10] as internal primitives or mimicking the structure of this cipher. While
AES-256 can no more be considered as secure in the related-key model [7], the
cryptography community has made important progresses concerning the evalua-
tion of AES-based hash functions security [35, 19, 27, 25, 23, 26, 15]. Those attacks
make an extensive use of the freedom degrees that are available in a hash func-
tion and even provides the best known distinguishing attack against AES-128 [15]
in the known-key model [21, 30]. Much recent analysis of AES-based hash func-
tions has helped to identify the limits of current techniques, but as we show in
this paper, it is possible to improve the differential path building methods used
so far.

Our contributions. In this paper, we improve the best known cryptanalysis
results [1, 18, 27, 26, 15] on two second round SHA-3 candidates: the hash func-
tions ECHO [3] and Grøstl [14]. While we do not provide advances regarding
the freedom degrees optimization, we use the recently introduced Super-Sbox
techniques [15, 28] in order to find pairs of inputs verifying a given differential
path. We then exploit some specific properties of ECHO and Grøstl to derive
very good differential paths. More precisely, we improve the previously known
truncated differential paths for ECHO by reducing the size of the truncated words
considered. This allows us to broaden the differential trail search space, there-
fore increasing our probability to find a good path, but also augmenting the
search complexity. We circumvent this constraint by giving a heuristic method
to prune the potential candidates. Concerning Grøstl, we describe a novel yet
simple cryptanalysis technique: the internal differential attack. It may be applied
for functions using parallel branches that are not sufficiently made distinct. In
that case, the attacker can find input instances (where a classical differential
attack exhibits pairs of inputs) verifying non random properties on the output.
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H M

P 8
E

H’

Grøstl

P

Q

H

M

H’

As a result, we improve the complexity for distinguishing the internal per-
mutation of ECHO from a random 2048-bit permutation for a number of rounds
corresponding to the full 256-bit version. Because of the folding phase after the
permutation application at the end of the ECHO compression function, this at-
tack does not translate into a distinguishing attack for the full ECHO compression
function, nor the hash function itself. We provide also the first distinguishing at-
tack on the full internal permutations for the 256-bit version of Grøstl, which
can be directly derived into a distinguisher on the full Grøstl-256 compression
function. Structural distinguishers (independent of the number of rounds) were
already described in the original submission document [14]. For example, it was
already identified that one can find fixed points or build a distinguisher for the



372 T. Peyrin

Table 1. Summary of results for ECHO, ECHO-SP and Grøstl compression functions.
ECHO-256, ECHO-SP-256, ECHO-512 and ECHO-SP-512 compression functions have 8, 8, 10
and 10 rounds respectively, while Grøstl-256 and Grøstl-512 compression functions
have 10 and 14 rounds respectively. All details of these attacks are given in the extended
version of this article [36].

target rounds
computational memory

type section
complexity requirements

ECHO-256
comp. function

3 264 264 semi-free-start collision1 this paper

4 264 264 distinguisher this paper

ECHO-512
comp. function

3 296 264 semi-free-start collision1 this paper

6 296 264 distinguisher this paper

ECHO-SP-256
comp. function

3 264 264 semi-free-start collision this paper

3 264 264 distinguisher this paper

ECHO-SP-512
comp. function

3 264 264 semi-free-start collision2 this paper

4 264 264 distinguisher this paper

7 256 distinguisher see [26]

Grøstl-256 8 2112 264 distinguisher see [15]

comp. function 9 280 264 distinguisher this paper

10 2192 264 distinguisher this paper
Grøstl-512

11 2640 264 distinguisher this papercomp. function

compression function with the generalized birthday paradox [43]. However, our
results also allow to distinguish the Grøstl compression function from the same
construction when assuming the two internal permutations P and Q as ideal.
This is not the case for the known structural distinguishers since they already
consider the two internal permutations as ideal. Our results are also interesting
because they exploit the specificities of P and Q which is essential in order to
really evaluate the security margin of this hash function in terms of number of
rounds. All the results and the corresponding computation/memory complexities
for ECHO, ECHO-SP (the simple-pipe version of ECHO) and Grøstl are summarized
in Table 1 and available in the extended version of this article [36]. Note that
none of the results described in this article seem to endanger the security of the
ECHO compression function or the Grøstl hash function.

2 Previous Cryptanalysis

In this section, we recall the recent advances regarding cryptanalysis of AES-
like permutations and their specificities. In the rest of the paper, we will use
the start-from-the-middle and Super-Sbox attacks as basic tool for finding input
pairs verifying a given differential path.
1 A semi-free-start collision can be found for the 4-round reduced ECHO-256 or ECHO-

512 compression functions with complexity 2224 computations and 264 memory, if
the salt value can be controlled by the attacker.

2 A semi-free-start collision can be found for the 4-round reduced ECHO-SP-512 com-
pression function with complexity 2224 computations and 264 memory, if the salt
value can be controlled by the attacker.
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2.1 Building Differential Trails with Truncated Differences

Cryptanalysis of AES-based hash functions began with the hash family proposal
Grindahl [20] for which collision attacks have been found [35, 19]. This showed
that truncated differentials [22, 20] are very useful when cryptanalyzing a byte-
oriented primitive such as the AES. Namely, instead of looking at the actual
difference value of a byte, one only checks if a byte contains a difference (active
byte) or not (inactive byte). In particular, this allows the attacker to handle
the non-linear Sboxes quite nicely when building differential trails. On the other
hand, the differential transitions through the linear MixColumns layer will now
be verified probabilistically.

