Leakage-Resilient Pseudorandom Functions
and
Side-Channel Attacks on Feistel Networks

Yevgeniy Dodis and Krzysztof Pietrzak

New York University and CWI Amsterdam

Abstract. A cryptographic primitive is leakage-resilient, if it remains
secure even if an adversary can learn a bounded amount of arbitrary
information about the computation with every invocation. As a conse-
quence, the physical implementation of a leakage-resilient primitive is
secure against every side-channel as long as the amount of information
leaked per invocation is bounded.

In this paper we prove positive and negative results about the feasi-
bility of constructing leakage-resilient pseudorandom functions and per-
mutations (i.e. block-ciphers). Our results are three fold:

1. We construct (from any standard PRF) a PRF which satisfies a re-
laxed notion of leakage-resilience where (1) the leakage function is fixed
(and not adaptively chosen with each query.) and (2) the computation
is split into several steps which leak individually (a “step” will be the
invocation of the underlying PRF.)

2. We prove that a Feistel network with a super-logarithmic number
of rounds, each instantiated with a leakage-resilient PRF, is a leakage
resilient PRP. This reduction also holds for the non-adaptive notion just
discussed, we thus get a block-cipher which is leakage-resilient (against
non-adaptive leakage).

3. We propose generic side-channel attacks against Feistel networks. The
attacks are generic in the sense that they work for any round functions
(e.g. uniformly random functions) and only require some simple leakage
from the inputs to the round functions. For example we show how to
invert an 7 round Feistel network over 2n bits making 4-(n+1)""2 forward
queries, if with each query we are also given as leakage the Hamming
weight of the inputs to the r round functions. This complements the
result from the previous item showing that a super-constant number of
rounds is necessary.

1 Introduction

Traditional cryptographic security definitions only give the adversary black-box
access to the primitive at hand. For example, a function F : X% x Y™ — xn

(X «f {0,1}) is pseudorandom if no efficient adversary given oracle access to

a function O : XY™ — X" can tell whether the oracle is a uniformly random
function or instantiated with F(K,.) for a random key K € X*.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 21 2010.
© International Association for Cryptologic Research 2010

22 Y. Dodis and K. Pietrzak

Unfortunately, this model does not capture many attacks in the real-world
where adversaries can attack concrete implementations of cryptosystems which
potentially leak information about their internal secret state during computa-
tion. Attacks exploiting such leakage are called side-channel attacks. Popular
side-channels that have been exploited for cryptanalytic attacks include running-
time [28], electromagnetic radiation [39120] or power consumption [30].

Countermeasures. Side-channel attacks are a very real threat for systems used
in practice. Not surprisingly, much research has concentrated on developing coun-
termeasures against such attacks. This research is mostly done by practitioners
(i.e., the cryptographic hardware community) who are also active in finding and
exploiting new side-channels, [37] gives an overview of this research. The coun-
termeasures proposed are usually ad-hoc, in the sense that they aim to protect
against some particular, known attack, and are backed up by heuristic security
arguments. This is fundamentally different from the provable security approach
taken by modern cryptography, where one requires that a scheme is proven se-
cure against a class of resource bounded (e.g. polynomial time) adversaries and
not only particular attacks. This situation is very unsatisfying; after all, what
is a provably secure cryptosystem good for, if ultimately its security hinges on
an ad-hoc side-channel countermeasure? Nonetheless, until recently there was
almost no input from the theory community on side-channel countermeasures
as it was believed that this is a practical problem, and theory can only be of
limited use in this context. Fortunately, recent results indicate that this view
was much too pessimistic. In an early influential paper, Micali and Reyzin [35]
propose the “physically observable cryptography” framework which adapts the
concept of cryptographic reductions to the context of side-channel attacks. Only
very recently direct constructions of cryptographic schemes were proposed which
are provably secure against general classes of side-channel attacks. We’ll discuss
several such modes below.

Leakage-Resilient PRFs. A cryptographic primitive is leakage-resilient if it
remains secure even if the adversary can — with each invocation — learn a bounded
amount of arbitrary information about the computation. This notion was intro-
duced in [I7], and is formally modelled by allowing the adversary to choose
(besides the regular input, if there is any) a leakage function g with bounded
range X for some leakage parameter A After the invocation the adversary gets
— besides the regual output — the leakage g(7) where 7 is all data accessed by the
primitive during this invocation (that is, the part of the secret state that was
accessed and — if the primitive is probabilistic — any random coins used). We will
take a more “fine-grained” view and split an invocation into ¢ > 1 sequential
steps, where the adversary is allowed to learn a bounded amount of information

! The basic idea to consider adversaries who can learn any (sufficiently compress-
ing) function g(.S) about the secret state S goes back to Maurer’s bounded storage
model [32I5/42]. The bounded retrieval model [I4J8] adapts this to the computa-
tional setting.

Leakage-Resilient Pseudorandom Functions 23

91(11), .., 9:(m¢) about every step. Here 7; denotes absolutely all information
that is accessed in the i-th step.

As a consequence, the physical implementation of a leakage-resilient cryp-
tosystem will remain secure in the presence of any side-channel attack, as long
as the information exploited by this attack can be modelled by adaptively cho-
sen leakage functions as just described. A sufficient (but not necessary) condition
on the side-channel is to require that (1) the amount of information leaked per
invocation (or, in the fine-grained approach, per step) is at most A bits and (2)
“only computation leaks information”, which means that parts of the memory
which are not accessed during an invocation (or step) will not leak.

Remark 1 (On “Only computation leaks information”). “Only computation leaks
information” is an assumption about the physical properties of cryptodevices,
and was originally put forward as one the “axioms” in the physically observable
cryptography framework of Micali and Reyzin [35]. As just mentioned, devices
adhering to this axiom are captured by the model of leakage resilience, but this is
only a sufficient condition and by no means necessary. For example, [38] explains
why the mathematical model of leakage-resilience also captures certain physical
attacks which explicitly violate this axiom, like “cold-boot attacks” [22] or when
considering memory that is subject to static leakage.

Limitations of Current Techniques. The only leakage-resilient primitives
that were constructed so far in the standard model are stream-ciphers [17/38] and
signature schemes [19]. A leakage-resilient public-key encryption scheme has been
constructed, but only in the idealised generic group model [27]. A central open
problem is this line of research is the construction of pseudorandom functions
(PRFs) and permutations (PRPs, or equivalently, block-ciphers). Block-ciphers
are the work horses of crypto. Not surprisingly, they are also a favourite target
of side-channel cryptanalysts.