The matrix multiplication underlying the MixColumns transformation on a
r-byte column for AES or Grøstl presents the interesting property of being a
Maximum-Distance Separable (MDS) mapping: the number of active input and
output bytes is always greater or equal to r + 1 (unless there is no active in-
put and output byte at all). When picking random inputs, the probability of
success of a differential transition that meets the MDS constraints through a
MixColumns layer is determined by the number of active bytes in the output.
More precisely, if such a differential transition contains k active bytes in one
column of the output, its probability of success will approximatively be equal
to 2−8×(r−k). For example, a 4 �→ 1 transition for one column of the AES Mix-
Columns layer has success probability of approximatively 2−24. Note that the
same reasoning applies when dealing with the invert function of the MixColumns
layer as well.

2.2 Rebound Attacks

The rebound attack [27] is a new technique for using efficiently the available
freedom degrees. The authors utilize truncated differential paths in which most of
the cost lies in the middle rounds. Then, by using a local meet-in-the-middle-like
technique, the freedom degrees are consumed in the middle part of the differential
path, right where they can improve at best the overall complexity. More precisely,
some rounds in the middle (the controlled rounds) will be verified with only
a few operations on average, while the rest of the path both in forward and
backward direction (the uncontrolled rounds) is fulfilled probabilistically. This
cryptanalysis provides good results [25, 23] and can work without any special
constraint on the differential path. However, the controlled part is limited to
two rounds.

2.3 Start-from-the-Middle Attacks

In [26], the start-from-the-middle attack for AES-like permutations is introduced.
It can be seen as a generalization of the previous technique in the sense that
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the idea is simply to use the freedom degrees for AES-like permutations in the
“most expensive” part of the differential trail, without setting any constraint
in the way this is handled. The “cheaper” parts are then covered in an inside-
out manner in both forward and backward directions. The authors describe
a freedom degrees use example that can control 3 rounds in the middle part,
without increasing the complexity (i.e. with only a few operations). However,
the depicted technique only works for specific differential paths, in which the
number of active bytes in the controlled rounds is not too important. We refer
to the original publication [26] for more details.

2.4 The Super-Sbox Cryptanalysis Technique

Finally, another example of start-from-the-middle attacks is the Super-Sbox
cryptanalysis ([15] and independently published in [28]). The idea is that one
can view two rounds of an AES-like permutation as the parallel application of a
layer of big Sboxes, named Super-Sboxes, preceded and followed by simple affine
transformations. This technique can control 3-rounds in the middle of the dif-
ferential trail with only a few operations on average, but works especially when
the number of active bytes in the controlled rounds is important (this allowed
to use longer differential paths which generally contain more active bytes). Be-
cause of some local precomputation steps, the drawback of this technique is its
memory requirement when the size of the internal state of the scheme is too big.
In the case of Grøstl this remains acceptable with a 264 memory requirement,
but in the case of ECHO as much as 2512 memory is required, making this tool
unsuitable for this hash proposal. We refer to the original article [15] for more
details.

3 Improved Differential Attack for ECHO

3.1 Description of ECHO

ECHO is a double-pipe hash function using HAIFA [4] as chaining iteration mode.
The message to hash is first padded and divided into fixed-length blocks Mi

which are used to update iteratively the chaining variable Hi (originally ini-
tialized with an initial vector H0 = IV ) thanks to the compression function h:
Hi = h(Hi−1, Mi). Finally, the hash output is obtained by truncating the last
chaining variable. The compression function is built upon a 2048-bit AES-like
permutation PR

E composed of R rounds and its internal state can be viewed as
a 4× 4 matrix of 128-bit words (or cells). A cell will be denoted by Ci,j , where
i is its row position and j its column position in the matrix, starting the count-
ing from 0. One round of PR

E is composed of three layers: the “BIG SubBytes”
layer (big Sbox or B.SB), the “BIG ShiftRows” layer (B.ShR) and the “BIG
MixColumns” layer (B.MC).
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The BIG SubBytes layer is a non-linear function defined by the application of
a big Sbox S on each 128-bit cell and this big Sbox is made of 2 AES rounds. The
classical AddRoundKey part from the AES is not present in PR

E and in order to
avoid trivial symmetric vulnerabilities that would occur, each big Sbox in ECHO
is distinct thanks to different subkey additions in each of the 2-round AES uses.
The first round subkey depends on the value of a 64-bit internal counter K that
is different at each use, while the second round subkey is set to the 128-bit salt
value and thus always remains the same during the whole ECHO computation.
So, for each cell Ci,j of the internal state, we compute

C′
i,j = S[Ci,j ] = AESsalt(AES0||K(Ci,j)).

where AESsk denotes the application of one AES round with the subkey sk.
As for the AES, the BIG ShiftRows transformation permutes the position of
each cell in its own row: for each cell Ci,j of the internal state, we compute
C′

i,j = Ci,Subi(j) where Subi(j) = (j − i) mod 4. Finally, the BIG MixColumns
function is a linear function that mixes all the columns of the internal state
separately. More precisely, the 32-bit AES MixColumns function is reused: if Cb

i,j

denotes the b-th byte of the cell Ci,j , then we compute

(C′b
0,j, C

′b
1,j , C

′b
2,j , C

′b
3,j) = AESMixColumns(Cb

0,j, C
b
1,j , C

b
2,j , C

b
3,j)

for all 0 ≤ j ≤ 3 and 1 ≤ b ≤ 16. The round function on an internal state C can
thus be defined as:

MixColumns ◦ ShiftRows ◦ SubBytes(C).