In this work we consider the problem of constructing leakage-resilient PRF's
and PRPs. The techniques used in the construction of leakage-resilient stream-
ciphers and signature schemes crucially rely on key evolution. For example, in a
stream-cipher the key evolves naturally, while for signatures one can sample a
fresh public/secret key pair with each signature query and sign the new key with
an old key. Unfortunately it is not clear how to evolve the key of a PRF/PRP.
The same difficulty arises with public-key encryption, so the leakage-resilient
PKE scheme from [27] does not rely on evolution, but rather on sharing the
secret key. The sharing is rerandomized after each invocation. In order to decrypt
using the shares of the secret key without actually reconstructing it, one exploits
the homomorphic property of the group. Thus, even aside from the reliance
on idealised generic groups [27], this technique is not an option to construct
leakage-resilient PRFs/PRPs if we do not want to use inefficient techniques and
assumptions (like DDH) that are used in public-key cryptography.

Our PRF Results. As leakage-resilient PRFs seem out of reach with our cur-
rent techniques, we will consider a relaxed notion of leakage-resilience, where the

24 Y. Dodis and K. Pietrzak

leakage function is not adaptively chosen by the adversary before each invocation,
but is fixed. This notion still captures all side-channel attacks where the adversary
will always measure (almost) the same leakage if she performs exactly the same
computation. This for example captures timing and to some extent power-analysis
attackﬂ, but not probing attacks (where different wires can be probed on different
invocations on the same input.) We construct a PRF which is secure under this re-
laxed notion from any standard PRF. The construction, as illustrated on the left in
Figure[l], can be seen as a hybrid of the GGM construction [2I] (which constructs
a PRF from any PRG) and the leakage-resilient stream cipher from [38].

Related Work. The idea to only consider non-adaptive leakage functions and that
this could be useful in the context of the GGM construction goes back at least to
Micali and Reyzin [35]@ A similar point for a particular leakage function (power
analysis) was made by Kocher [29]. The idea to consider leakage-resilience but
to fix the leakage function is due to Standaert et al. [41]. They suggest that the
GGM construction is secure in this setting if the PRG is modelled as a uniformly
random function and the leakage function is fixed

Side-Channel Attacks on Feistel. A pseudorandom permutation (PRP) F :
Xk x X" — X7 is defined like a PRF, except that one requires that for every
key K € X* F(K,.) is a permutation. A super PRP (sPRP) satisfies a stronger
notion where the adversary can also make inverse queries. The additional struc-
tural properties of permutations are often useful as they allow for better efficiency
and/or security. Block-ciphers, which are strong PRPs, are the “work horses” of
cryptography and a favourite target of side-channel cryptanalysts.

PRPs seem to be much more complicated objects than PRFs, but in a classical
paper, Luby and Rackoff [31] prove that a simple 3 round Feistel network (cf. Def-
inition[f)) instantiated with PRF's, is a PRP. With one round more one even gets a
sPRP. More recently, [7] prove that a six round Feistel network instantiated with

2 If the power-analysis just leaks the number of wires set to 1, then this is captured, but
if the power-analysis leaks the number of wires that “switch” from 0 to 1, then this is
no longer possible.

From [35]: Our definitions allow for repeated computation to leak new information
each time. However, the case can be made (e.g., due to proper hardware design) that
some devices computing a given function f may leak the same information whenever
f is evaluated at the same input x. This is actually implied by making the leakage
function deterministic and independent of the adversary measurement. Fized-leakage
physically observable cryptography promises to be a very useful restriction of our gen-
eral model (e.g., because, for memory efficiency, crucial cryptographic quantities are
often reconstructed from small seeds, such as in the classical pseudorandom function
of 121]).

The model considered is basically the random oracle model, but it is conceptually
used in a different way. In the RO model, a uniformly random function is accessible
to all parties, and security proofs only exploit the fact that a random oracle allows to
efficiently access an exponential amount of true randomness. In contrast, in [4I] the
security proof exploits the fact that the adversarial leakage functions cannot query
the random oracle.

w

IS

Leakage-Resilient Pseudorandom Functions 25

random functions is indifferentiable [34] from a uniformly random permutation.
These results suggest that a Feistel network with some small constant number of
rounds instantiated with leakage-resilient PRFs, would yield a leakage-resilient
PRP.

Unfortunately, this is not true. We show very simple side-channel attacks against
Feistel networks where the round functions can be arbitrary, and the only leak-
age is some (simple) function g(.) of the inputs to the round functions. We iden-
tify a simple property of leakage-functions function g(.) — which we call “recon-
structible” (cf. Definition [7]) — that is sufficient for our attack to work. This prop-
erty is shared by many simple and natural leakage functions (like the Hamming
weight or the identity function with very high noise). Thus our attacks are quite
practical. We explain these attacks in detail in Section] (which is self contained
and can be read independently of the rest of this paper), here only giving the brief
summary. We show that getting leakage from any reconstructible leakage function
g(.) is sufficient to allow the side-channel attacker to invert the Feistel network on
any input using a number of forward queries which is exponential in the number of
rounds (and, thus, in polynomial time for any fixed constant number of rounds).
This breaks the security of any fixed-round Feistel network as a PRP.

For readers familiar with the notion of Indifferentiability [34J6], it might seem
that our attacks contradict the beautiful result of Coron et al. [7] showing that a
six round Feistel network with random functions is indifferentiable from a random
permutation. The reason this is not a contradiction is that the indifferentiability
simulator S is allowed to make arbitrary additional forward /backward queries to
the random permutation when trying to “fake” the six random round functions,
as opposed to the queries made by the distinguisher (which the simulator does not
even see). For example, for our attack making only forward queries, the simulator
will be “smart enough” to figure out the backward query we are “computing” using
our forward queries, and will make such a query in advance to avoid any inconsis-
tencies. Translated to the setting of leakage, the indifferentiability framework will
imply the following much weaker notion of security than the one we are aiming for:
after making q block-cipher queries and observing the leakage, all but specially cho-
sen poly(q) input/outputs of the block cipher will “look random”. In contrast, we
will ensure that every un-queried input/output pair will “look random”.

We also mention that [I2] defined a notion of “honest but curious indifferentia-
bility”. As observed by [12lI7] this notion is incomparable to standard indifferentia-
bility. On one hand, it is stronger because the simulator S is not allowed to make
any queries to P or P~! (but only sees the queries made by the distinguisher). But
it is also weaker, as the distinguisher is not allowed to query intermediate round
functions, but only the entire Feistel network (or its simulation) together with
all the inputs/outputs of the internal round functions. This notion is much closer
to the setting of side-channel attacks, except with side-channels we allow a much
richer class of leakage functions (e.g., those that depend on the key). In fact, the
side-channel attacks we propose generalize (and strengthen) a lower bound from
[12] which basically corresponds to our attack for the special case where the leak-
age contains the entire inputs to the round functions.

26 Y. Dodis and K. Pietrzak

Leakage-Resilient PRPs. In light of the results discussed in the previous sec-
tion, the best we can hope for is that an r-round Feistel network ¥,., instantiated
with leakage-resilient PRFs, is secure against adversaries who make at most an
exponential (in) number of queries. In Section Ml we show (again using tech-
niques from [12]) that this is indeed the case: the r-round Feistel network is a
secure leakage-resilient super PRP as long as the number of queries is bounded
by ¢ < 1.387/21,

We notice that the leakage-resilient SPRP, as just described, is secure in an
attack scenario where the adversary with every query to ¥, gets to see all the
input to the r round functions and also leakage from every round function (as
computed by any leakage function for which the underlying leakage-resilient PRF
is secure). Also, the reductions works for other notions of leakage-resilience, in
particular for the original notion of leakage-resilience where the leakage-function
is chosen adaptively. Thus, although our current PRF constructions only give us
“non-adaptive-leakage” sPRPs, future advances in leakage-resilient PRFs would
immediately translate to stronger leakage-resilient sPRPs.

In contrast, when proposing attacks, we want to consider a setting where
the adversary is as limited as possible. As explained in the previous section,
the side-channel attacks we propose against Feistel require a very limited setting
where the only leakage the adversary gets is some simple function (e.g. Hamming
weight) of the inputs to the round functions. The attack works no matter what
the round functions are, they can be leakage-proof PRFs or even uniformly
random functions.

More Related Work. We shortly discuss some work on provable side-channel
security not already covered in the introduction. The more practical work on
this topic is too extensive to cover here, [37] gives an overview of this research.

Private Circuits. Ishai et al. [2524] consider a model where the adversary can
choose some wires in the circuit on which the cryptographic algorithm is run,
and then learns the values carried by those wires during the computation (This
can be seen as a generalisation of exposure resilient cryptography [13], where
the adversary was restricted to learn some bits of the input.) They were the first
to prove how to implement any algorithm secure against an interesting side-
channel, i.e. probing attacks. This work uses techniques from general multiparty
computation (MPC)E‘ Recently Faust et al. [I8] extended this result to signif-
icantly more general classes of leakage, in particular, they give a construction

5 The outputs of the round functions can be computed from the input: the output of
the ith round functions is the XOR of the inputs of rounds ¢ — 1 and i + 1.

5 Formally, Ishai et al. prove the following: let ¢ > 0 be some constant and let [X]
denote a (t+1) out of (¢+ 1) secret sharing of the value X. They construct a general
compiler, which turns every circuit G(.) into a circuit G¢(.) (of size O(t|G|)) such that
[G(X)] = G¢([X]) for all inputs X, and moreover one does not learn any information
on G(X) even when given the value carried by any ¢ wires in the circuit G¢(.) while
evaluating the input [X]. This transformation uses multiparty-computation, which
is quite different from all other approaches we discuss here.

Leakage-Resilient Pseudorandom Functions 27

(also based on general MPC) which remains secure given leakage computed by
any function from a low complexity class like ACy. The main drawback of those
constructions is that the amount of leakage that can be tolerated is very small:
to tolerate t bits leakage, the circuits must be blown up by a factor of at least
t. Moreover the construction from [I8] requires (albeit very simple) completely
leakage proof components.

(Continuous) Memory Attacks. A cryptographic scheme is secure against mem-
ory attacks, if it remains secure even if a bounded amount of information about
the secret key is given to the adversary. In this model [IJ36/4] construct public-
key encryption schemes and [26/2] construct signature schemes, identification
schemes and key exchange protocolsﬂ Unlike leakage-resilience, here the leakage
function gets the entire secret state as input, and not only what was accessed.
On the downside — unlike leakage-resilience or private circuits — memory at-
tacks are a “one-shot” game where the total amount of leakage cannot be larger
than the length of the secret key. Very recently [I0/5] extended the model of
memory attacks to the continuous setting. In their model the secret key gets
periodically updated (using local randomness and without changing the public
key), and a bounded amount about of information about the secret key can
leak in-between every two updates. The update phases can also leak, but only
a logarithmic amount. In this model, [I0] construct identification, signature and
authenticated key agreement schemes, [B] construct signatures and PKE.

Auwziliary Input. [I1] introduce the notion of security against auxiliary input,
where one requires the scheme to be secure even if the adversary is given some
leakage g(K) about the secret key as long as g(.) is uninvertible. That is, K
cannot be inverted given g(K) but with very small probability. In this model
private-key [I1] and public-key [9] encryption schemes have been constructed.

Notation & Basic Definitions

— Xt denotes {0,1}¢, i.e. all bitstring of length . L=t Ui_, X" denotes all
bitstrings of length at most ¢, including the empty string e.
— [a,] denotes the interval {a,a +1,...,b}, [b] is short for [1,).

— Sequential composition of functions is denoted with g o f(z) oef g(f(x)).

— Concatenation of two strings z,y is denoted z||y, or, if no confusion is pos-
sible, simply xy.

— wpy(z) denotes the number of 1’s (i.e. Hamming weight) in x.

— Ry, denotes a uniformly random function 2™ — X% P, a uniformly
random permutation over X".

— For X € XY™ we denote with X|; the i bit prefix of X.

" Let us mention that PRFs and PRPs (i.e. the primitives considered in this paper)
that are secure against memory attacks do not even exist. E.g. we can trivially
distinguish F'(K, X) (here K is the key and X is any fixed input to the PRF F(.,.))
from uniform with advantage 1 — 27> given as leakage the first A bits of F (K, X).

28 Y. Dodis and K. Pietrzak

— pre(X) = J;_, X|; denotes the set of all prefixes of X, including the empty
string ¢ = Xy and the entire X = X|,.

— We sometimes write X9 to denote a sequence Xi,..., X, of values.

— For a set X, X < X denotes that X is assigned a value sampled uniformly
at random from X.

— We denote with 6°(X;Y) the advantage of a circuit D in distinguishing the
random variables X,Y, i.e. 6°(X;Y) ¥ |Pr[D(X) = 1] — Pr[D(Y) = 1]I.

With 64(X;Y) we denote maxpd®(X;Y) where the maximum is over all

circuits D of size s.