In the case of the ECHO-256 compression function, 8 rounds of the permutation
are applied and a folding phase is processed after the final feedforward. Namely,
the folding phase (denoted fold256) xors all the four 512-bit columns together.
Finally, the compression function takes a 1536-bit message input M (12 words)
and a 512-bit chaining variable input H (4 words) and outputs a new 512-bit
chaining variable H ′ with

H ′ = fold256(P
8
E(H||M) ⊕ H||M)

H M

P 8
E

H’

In the case of the ECHO-512 compression function, 10 rounds of the permu-
tation are applied in order to turn a 1024-bit message input M (8 words) and
a 1024-bit chaining variable input H (8 words) onto a new 1024-bit chaining
variable H ′. A different folding phase is processed after the final feedforward.
Namely, the folding phase (denoted fold512) xors the two first and the two last
512-bit columns together.
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H ′ = fold512(P
10
E (H||M) ⊕ H||M)

H M

P 10
E

H’

Since ECHO is a nested design of AES-like permutations, we will always use the
prefix “BIG” when referring to one of the three layers of the 2048-bit permu-
tation. When not using a prefix, we will refer to the layers of the 2-round AES
permutation in the big Sboxes of ECHO.

In the following, B.SBin
R (respectively B.SBout

R ) will denote the whole internal
state just before (respectively just after) application of the BIG SubBytes layer
during round R (starting the counting from 0). Similarly, B.MCin

R and B.MCout
R

will stand for the input and output internal states of the BIG MixColumns layer
during round R. Of course, we have B.SBin

R = B.MCout
R−1. We refer to [3] for the

full specifications.

3.2 Generic Differential Paths

In order to fully use the power of recent freedom degrees optimization techniques,
the core of the differential path we use will not differ from the ones described
in [27, 26, 15]. The reason here is that this core characteristic is perfectly fit for
using the available freedom degrees in the middle: it is computationally very
costly in its middle part, but quite cheap on its side parts. This core truncated
differential path is 7 rounds long and is depicted in Figure 1. Of course, when
attacking a smaller number of rounds than 7, one can use this core to build a
further reduced path by cutting off some of the first and/or last rounds.

The second advantage of this core characteristic is that the relatively low
number of active cells in the controlled rounds makes it usable with the start-
from-the-middle technique, as it is described in [26]: one can find a pair of internal
states verifying the 128-bit truncated differential trail from the beginning of
round 2 (B.SBin

2 ) up to the end of round 4 (B.MCout
4 ) with only one operation

on average (and 264 memory). Note that another view of the attack is to say
that with one operation the attacker can find a pair of internal states such

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6

Fig. 1. Core of the truncated differential paths for 7-round reduced ECHO internal per-
mutation. Each cell represents a 128-bit word and a gray cell stands for an active
128-bit word. The controlled rounds are depicted with dashed lines.
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that the difference on B.SBout
2 and on B.MCout

4 are chosen (no more truncated
differentials). Therefore, for ECHO we consider that the controlled rounds go from
B.SBout

2 up to B.MCout
4 .

One can easily check that the rest of the path (the uncontrolled rounds) is
fulfilled with probability one, except round 1. Indeed, in round 1, a 4 ⇒ 1
truncated differential transition is expected through the backward computation
of the BIG MixColumns layer B.MC1. When dealing with 128-bit truncated
differentials, this will happen with approximate probability 2−24×16 = 2−384 (i.e.
a 4 ⇒ 1 byte-wise truncated differential transition is expected through sixteen
parallel AESMixColumns functions) and this probability sets the overall 2384

complexity for finding a valid pair for the core path from Figure 1. We will see
in the next section that by looking at byte-wise truncated differentials (instead
of word-wise), one can sharpen the differential path and improve the success
probability of this BIG MixColumns layer. On the other side, in order to be able
to use the byte-wise truncated differentials at this stage and since he can control
the difference only in B.SBout

2 (and not in B.SBin
2 ), the attacker will have to

handle the backward computation of the BIG SubBytes layer of round 2 (B.SB2)
as well. He then hopes that controlling both B.SB2 and B.MC1 with byte-wise
truncated differentials will cost less than 2384 operations. Not controlling B.SB2

would lead us back to the 128-bit truncated differential cryptanalysis, as each
active 128-bit word of B.SBin

2 will very likely contain 16 active bytes (i.e. fully
active word) since full diffusion is achieved with only two AES rounds.

3.3 Differential Transitions for 2 AES Rounds

Now that we introduced the core of the differential path, we need to study the
word-wise differential transitions. That is, instead of looking for 128-bit trun-
cated differentials, we will look at byte-wise truncated differentials. Of course, we
still fully leverage the previous works on start-from-the-middle attacks [26]: the
attacker can find a valid candidate pair verifying the controlled rounds and fully
control the differences in B.SBout

2 and B.MCout
4 with one operation on average.