E(j,YillYr) =

B - 1Y, C @ Y1) E(j — 1,Yr||X:)
s
B / : P
‘ ‘
Zio Yr Caver

F Avont >
I
Yion

Fig.1. Left: Illustration of the NALR-secure PRF '™ : Z3k+n o yym _, ydkt2n
(here shown for m = 4 and input 1011 € X™) from any standard (weak) PRF F :
Xk x Zn — 24+ We consider adversaries who with each such query X can get
leakage A for every I € pre(X) which is defined as A &f g(Kr,Zr, 1), where g is any
function of bounded size s and range A. And moreover all the Z7,I € pre(X).

Right: Ilustration of the second Claim from the proof of Theorem

2 Leakage-Resilient PRF's

Figure [(left) illustrates our construction of a PRF F : ¥% x Y™ — X" for
which we will show that it satisfies a relaxed notion of leakage-resilience where
the leakage function is a priori fixed (and not adaptively by the adversary with
every query). Recall the standard definitions of (weak) PRFs.

Definition 1 (PRF/weak PRF). F : X% x X™ — X" is an (€pf, Sprf, Gprf)-
secure pseudorandom function (PRF) if no adversary of size sy can distinguish
F (instantiated with a random key) from a uniformly random function, i.e. for
any A of size spi making qus oracle queries we have

li{r[AF(K") — 1] = Pr [AR=n() 1) < e

m,mn

Leakage-Resilient Pseudorandom Functions 29

F as above is a (€pr, Sprf, Gprt)-Secure weak PREF if the above only holds for ran-
domly (and not adversarially) chosen inputs, i.e. for K & X5 and

fori=1,...qu: X;<X™ YieFK, X)) R Rp.(X))

we have PrlA(X %Y%) = 1] — PrlA(X %", R%*) = 1] < €pf

Definition 2] below specifies what we mean by a PRF F being leakage-resilient
w.r.t. to a class of leakage functions L. Informally, we consider an adversary
A with access to two oracles. Initially, we sample a key K < X*. The first
oracle then takes as input some X € XY™ and outputs the output of the PRF
Y « F(K,X) on this input and the leakage A «— ¢(K,X) (where g is any
function from the class £). The second oracle is either a uniformly random
function R, ,, or the PRF F(K,.) (using the same key as K the first oracle.).
We require that no efficient 4 can distinguish these two cases. Of course we
have to require that A never queries the two oracles on the same input X, as
otherwise distinguishing becomes trivial.

The practical implication of this definition is as follows. Consider an adversary
who can launch a side-channel attack against F(K,.), where for every query
F(K,X) made she can measure some leakage A(K, X). If F is L resilient, and
the leakage A(K, X) can be modelled as A(K, X) = g(K, X) for some g € L,
then for all inputs X’ on which F(K,.) has not yet been queried, the output
F(K, X') will be indistinguishable from random.

Definition 2 (L-resilient PRF/PRP/sPRP). F : X" x XY™ — X" s q
(€prf, Sprf, Qpre)-Secure L-resilient pseudorandom function if for every adversary
A of size sp and every g € L

%r[AFg(K,-),F(K,~) —1] - Kgr [AFg(K,.),RnL,n(~) — 1] < epr (1)

Here A can make a total of ques queries (arbitrarily scheduled) to his two oracles,
but the queries to the first and second oracle must be disjoint. The first oracle
FI(K,.) takes as input X € X™ and outputs F(K, X), g(K, X).

L-resilient pseudorandom permutations (PRP) are defined similarly, except
that now for every K, F(K,.) has to be a permutation and the random function
Ry in eq.(d) is replaced with a random permutation P,,. A L-resilient super
PRP (sPRP) is defined the same way, except that now we additionally allow
the adversary to make inverse queries. Here A is also not allowed to make an
inverse (forward) query Y to one oracle, if Y has been received as output to a
forward (inverse) query from the other oracle.

Definition 3 (NARL security). We say that « PRFF (same for PRP,sPRP)
is non-adaptive leakage-resilient if the computation of F(K,X) can be split into
t > 1 steps, and F is L-resilient w.r.t. to a class L which can leak, for every of
the t steps, arbitrary A bits of information about all the data that is accessed in
this step.

30 Y. Dodis and K. Pietrzak

Below we define our construction I'™™ of a function as illustrated is Figure [I]
for which we will prove that it is NARL secure if instantiated with any standard
weak PRF F. This construction can be seen as a hybrid of the GGM construction
[21] and the leakage-resilient stream-cipher from [38].

Definition 4 (Construction I'F). For a functions F : X% x X — 34k+2n,
we denote with I'* a function X3+t x Xm — $4k+20 defined as follows (cf.
Figure[l). The secret key K consists of the four values Z. € X" K., Ko, K1 €
Xk, The output on input X € X™ is Yx «— F(Kx, Zx) where Z;, K1 for I €
pre(X) are recursively defined as

(Z10,Zn, K00, K101, K110, K111) < F(Kr1, Z1)

Figure [l illustrates this construction for m =4 on input X = 1011.

Theorem [below states that I is NARL secure. Or more precisely, L-resilient,
where £ contains all functions that leak A bits of arbitrary information about
every invocation of F. How large A can be depends on the security of F. Roughly,
if F cannot be broken with advantage 2%, then we can leak A = w/6 bits with
each of the n invocations of F. (and thus nw/6 bits in total.)

NARL security requires that the leakage in each of the m + 1 steps (i.e.the
invocations of the underlying F) can depend on absolutely all data that is ac-
cessed during this step. For step ¢ (0 <4 < m) this means Z7, K, where I = X|;
is the i bit prefix of the input X, but also the last two bits of I itself, as this
bits specify which part of the statdd must be accessed in this step. We will even
give the entire I as input to the leakage function.

Theorem 1. If F is a weak PRF, I'™"™ is a NARL super-PRP, where each
invocation of the underlying F is considered a step as in Def. [If the PRF
cannot be distinguished from random with advantage more than eys, then we
can tolerate leakage of A\ = log(ep_rfl)/6 bits per step. The precise quantitative
statement is given below.

Assume F 2 XF x X — XARH20 s g (en, St n/exs) secure weak PRF (where

ot > 1273 andn > 20) and let \ = log(e;rfl)/ﬁ. Then I'Fm . 38k+n o ym
DART2N s 0 (€, Shess Apes) S€CUTE L x-Tesilient PRF for any gl and

1/12
St = Spriag /2P (N + k)P — s me gy ene =8 g om- €Pr/f
where the class L, contains all functions Ly indexed by a function g : Xk+tntm —
XX of size at most s defined as (with K1, Z1 as in Definition[f)

def
Lo(K, X)={A1,Z1 : Iepre(X)} A= g(KpZ1,1)

Recall that a random variable X has min-entropy k, denoted Hoo(X) = k, if
Pr[X = 2] < 27% for any « in the support. In the proof, we will extensively use

a computational version of this notion called HILL-pseudoentropy [23/3].

8 Let I; denote I where the last d bits deleted. Then before step I the state is
Z1021n1, Kr,00, K1,01, K1y10, K1511-

Leakage-Resilient Pseudorandom Functions 31

Definition 5 (HILL-pseudoentropy[233]). We say X has HILL pseudoen-
tropy k, denoted by HE'SLL(X) > k, if there exists a distribution Y with min-
entropy Hoo (Y) = k where 05(X;Y) <e.

Proof (of Theorem[d]). Our construction I'™™ is inspired by the construction of
the leakage-resilient stream-cipher from [38], and also the proof is very similar.
We will use several technical results from [38/17] which for space reasons are
moved to Appendix [Al

It will be convenient to consider an adversary which is stronger than what is
actually required in the proof. We consider an adversary A who can adaptively
“explore” the tree structure underlying the I'™™ construction. This is modeled
by giving her access to two oracles O /(.) and O%(.). These are initialised with
a random key K (as used in I'™™), a random bit b and a uniformly random
function R. The 0% oracle takes inputs from XY™ and outputs either random
outputs (if b = 1) or the output of I'™™ (if b = 0). The Ok oracle allows to
“explore” the tree structure of I'™.

Z[(),Zjl,/lj if I e xsm-1 b fb
Ox(l) = {YI,AI it [exm Ox D = Y R(1) if b=

We put the additional restriction on the order in which queries can be made: A
can only make a query I to O or OY%, if the |I| — 1 bit prefix of I has already
been queried (the first query can only be €). Wlog. we assume that A never
makes the same query twice. A can never make the same query I € XY™ to both
oracles (which would trivially allow to distinguish the cases b= 0 and b= 1.)

A ql’)rf—query adversary A’ who breaks the L y security of '™ with advantage
€ can be turned into an adversary A of almost the same size who has advantage
€ in distinguishing the cases b = 0 and b = 1 in the experiment just described:
A query X to I'"™(X) can be simulated by making the queries pre(X) to Ox.
A query X to the second oracle can be simulated the same way, except that the
query X is forwarded to O%(.). This .A makes at most (m— 1)q;/)rf and ql’)rf queries
to the first and second oracle respectively. Thus it remains to upper bound

Pr[AOK(')’O%(') —~1— Pr [AOK(%@}AJ — 1]
K K.R

This means we must show that the outputs of the oracle O% : I — F(Ky, Z;)
are pseudorandom even given access to O, and thus cannot be distinguished
from the uniformly random outputs of O} : I — R(I). Let view; denote the
view of A after the ith query, the initial view is viewy = {Z.}. We say that
I € ¥=™ is a “potential query” if A did not yet make the query I but all the
its prefixes pre(I) \ I. The following facts hold (with high probability) after the
ith query and for any potential query I. (We ignore the precise bounds on HILL
pseudoentropy, writing only HM''t to denote HE'SLL for “small” € and “large” s.)

1. K7 and Z; are independent given the view view; of A.
2. HH"‘L(KI\viewi) =k —2\and HH"‘L(ZI\viewZ- \ ZI) =k -2\

32 Y. Dodis and K. Pietrzak

3. If Ky, Z; satisfy fact 1 & 2 then
(a) F(Ky, Z) is pseudorandom given view;.
(b) HH”‘L(F(K[, Z[)‘AI,VieWi) =S |F(K[, Z[)‘ — 2.

Note that fact 3.(a) implies that a query I to O% will result in a pseudorandom
value F(K7p, Z1). As just described, this establishes the theorem. The lemmata
below are given in Appendix [Al

Fact 1 follows from Lemma [(originally from [16], also given as Lemma 5 in
[38]). The only reason we add Zj9Z to the output of Ok (I) (and not only the
leakage Aj) is so we can apply this lemma.

Fact 3.(a) follows from Fact 2 using Lemmata Ml and B which state that
the output F(K, Z) of a weak PRF is pseudorandom as long as K and Z are
independent and have sufficiently high pseudoentropy.

Fact 3.(b) follows from Fact 3.(a) and Theorem 2 from [I7] (or, independently
[40]), which states that a pseudorandom value like F(K, Z) has high pseudoen-
tropy, even if a bounded amount of information about the seed (in our case K, Z)
is leaked. The precise quantitative statement of Fact 3.(b) is given as Lemma
(which is Lemma 6 from [38]).

Finally, Fact 2 holds by induction over the queries that A makes using Fact
3.(b). To see this, note that Fact 2 holds initially for ¢ = 0 as Ko, K1, K., Z.
are independently and uniformly sampled. Now assume it holds after the ith
query, and A makes the query I (where |I| < m), then by Fact 3.(b) the newly
computed values Zrg, Zr1, Kroo, - - -, K111 < F(Kr, Zr) will also satisfy Fact 2.

So far we have only established the qualitative statement that I'™™ is a NARL
secure PRP but said nothing about the exact security as claimed in the proof.
The HILL-pseudoentropy in the facts above must be quantified, e.g. in fact 2.
above HM' (K |view;) = k—2A can be expressed as H' (K |[view;) = k—2) for
some ¢, s. One then has to do some bookkeeping bounding how this parameters
get worse (i.e. how s decreases and € increases) during the run of the experiment.
As this is not very instructive we omit this calculations. The bounds we get here
are exactly the same bounds that are proven for the leakage-resilient stream-
cipher in [38] (when using the same F and the number of invocations to the
underlying F is the same). In fact, minor adaptions of the proof from [38] give us
the claimed bounds. The only difference is that the advantage e;rf in this paper
is a factor q")rf larger, the reason is that our A can make q"wf “challenge queries”

to the OY oracle, whereas in [38] only one challenge query is considered. O

3 Side-Channel Attacks on Feistel

In this section we put forward generic side-channel attacks on Feistel networks.
As Feistel networks (and minor variations thereof) are the only generic con-
structions of PRPs from PRFs known, this indicates that constructing leakage-
resilient PRPs from leakage-resilient PRFs might be significantly harder than
constructing PRPs from PRFs in the normal (non-leakage) setting. Below we
first define the Feistel network.

Leakage-Resilient Pseudorandom Functions 33

Definition 6 (Feistel, p). For a function f : X" — X™ we denote with

def

U[f] the permutation over X*" defined as ¥[f](rr,xr) = f(xr) ® rrl2r.