Sharpening the differential path will improve the results since our scope is now
wider, but it will also greatly increase the number of potential trails and compli-
cate the analysis. For that reason, we need to heuristically filter them so that we
place our search into a good subspace. First, we restrict ourselves to four types
of byte-wise truncated differential words F, C, D and 1, all depicted in Figure 2.
Due to symmetry and diffusion considerations, we believe that analyzing other
differentials would not provide better results, while it would greatly increase the
search space. Secondly, we add the constraint that all the active 128-bit words
in an internal state will present the same byte-wise truncated differential (all
words have the same truncated differential types F, C, D or 1). This seems a
sound constraint as the processing of the BIG MixColumns layer on one word
column of the internal state can be seen as the parallel application of sixteen
AESMixColumns functions (one for each byte position). Thus, for each word
column, instead of analyzing the behavior of sixteen parallel AESMixColumns
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F C D 1

Fig. 2. Byte-wise truncated differential states for one word of ECHO. Each cell represents
a byte and a gray cell stands for an active byte.

functions one conceptually only handles a single function that will do for all the
16. Those two filters will really simplify the analysis.

Since the attacker will have to control the behavior of BIG SubBytes layer
B.SB2, we have to study the success probability for each possible transition for 2
AES rounds between the four bit-wise truncated differentials F, C, D and 1, espe-
cially in backward direction. First, we can compute the approximate probability
of success for a one-round transition between those four 128-bit differential states
and this is given in Table 2 for both forward and backward directions. Those
probabilities are simply obtained by studying the AESMixColumns transitions
for one AES round (since we are dealing with byte-wise truncated differentials, all
the probabilities comes only from the AESMixColumns transitions, see [35]).

When computing backward through B.SB2, the AESMixColumns function
from the second AES round is the first function to invert. But since this layer
is fully linear, one can verify the expected backward transitions by carefully
choosing the differences in B.SBout

2 beforehand. Since the start-from-the-middle
attack allows us such a liberty, the second AES round in B.SB2 comes for free
(one only has to check that the transition is not impossible, i.e. the probability in
Table 2 is not null). Finally, having set all the constraints and the cost evaluation,
we only have to pick the best backward differential transition through B.SB2 in
terms of probability and active byte weight: D ⇐ 1 ⇐ C. The transition D ⇐ 1
is free as showed by Table 2, while the 2−24 probability for the transition 1⇐ C
is not taken in account since we can avoid it by carefully choosing the byte-wise
truncated differences in B.SBout

2 beforehand. Therefore, controlling B.SB2 is now
completely free for the attacker.

Now that we controlled the differential behavior of B.SB2, what is the im-
provement obtained for the BIG MixColumns layer B.MC1 ? Since we only have
four active bytes in D, we can focus on controlling 4 parallel AESMixColumns
transitions instead of 16. We are looking for 4 ⇒ 1 transitions, each happen-
ing with probability 2−24. Thus, for the whole BIG MixColumns layer, we get
a probability of 2−24×4 = 2−96 and this has to be compared to the previous
2−24×16 = 2−384 probability.

Overall the whole 7-round differential path is depicted in Figure 3 and a valid
candidate can be found with complexity 296 operations and 264 memory. Since
the internal permutation of ECHO is much bigger than its hash output size, it
should be easy to distinguish it from a random 2048-bit permutation. Note that
our solution pair has four active 128-bit words in the input and four active 128-
bit words in the output (the last BIG MixColumns call is not taken in account
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Table 2. Byte-wise truncated differential transition approximated probabilities for
one round of AES. The left table shows forward transitions, while the right one gives
backward transitions.

Forward

in
out

F C D 1

F 1 0 2−96 0

C 1 0 0 0

D 0 1 0 2−24

1 0 1 0 0

Backward

in
out

F C D 1

F 1 2−96 0 0

C 0 0 1 2−24

D 1 0 0 0

1 0 0 1 0
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Fig. 3. 7-round differential path for the ECHO internal permutation. The controlled
rounds are depicted with dashed lines.

since it is fully linear). A naive analysis would conclude that for a random 2048-
bit permutation, finding such a pair with a birthday paradox technique should
require at least 2(2048−512)/2 = 2768 operations. However, since the input and
output amount of differences is low, the attacker can not fully leverage the
power of the birthday paradox. We conclude by reusing the concept of limited
birthday distinguishers [15] that for a random 2048-bit permutation, finding such
a pair should require at least 21024 operations.1 Finally, 7 rounds of the internal
permutation of ECHO can be distinguished from a random 2048-bit permutation
with 296 operations and 264 memory. The amount of freedom degrees available
during the attack is discussed in the Appendix A and a costly distinguisher for
8 rounds of the ECHO internal permutation is given in the extended version of
this article [36].