U(fi,..., fr] denotes U[f.]o...0W[f1].
We define i as (Rg, ..., Rry1) def w(@[f1,..., fr], Ri||Ro) where fori > 1

R; def Ri—1 @ fi—1(Ri—1), so R; is the input to the ith round function on input

X = Ry||Ro.

In a classical paper, Luby and Rackoff prove that the advantage of any ¢-query
distinguisher in distinguishing 3 &y 1,- .-, f3] from a uniformly random per-
mutation over X" is upper bounded by%tqQ/Q” if the f; : ™ — XY™ are uniformly
random functions[l This in particular implies that no adversary who can query
Vs in forward direction can invert W3 on a random Y € X2, unless she makes
q = O0(2"/?) queries.

We consider a setting where the adversary not only can make queries to some
Feistel network @, % U(f1,..., fr], but with each query X, besides the output
Y — ¥, (X), also gets some “leakage” about the intermediate values.

We will consider different leakage functions g : 2™ — X*, our attack will work
for any functions which allow “reconstruction” as defined below

Definition 7 (reconstructible). A function g : X" — X* is (k,0) recon-
structible, if there exists an efficient algorithm By such that Pr[C’ = C] > § in
the experiment below:

1. Sample a random challenge C & X™.

2. By can adaptively make k queries Xi,..., Xy to an oracle which on input
X; outputs g(C & X;).

3. By outputs C'.

If g is probabilistic, then it is (k,d) reconstructible if there exits a single By such
that the expectation (over the randomness of g) of the probability E[Pr[C’ = (1]
1s at least . Two examples of reconstructible functions are given below.

Hamming-weight: The Hamming-weight function g : X" — XMogn1 g(X) oef

wy (X) is (n,1) reconstructible: For i € [n] let B ask for A; = g(X @ ¢;),
where e; = 0°7110" %! for i = 1,...,n. Note that A; can only take two
values, wy (X) — 1 or wy(X) + 1, which is the case if the ith bit of X is 1
and 0 respectivelyl!

9 With one round more, the same result holds even if the distinguisher is allowed to
make inversion queries.

10 This then implies that ¥[f,..., f3] is a pseudorandom permutation if the f;’s are
pseudorandom functions. In fact, Luby-Rackoff proved this latter result directly, but
as advocated e.g. in [33], the detour via uniformly random objects is cleaner and
easier.

L 1f all A; are the same then X = 1" or 0™, which is the case can be deduced from A;
(which is n — 1 or 1 in those cases).

34 Y. Dodis and K. Pietrzak

Noise: For some v > 0 consider the probabilistic function g, : 2™ — X™ which
flips every bit of its input with probability 1/2—~ (and each bit of every input
is flipped independently.) For any k, g, is (k,1—n- 6*2"“'72) reconstructible:

B, uses any sequence Xi, ..., Xy of distinct inputs, and guesses that the

ith bit of C is 0 iff the majority of the ith bits in g, (C & X1), ..., g,(C B Xy)

is 0. By the Chernoff bound, the probability that the ith bit is guessed wrong
is at most 672"“'72, taking the union bound over all n bits we get the bound
as claimed.

Theorem 2. For some r > 3 and any fi,...,fr : X" — X", consider the r
round Feistel network W, = W[f1,..., fr] and some leakage function g : X" — X*
which is (k,d) reconstructible. Then there exists an attacker A which can invert
W, on any value Y with probability 5(’“+1)T_2, where A makes 4(k + 1)"~2 for-
ward queries to ¥,., and with each query X learns the output ¥,.(X) and leakage
g(R1),...,9(Rr-—1) about the inputs to the round functions (Rg,..., Ry41) <
w(¥,., X). The running time of A is O((k+1)"73|B,|) where |By| is the running
time of By as in Definition[7]

In the theorem we only consider the case r > 3, for r = 0,1 or 2 one can
trivially invert with probability 1 making 0,1 or 4 forward queries respectively.
This theorem generalizes Theorem 3.1 from [12], who consider the case where
the adversary gets all the R;’s. (or equivalently, where g is (1, 1) reconstructible.)

Remark 2. Note that we don’t have to leak g(R;) for ¢ € {0,1,r,r+ 1} as for
those i the entire R; is already contained in the input or output. The above
theorem can also be proven (with worse bounds: (k+1)" queries and probability
(5(’“+1)T) in a weaker setting where the adversary does not even get to see the
output ¥, (X) = R;||Rr41, but instead gets the leakage g(R;), g(Rr4+1)-

Remark 3. The success probability s+1? drops very fast in k and r. This
is not an issue for leakage functions where § = 1 like Hamming weight. But
this also is good enough for noisy leakage, where we get a success probability
of (1—n-e 2k)R+D"> > (1 — . e=287" . (k 4+ 1)72) which approaches 1
exponentially fast in k.

Proof (of Theorem[d). The proof by induction on the number of rounds r. For
J € r]let¥; il @(f1,..., f;] denote the first j rounds of ¥,. For any j,1 < j <,
we let E(j,Y;) def W;l(Yj), that is, the input Z such that the intermediate value
after j rounds in the computation ¥,(Z) is Y;. It will be convenient to define
E/(ja }/j) = {Z7 WT(Z)ag(Rl)v v ag(RT)} where (R07 ey R?”-i-l) — ,Lt(!pr, Z) We
show that

Claim. E'(1,YL||Yr) can be computed (with probability) making k+1 forward
queries to .

Leakage-Resilient Pseudorandom Functions 35

Proof (of Claim). As Z «f E(1,YL||YR) is Yr|| f1(Yr)®YL, to get Z it is sufficient

to learn C' % f1(Yr). To get E'(1,YL||Yr) we then make one more ¥, query Z.
Let B, be as in Definition [, we will use it to reconstruct C' as follows: For every
query X; asked by B, we make the query Yr||X; to ¥,. The answer will contain
the leakage Ay = ¢g(C & X;), which is exactly what By expects as answer to his
query X;. Thus after k£ queries we learn C' with probability §. a

Claim. For j € [2,7 — 2], E'(§,YL||Yr) can be computed (with probability ¢)
making k + 1 queries to E'(j — 1,.).

Proof (of Claim). The proof of this claim is illustrated in Figure[Il The idea is
similar as in the previous claim; We will use B, to reconstruct C &ef fi(Yr) (as
explained below) and then we get E'(5, Y. ||Yr) = E'(j — 1, Yg||C ® Y1) with one
more E'(j — 1,.) query.

To reconstruct C' = f;(Yg), for every query X; made by B,, we ask for
E'(j — 1,Yg||X;) which includes the leakage 4,11 = g(C @ X;)) as expected by
By. Thus after k queries X1,..., Xy, B, outputs C = f;(Yz) with probability ¢.

Claim. For j € {r — 1,7}, E'(4,YL||Yr) can be computed making 2 queries to
E'(j—1,.).

Proof (of Claim). We ask for E'(j — 1,0"||Y%) = {Z,%,(Z),...}, here ¥, (Z)
contains f;(Y7) in the clear (it’s the left part of ¥,(Z) for j = r — 1 and right
part for j = r). Make one more E'(j — 1,.) query to get E'(4,YL||Yr) = E'(j —
LYR|f;(Y2) & YL). O

Let us for now assume that § = 1 (i.e. By always reconstructs correctly) and
let T}, denote the number of forward queries to ¥, one has to make in order to
compute E’(j,.). By the above claims

1. Th,=k+1
2. Ti,r = (ki + 1)Ti—1,r fori e [2, r— 2]
3. T, =2-Tiy,fori=r—1lori=r.

For i < r — 2, the relations 1. and 2. are satisfied by
T;r < (k+1)
So Ty—a; = (k +1)"=2 with 3. this gives
T, =4(k+1)"2

As claimed in the theorem. We just have to verify the success probability, the
error 6077 comes up as follows: by the first claim, we can compute F(1,.)
with probability §. For E(j,.) (1 < j < r — 1) we need k + 1 invocations of
E(j —1,.), thus the error exponentiates with k£ + 1. For j =7 —1 and j = r no
extra error is introduced. O

36 Y. Dodis and K. Pietrzak

4 Leakage-Resilient PRPs

Theorem [B] below states that an r round Feistel network, instantiated with £-
resilient PRF's, is a £'-resilient super PRP. Here £’ contains all leakage functions
which for every round round i € [r] leak g;(K;, R;) where g; € £ is an admissi-
ble leakage function for the leakage-resilient PRF used in the round functions.
Moreover the round function inputs R; are leaked entirely. Thus, if the PRF is
NALR secure, so is the super PRP. The number of queries a distinguisher can
make is exponential in r, thus for super-logarithmic r we get security against
any polynomial distinguisher.

Theorem 3. An r round Feistel network instantiated with NARL secure PRFs
is a NARL secure super PRP for q-query distinguishers satisfying ¢ < 1.387/2~1,
More precisely, let F : Xk x X" — X" be a (€prf s Sprf, q)-secure L-resilient
PRF and W, = ¥[f1,..., fr] denote an r round Feistel network instantiated with
fi = F(K;,.). Then W, (whose key is K aef {Ki,...,K;})is a (e s,q) L -resilient
super-PRP for
6,.6 2
QI3 s Flagor e=Q@bqn) et 0+

Where L' contains, for every gi,...,gr € L, the function g’ defined as

g/(K,X) = {gl(Kla Rl), N ;gr(Kra Rr), Ro, ey Rr+1}
with (Ro, ..., Rry1) — w(@, X).

We will prove this theorem using a combinatorial lemma from [12]. Consider
an adversary A making ¢ queries (forward or inverse) to ¥, = ¥[f1,..., fr].
Let RJi, j] denote the input to the jth round function on the ith query. We say
R[i,j + 1] (vesp. R[i,j — 1]) is “freshly generated” if the ith query is a forward
(resp. inverse) query where R[i, j] is fresh in the sense that R][i, j] # R[k, j] for all
k < j (and thus f; has not been invoked on R[i, j] before). We say that for this
sequence of queries the 5-XOR condition holds, if some freshly generated value
can be expressed as the bitwise XOR of 5 previously computed round function
inputs. In [I2] the following Lemma is proven

Lemma 1 (Lemma 4.1 from [12]). Let ¥, be any r round Feistel network.
For any s < r/2, if after making q < 1.38%/% forward/inverse queries to W, the
5-XOR condition does not hold, then there is no collision on the input to the jth
round function for any j € [s,r — s].

Next we show that it is hard to provoke the 5-XOR, condition in ¥,..

Lemma 2. Assume an adversary A of size s can satisfy the 5-XOR condi-
tion with probability e making q queries to ¥,.(K,.) as in Theorem[3 (with each
query X also getting the leakage g'(K, X) for some ¢' € L'.) Then F is not a

5.5

(Sprf s €prf 5 @) -secure L-resilient PRE where spf = s+ |F|-q-1 and epef = qfr — o

Leakage-Resilient Pseudorandom Functions 37

Proof. We define an adversary A’ (which will use A as a black-box) against the
L-resilience of F. As in Definition 2] A’ has access to FI(K,.) (Where g € £ and

FI(K,X) «f [F(K, X),g(K, X)].2 and O(.), and has to guess whether O(.) is
a random function or F(K,.).

A’ first guesses a random query 4 and round j (1 <i<¢q,1 <j <r). Then it
simulates an attack of A on ¥,., where for the first ¢ queries it uses its first oracle
FI(K,.) as the function for the jth round, and samples the round keys for the
other » — 1 rounds at random.

On the ith query, if the input to the jth round function is not fresh or the
5-XOR conditions already holds, A’ outputs 0 and stops. Otherwise it uses its
second oracle O(.) to compute the output, which gives a “freshly generated”
value R. If this value can be expressed as the XOR of 5 previous round values,
A’ outputs 1 and 0 otherwise.

Assume O(.) is a uniformly random function, then the probability that A’
outputs 1 is at most ¢°r°/(5!-2") as the output of O(.) is uniformly random, and
there are at most ¢°r®/5! possible values (i.e. each subset of 5 queries specifies
one possibility) which will trigger the 5-XOR, condition.

Now assume the other case, where O(.) is F(K,.). If A will provoke the 5-
XOR condition (which holds with prob. €), and A’ guessed which fresh query
will satisfy this condition for the first time (with happens with prob 1/(g - r)),
then A’ will output 1. Thus in this case A’ outputs 1 with prob. /(g - r).