4 Internal Differential Attack: Application to Grøstl

4.1 Description of Grøstl

We give in this section the description of Grøstl and refer to the submission
document [14] for more details. Grøstl is a double-pipe hash function that
uses a chaining mode similar to the Merkle-Damg̊ard [29, 11] iteration. More
1 The generic attack complexity for mapping through a permutation a fixed difference

on i bits on the input and j bits on the output with i ≥ j is given by the formula
max{2j/2, 2i+j−t}, where t is the size of the permutation.
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precisely, after having initialized the internal state H0 and padded the input
message string, the iteration i updates the 2n-bit chaining variable Hi with
the 2n-bit incoming message block Mi by applying the compression function h:
Hi = h(Hi−1, Mi). After having processed all the t message blocks, an output
function is applied to the last chaining variable to obtain the n-bit hash result:
hash = truncn(P (Ht) ⊕ Ht), where truncn is the truncation function of the
n first bits and P is an AES-based permutation. The double-pipe compression
function h is built upon two similar parallel AES-based permutations P and Q
(that only differ by the constants addition layers) to update chaining variable H
with message block M :

H ′ = P (H ⊕ M) ⊕ Q(M) ⊕ H

P

Q

H

M

H’

In the case of Grøstl-256, the 512-bit internal state of both permutations can
be viewed as a 8×8 matrix of bytes. A byte for permutation P is denoted by CPi,j

(resp. CQi,j for permutation Q), where i is its row position and j its column
position in the matrix, starting the counting from 0. P and Q are both 10-round
long and each round is composed of 4 layers. The first layer (AddConstant or AC)
is a constant addition function. More precisely, for the round number i (starting
the counting from 0), in P the byte CP0,0 is xored with i and in Q the byte CQ7,0

is xored with i⊕0xff. Note that this layer is the only difference between
permutations P and Q. The second layer (SubBytes or SB) is a non-linear
function defined by the application of the AES Sbox S to each byte. The third
layer (ShiftRows or ShR) cyclically rotates to the left the position of each byte
in its own row with the following constants: (0, 1, 2, 3, 4, 5, 6, 7). Finally, the last
layer (MixColumns or MC) is a linear function that mixes all the columns of the
internal state separately. As for AESMixColumns, the matrix multiplication
underlying this transformation is a Maximum-Distance Separable mapping. In
order to avoid overweighting the notations, we used the same notations for the
ECHO and Grøstl subfunctions, but their meaning is implicit depending on which
scheme we are dealing with. The round function on an internal state C can thus
be defined as MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(C):

AddConstant

8 bytes

8 bytes

⊕

⊕
for P

for Q
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S
S
S
S
S
S
S
S

S
S
S
S
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S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
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S
S
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S
S
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S
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S
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ShiftRows MixColumns
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4.2 The Internal Differential Attack

In this section, we will show that very good differential trails can be found
for Grøstl. Our new technique, the internal differential attack , may apply
when a function is built upon parallel computation branches that are not dis-
tinct enough. The trick is to devise a differential path representing the
differences between the branches and not between two inputs of the
function. Usually this is avoided by a forcing strong separation between the two
parallel branches. For example, for all steps of the hash function RIPEMD [39, 12],
very distinct constants are used in the left and right branches. However, in the
case of Grøstl, this separation is thin between permutations P and Q, and we
will describe in the next sections how to exploit this property in order to mount
for example a distinguishing attack against the full Grøstl-256 compression
function.

All the previous analysis of Grøstl studied the differential behavior of the
permutations in a classic way. That is, they derived differential trails by dealing
with two different inputs for each of the permutations P and Q (the two permu-
tations were attacked separately). Those permutations mimicking the AES block
cipher, the best usable differential paths naturally reached 8 rounds [15], but
we argue that much more interesting trails can be built. We do not analyze the
two permutations separately, but we build a differential path between them:
we keep track of the differences ongoing between branch P and branch Q (see
Figure 4). We compute two internal states A and B, such that A ⊕ B = ΔIN

and such that P (A) ⊕Q(B) = ΔOUT .
This idea comes naturally after having noticed that permutations P and Q

are really similar, since their only distinction is the constant addition phase.
Even in that step, the distinction is really thin: a different constant is added on
only two different bytes. Thus, we can hope that the amount of differences will
remain low when setting a differential trail.

Since using truncated differentials is very handy when attacking AES-like per-
mutations, we will only keep track of active and inactive bytes through the path.
Also, preparing for the utilization of Super-Sbox attacks, we aim for a differen-
tial path in which the costly part lies in the middle, and the cheap parts on the

Δ
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attacked primitive

P

Q

H

M

H’

Fig. 4. The differential path keeps track of the differences between permutations P
and Q
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SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

SB5 ShR5 MC5

SB6 ShR6 MC6

SB7 ShR7 MC7

SB8 ShR8 MC8

SB9 ShR9 MC9

AC0

AC1

AC2

AC3

AC4

AC5

AC6

AC7

AC8

AC9

Fig. 5. 10-round differential path between P and Q for Grøstl-256. Each cell represents
a byte and a gray cell stands for an active byte. The controlled rounds are depicted with
dashed lines. The matrices on the left represent the differences incorporated during the
AC layers.
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sides. In Figure 5, we provide a differential path between the permutations P
and Q of the Grøstl-256 compression function for the 10-round version. Note
that only one difference is incorporated during AC0 since the constant added in
P is 0.

4.3 Deriving a Distinguisher for Grøstl

In the following, our goal is to distinguish the Grøstl compression function
from an ideal primitive on the same domain. As shown in Figure 4, once the
differential path settled, we find a valid pair of internal states (A, B) such that

A⊕B = ΔIN

P (A) ⊕Q(B) = ΔOUT

where ΔIN and ΔOUT are respectively the input and output truncated differ-
ences. We then set H = A⊕B and M = B and we obtain

h(H, M) = P (A) ⊕Q(B)⊕A⊕B = ΔIN ⊕ΔOUT .

We will show that ΔIN and ΔOUT are always maintained in a small subspace of
x and y elements respectively. As a consequence, ΔIN ⊕ΔOUT will also belong
to a small subspace of the full output domain. Said in other words, we will be
able to compute outputs of the 2n-bit compression function that always belong
to a predetermined set of at most k = x · y elements. In the ideal case, one such
input/output property should not be obtained with substantially less than 22n/k
compression function calls. Unlike the previously known distinguishers that find
partially colliding outputs for AES-like permutations, the one we describe here is
more “preimage” oriented.

One can go further and even try to distinguish the Grøstl compression func-
tion from its internal construction

h(H, M) = P (H ⊕M)⊕Q(M)⊕H = (P (A)⊕A)⊕ (Q(B)⊕B)

assuming P and Q as ideal permutations. We will compute pairs (H, M) such
that H belong to a small subspace of x elements and H ′ to a small subspace of
k = x · y elements. In the ideal case, one may think that the best attack can
obtain such a property this with

√
22n/k computations by performing a birthday

method with the two branches. However, this is not the case here because a strong
constraint on the input H exists (see the limited birthday distinguishers [15])
and the best known complexity to obtain the input/output property with ideal
permutations P and Q is 22n/(k ·x) computations. It is important to remark that
this type of distinguisher is new since the already known ones are structural, i.e.
they already consider P and Q as ideal permutations.

While formally defining a distinguisher for a keyless primitive is difficult [40],
we argue that the property we exhibit here works for any choice of Sbox, Mix-
Columns function or AddConstant positions for example. Note that such keyless
primitive distinguishers have already been utilized in [26, 15].
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Let Grøstl(a) denote the Grøstl hash function for which the constant ad-
dition in Q is i ⊕ a instead of i ⊕ 0xff. Clearly, when choosing a > 0x1a, we
ensure that the constant values added in P and Q are always distinct and each
member of this family of Grøstl hash functions should have the same security
as Grøstl(0xff). Overall, for each member of the family, the attacker can ex-
hibit with good probability an output maintained in the set of k elements, while
the input H belongs to the subspace of x elements. Thus, if we are queried to
distinguish the Grøstl compression function instantiated with permutations cor-
responding to Grøstl(a) from the same construction with random permutations
P and Q, we have a very good probability to succeed. It shows a weakness in
the Grøstl design philosophy.

5 Results

In this section we present some of our results on the compression functions
of ECHO and Grøstl-256. For the complete results, and the differential paths
concerning the internal permutation of ECHO, the single-pipe version ECHO-SP,
or Grøstl-512 compression function, we refer to the extended version of this
article [36]. Moreover, we also provide in the Appendix A a study of the amount
of freedom degrees available during the attacks.

5.1 ECHO

Compression function distinguishers. We provide here the first distin-
guishers for reduced ECHO compression functions. In the case of ECHO-256, we
use the 4-round differential path from Figure 6 which is derived from the 7-
round core path. One can find a solution with 264 computations and memory
(239 valid candidates can be generated by the attacker and 2167 if the salt is
controlled as well). In the case of ECHO-512, we use the 6-round differential path
from Figure 7 for which a solution can be found with 296 computation and 264

memory (271 valid candidates can be generated by the attacker and 2199 if the
salt is controlled as well). In both cases, we obtain compression function outputs
colliding on 2 predetermined words (i.e. 256 bits) and this should require 2128

computations in the ideal case.

Collision attacks. We provide here the first collision attacks for reduced
ECHO compression functions. In the case of ECHO-256, we use a special 3-round
differential path depicted in Figure 8. In this trail, the start-from-the-middle
technique can still be used and the only part uncontrolled is the first AES round of
the very first BIG SubBytes layer. However, since we use the backward transition
D ⇐ 1 ⇐ C, this layer will behave as expected with probability 1. Then, the
feedforward is applied and only four 128-bit words will be active, each containing
4 active bytes at the exact same positions (truncated differential of type D).
Finally, since the four columns of 128-bit words are xored together to obtain the
output chaining variable, a collision can occur if the truncated differences are
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Fig. 6. 4-round differential path for the ECHO-256 compression function distinguisher.
The controlled rounds are depicted with dashed lines.
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Fig. 7. 6-round differential path for the ECHO-512 compression function distinguisher.
The controlled rounds are depicted with dashed lines.
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Fig. 8. 3-round differential path for the ECHO-256 compression function semi-free-start
collision attack. The controlled rounds are depicted with dashed lines.

erased on the 4 byte positions. Thus, in order to get a semi-free-start collision,
one should therefore test 232 candidates (we have enough freedom degrees since
one can generate 2143 valid candidates for the whole trail and 2271 if the salt is
chosen by the attacker). However, the minimum cost for using the start-from-
the-middle attack for ECHO is 264 memory and precomputation. Thus, the overall
cost is 264 computations and memory in order to find one single semi-free-start
collision for 3 rounds.

In the case of ECHO-512, we use the 4-round differential path from Figure 9 for
which a solution can be found with 296 computations and 264 memory (271 valid
candidates can be generated by the attacker and 2199 if the salt is controlled as
well). Then, before the feedforward is applied, one active 128-bit word remains
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Fig. 9. 4-round differential path for the ECHO-512 compression function semi-free-start
collision attack. The controlled rounds are depicted with dashed lines.
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Fig. 10. 3-round differential path for the ECHO-512 compression function semi-free-start
collision attack. The controlled rounds are depicted with dashed lines.

in the output of the permutation. In order to erase this difference and obtain
a semi-free-start collision, this should be repeated 2128 times and the total cost
of the attack is then 2224 computations and 264 memory. Thus, this attack is
valid only in the chosen-salt attacker model (otherwise the number of available
freedom degrees is not sufficient). Since the collision happens before the final
compression phase, this semi-free-start collision attack applies with the same
complexity to ECHO-256 compression function.