By definition, the gap €/q-r — ¢°r%/(5! - 2") between those two probabilities
is A" advantage in breaking the L-resilience of F. O

Proof (of Theorem[3). Consider an adversary A of size s against the £'-resilience
of W, as specified in Definition 2] This 4 has access to two oracles, the first
being ¥¢ (K,.) : X — [¥,(K,X), ¢ (K, X)] and the second being either ¥, (K, .)
or a uniformly random permutation P, (.) (we call this the real and random
experiment). By Lemma[2] in the real experiment the inputs to the functions in

round w & |r/2]| and w+ 1 will be distinct with probability at least 1 — € where
€ = q-r-eur+¢5r%/(5!-2"). Conditioned on this, the output of the right oracle in
the real experiment is pseudorandom and thus cannot be distinguished from the
output of the right oracle P, (.) in the random experiment but with probability
2 €prf + q*/2", here the 2€rs accounts for the output only being pseudorandom,
and the ¢?/2" accounts for the fact that even if those values were uniform, the
distribution would still be slightly off from what the oracle P,, in the random
experiment outputs (we omit the details here.) Thus, A cannot distinguish the
two experiments better than with probability € + 2 - €prf + ¢2/2". O

12 The following reduction also works for the original notion of leakage-resilience where
the leakage-function can be adaptively chosen. For this one must consider the oracle

F£ (instead F9) defined as F4(K, X, g) & [F(K, X), g(K, X)] (where g € £). Thus,
although our current PRF constructions only give us “non-adaptive-leakage” sPRPs,
future advances in leakage-resilient PRFs would immediately translate to stronger

leakage-resilient sPRPs.

38

Y. Dodis and K. Pietrzak

References

10.

11.

12.

13.

14.

15.

16.

17.

. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and

cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474-495. Springer, Heidelberg (2009)

Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36-54. Springer, Heidelberg (2009)

Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In:
RANDOM-APPROX, pp. 200-215 (2003)

Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1-20. Springer, Heidelberg
(2010)

Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Cryptography resilient to
continual memory leakage. Cryptology ePrint Archive, Report 2010/278 (2010),
http://eprint.iacr.org/

Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430-448. Springer, Heidelberg (2005)

Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1-20. Springer, Heidelberg (2008)

Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225-244. Springer, Heidelberg (2006)

Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361-381. Springer, Heidelberg (2010)

Dodis, Y., Haralambiev, K., Lopez-Alt, A.; Wichs, D.: Cryptography against con-
tinuous memory attacks. Cryptology ePrint Archive, Report 2010/196 (2010),
http://eprint.iacr.org/

Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621-630 (2009)

Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534-554. Springer, Heidelberg
(2007)

Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 301-324. Springer, Heidelberg (2001)

Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207—224. Springer, Heidelberg
(2006)

Dziembowski, S., Maurer, U.M.: Tight security proofs for the bounded-storage
model. In: 34th ACM STOC, pp. 341-350. ACM Press, New York (2002)
Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp.
227-237 (2007)

Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293-302. IEEE Computer Society Press, Los Alamitos (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Leakage-Resilient Pseudorandom Functions 39

Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: The computationally-bounded and noisy cases. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135-156. Springer, Heidelberg
(2010)

Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343-360. Springer, Heidelberg
(2010)

Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Kog, C.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251-261. Springer, Heidelberg (2001)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792-807 (1986)

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45-60 (2008)
Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. STAM Journal on Computing 28(4), 1364-1396 (1999)
Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308-327. Springer, Heidelberg (2006)

Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463-481.
Springer, Heidelberg (2003)

Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 703-720. Springer,
Heidelberg (2009)

Kiltz, E., Pietrzak, K.: How to secure elgamal against side-channel attacks (2009)
(manuscript)

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996)

Kocher, P.C.: Design and validation strategies for obtaining assurance in coun-
termeasures to power analysis and related attacks. In: Proceedings of the NIST
Physical Security Workshop (2005)

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999)

Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. STAM Journal on Computing 17(2) (1988)

Maurer, U.M.: A provably-secure strongly-randomized cipher. In: Damgard, 1.B.
(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 361-373. Springer, Heidelberg
(1991)

Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110-132. Springer, Heidelberg (2002)
Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21-39. Springer, Heidelberg (2004)

Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278-296. Springer, Heidelberg
(2004)

Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18-35. Springer, Heidelberg (2009)

40 Y. Dodis and K. Pietrzak

37. European Network of Excellence (ECRYPT). The side channel cryptanalysis
lounge, http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

38. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462-482. Springer, Heidelberg (2010)

39. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: E-smart, pp. 200-210 (2001)

40. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudo-
random sets. In: FOCS, pp. 76-85 (2008)

41. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

42. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. Journal of Cryptology 17(1), 43-77 (2004)

A Technical Lemmata

Lemma 3 ([16]). Let A, By be independent and ¢1, @2, ... be any sequence of
functions. Let Ay, As, ..., B1,Ba,... and V1, Vs, ... be defined as

((Ait1,Vigr), Biv1) = (¢ir1(As, Vi, ..., Vi), By) if i is even
(Aiy1, Vigr, Biy1)) :== (A, ¢ip1(Bi, Vi, ..., Vi) otherwise

Then B; — {V1,...,Vi} = A; (and A; — {V1,...,V;} — B;) is a Markov chain
(or equivalently, A; and B; are independent given the Vi,...,V;)

Lemma 4 ([38]). For any a >0 and t € N: If F: {0,1}* x {0,1}" — {0,1}™
is a (€prf, Sprf, Gprf) -secure wWPRE' (for uniform keys), then it is a (€}, Spes Qo) -
secure wPRF even if the keys are only sampled from a distribution with min-
entropy Kk — a with

q2f t . 6/2](
/ / / +1 pr pr
Qprf = Gprs ~ Sprf 2 Sprfct €prf < €prg /277 — on+l 2-exp | — 8

Lemma 5 ([38]). Let 8 > 0, then if F : {0,1}* x {0,1}" — {0,1}" is a
(€prfs Sprf, 1)-secure wPRE (for uniform inputs), it's also a (€, Sy, 1)-secure
wPRF if the input is chosen from a distribution with min-entropy m — (3, where
for anyt e N

2.t-¢€?
Sprf > s;,rf -2t €prf < e;,rf/QﬁH —2-exp (— 64 prf)

Lemma 6 ([38]). Let F : {0,1}" x {0,1}" — {0,1}™ be a (€pr, Sprf, 1/ €nrg) -
secure wPRF. Let K € {0,1}" and X € {0,1}" be independent where Hoo (K) =
K —2X\ and Hoo(X) = n — 2X and let f : {0,1}*+" — {0,1}* be any leakage

function, then for A < log(ep_rfl)/6

PrHEG(FK, X)X, F(K X)) > m = 2] > 1— 2724

with € = 2722%2 and 5" = 556 /223 (0 + K)3.

http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://eprint.iacr.org/

	Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks
	Introduction
	Leakage-Resilient PRFs
	Side-Channel Attacks on Feistel
	Leakage-Resilient PRPs
	References
	Technical Lemmata

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