When the attacker can not control the salt value, the 3-round attack from Fig-
ure 10 applies. Namely the reasoning is exactly the same as for the 256-bit case
with Figure 8, except that we have 4 additional bytes to collide during the feed-
forward phase. Finally, finding a semi-free-start collision for the 3-round reduced
ECHO-512 compression function requires 296 computations and 264 memory.

5.2 Grøstl

We use the Super-Sbox technique to find two 512-bit internal states such that
the 10-round differential path from Figure 5 between permutations P and Q is
verified. Namely, one can find internal state values for P and Q verifying the
truncated differential trail from the output of SB3 up to the input of SB6 with
one computation on average. However, the two 8 �→ 1 MixColumns transitions
through MC2 and the 8 �→ 2 transition through MC6 during the uncontrolled
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rounds happen with probability 2−2×56 = 2−112 and 2−48 respectively. Also, 2
byte differences must be erased during both AddConstant functions AC2 and AC7

which adds another 2−4×8 = 2−32 factor. Overall, one can find a valid candidate
for the whole path with only 2112+48+32 = 2192 computations (an amount of 264

memory is required by the utilization of the Super-Sbox technique).
The freedom degrees analysis from Appendix A shows that for the path from

Figure 5, one can expect to obtain one solution with good probability. Indeed,
when the success probability for a random input pair to verify the trail is 2−z,
we have 2z−1 freedom degrees available. We argue in the Appendix that it is
sufficient for the attack to be considered as valid.

The distinguisher for Grøstl. In order to mount the distinguisher for
Grøstl, one has to analyze the amount k of reachable output difference values.
In the differential path from Figure 5, we have 16 active bytes just before apply-
ing the very last MixColumns layer MC9. Since the MixColumns layer is fully
linear, the amounts of reachable difference values on its input and on its output
are equal. Thus, we can deduce that at most y = 216×8 = 2128 distinct output
differences can be reached on the output of the differential trail. Regarding the
input of the path, the same reasoning gives us that at most x = 28×8 = 264

distinct input differences can be reached. Note that the difference inserted dur-
ing AC0 can be ignored since it is the last layer when computing backward (the
difference value on that byte will always be equal to the constant added, i.e.
0xff). Also, it is easy to verify that the differences on the output of SB0 are
always the same (since MixColumns is linear). Thus, since the inverse of the AES
Sbox has the property that only 27 distinct output differences can be reached
when the input difference is fixed, we can conclude that ΔIN can go through a
maximum of x = 28×7 = 256 distinct values.

To summarize, the output chaining variable H ′ = h(H, M) = ΔIN ⊕ΔOUT is
limited to a set of at most k = 2128+56 = 2184 values, with H being limited to a
set of at most x = 256 values. For an ideal 512-bit compression function, reaching
any element of this set should require 2512−184 = 2328 operations. With 280 and
2192 computations respectively (and 264 memory), we finally conclude that our
attack can distinguish 9-round reduced or the full 10-round compression func-
tion of Grøstl-256 from a random 512-bit compression function. One can even
distinguish h from the compression function construction with P and Q assumed
ideal since the best known attack requires 2512−184−56 = 2272 computations.

Note that structural distinguishers (i.e. working for randomly chosen permu-
tations P and Q) already exist for Grøstl. For example, just like in the Davies-
Meyer construction, one can very easily find fixed points for the compression
function. Yet, as explained in Section 4.3, we believe that our distinguishers are
very interesting because they exploit the real differential properties of the inter-
nal permutations P and Q, which is essential in order to appropriately evaluate
the security margin in terms of number of rounds. Moreover, such structural
attacks can not distinguish h from the compression function construction with
P and Q assumed ideal.
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6 Conclusion

In this article, based on recent advances on AES-like permutations studies, we
provided a new cryptanalysis of ECHO and Grøstl, two second-round SHA-3 can-
didates. In particular, in the case of Grøstl, we introduce a new cryptanalysis
technique: the internal differential attack. Overall, we obtain the best cryptanal-
ysis results known so far for both ECHO and Grøstl. We are able to derive a
distinguisher for the full (10 rounds) 256-bit version of the Grøstl compression
function. This work also shows that designers must be careful when building a
function with parallel branches computations as the internal differential paths
may lead to unexpected attacks.
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Appendix A: The Amount of Freedom Degrees

Once a differential path settled, a point has to be clarified: the amount of freedom
degrees available to the attacker. Indeed, one has to evaluate how much valid
pairs can be found for the whole differential trail. We want to ensure that enough
solutions for the controlled rounds exist so that we have a good probability that
at least one of them will fulfill the entire differential characteristic. Moreover,
when searching for semi-free-start collisions, we may even go further since we
may require an important amount of valid candidates for the entire differential
path.

Freedom Degrees for ECHO

We use the same counting reasoning than in [15], except that we have to precisely
evaluate what is the freedom degrees consumption for the various 2 AES-round
differential transitions as well (in [15] it was implicitly assumed that all the BIG
SubBytes transitions were F → F, thus happening with probability very close
to 1 and consuming no freedom degrees). For example, let us take the D → 1
transition through the BIG SubBytes in the forward direction: we require one
AES MixColumns transition 4 → 1 which happens with probability 2−24. Thus,
if we have k valid candidates on the input, we obtain k × 2−24 valid candidates
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on the output of this layer and we consumed 224 freedom degrees. The amount
of freedom degrees consumed during a transition is the invert of the probability
of success of this transition. Thus, with Table 2, it is very easy to compute the
freedom degrees consumption for all the AES round transitions considered so far.

We illustrate the counting method by applying it to the example of the 7-
round path from Figure 3. First, note that the start-from-the-middle attack will
find all the possible internal states such that the controlled rounds are veri-
fied. We start from state B.MCin

3 (located between B.ShR3 and B.MC3). This
state is fully active which means that we can start with 22048×2−1 = 24095 dis-
tinct pairs. When going forward, the B.MC3 transition happens with probability
2−4×24×16 = 2−1536 and the transition through B.MC4 happens with probability
2−24×16 = 2−384. All the other layers are verified with probability one so the
forward computation consumes 21536+384 = 21920 freedom degrees. Then, during
the backward computation, the sixteen C ← F ← F transitions through B.SB3

happen with probability 2−16×96 = 2−1536 according to Table 2 (C ← F with
probability 2−96 and F ← F with probability 1). Also, the four D ← 1 ← C
transitions through B.SB2 happen with probability 2−4×24 = 2−96 (D ← 1 with
probability 1 and 1 ← C with probability 2−24). Then, the BIG MixColumns
transitions through B.MC2 are verified with probability 2−4×4×24 = 2−384 and
through B.MC1 with probability 2−4×24 = 2−96. All the other layers in the back-
ward direction are verified with probability one. Overall, the backward computa-
tion consumes 21536+384+96+96 = 22112 freedom degrees. We can finally conclude
that we started with 24095 pairs from which only a factor 2−1920−2112 = 2−4032

will be valid for the whole differential path. One can then generate 263 distinct
valid pairs for the 7-round path from Figure 3.

Note that the differential paths we use are just instances among a family
of good differential trails. For example, in the case of the 7-round path from
Figure 3, instead of placing the active word on the top left position of B.MCout

0

(between B.MC0 and B.SB1), one could place it in the 15 others locations. Those
new paths present the same properties than the original one and this reasoning
also applies to the active word located in B.MCout

4 (between B.MC4 and B.SB5).
As a consequence, the attacker manages 162 = 28 different core paths which
provides him 28 additional freedom degrees.

Finally, some additional freedom degrees can be obtained if one considers that
the salt value can be fully controlled by the attacker. While this scenario is not
very relevant in practice, it is interesting to see what the attacker is able to do
in such a situation. In the case of ECHO, the salt value is 128-bit long and it then
directly adds 2128 supplementary freedom degrees. To conclude, the attacker
can generate 271 distinct valid pairs for 7-round paths like the one depicted in
Figure 3, and 2199 if he controls the salt. The same method is used for all the
differential trails for ECHO considered in this article.

Freedom Degrees for Grøstl

The case of Grøstl is easier to analyze since we don’t have to handle word-wise
and byte-wise truncated differentials at the same time. Yet, the same counting
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technique can be applied. Interestingly, for all the paths we provided concerning
Grøstl, an attacker can expect only one solution for the whole trail with good
probability. This explains why one can not really hope for a semi-free-start col-
lision attack on reduced versions of Grøstl (such as 7 or 8-round versions) with
the paths given. Or, said in other words, a semi-free-start collision attack may
be mounted, but will only work with a low probability.

As an example, we provide here the freedom degrees analysis for the 10-
round differential path from Figure 5. By starting from the fully active internal
state located at the output of MC4, we begin with about 2512×2−1 = 21023

distinct pairs of internal state values. When going forward, the first freedom
degrees consuming operation is the MC5 transition which happens with prob-
ability 2−7×56−48 = 2−440. Then, one byte is erased during AC6 while the
transition through MC6 happens with probability 2−48 and in total this round
consumes 28+48 = 256 freedom degrees. Finally, the last consuming operation
when computing forward is AC7 for which two bytes have to be erased (216).
When computing backward, the MixColumns functions MC3 and MC2 requires
248×8 = 2384 and 22×56 = 2112 freedom degrees respectively. Then, two bytes are
erased through AC2 and all the other differential transitions consume nothing
since they are deterministic. Finally, we started with 21023 freedom degrees from
which only a fraction 2440+8+48+16+384+112+16 = 21024 will verify the whole dif-
ferential path. Thus, since this reasoning is done on average, an attacker has a
good probability to obtain one single solution for the whole differential path.

Of course, one may argue that the attacker should have one more freedom
degree to perform the attack. Yet, note that until really performed, most hash
function attacks only have a certain success probability to actually find a solu-
tion. For example, in the case of SHA-1, even if very low, there is a probability
that the known collision attacks eventually provide no solution. Therefore, with
only a single freedom degree missing, we believe that the success probability
is far sufficiently high in order to consider the attack as valid. Finally, if one
really wants to increase this probability, additional freedom degrees could be
found by defining a small family of Grøstl compression functions as explained
in Section 4.3.
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