
Automatic Generation of Inductive Invariants

from High-Level Microarchitectural Models of
Communication Fabrics

Satrajit Chatterjee and Michael Kishinevsky

Intel Corporation, Hillsboro OR 97124, USA
satrajit.chatterjee@intel.com

Abstract. Abstract microarchitectural models of communication fab-
rics present a challenge for verification. Due to the presence of deep
pipelining, a large number of queues and distributed control, the state
space of such models is usually too large for enumeration by protocol
verification tools such as Murphi. On the other hand, we find that state-
of-the-art rtl model checkers such as abc have poor performance on
these models since there is very little opportunity for localization and
most of the recent capacity advances in rtl model checking have come
from better ways of discarding the irrelevant parts of the model. In this
work we explore a new approach for verifying these models where we
capture a model at a high level of abstraction by requiring that it be
described using a small set of well-defined microarchitectural primitives.
We exploit the high level structure present in this description, to auto-
matically strengthen some classes of properties, in order to make them
1-step inductive, and then use an rtl model checker to prove them. In
some cases, even if we cannot make the property inductive, we can dra-
matically reduce the number and complexity of lemmas that are needed
to make the property inductive.

1 Introduction

Consider the microarchitectural model shown in Figure 1. It consists of a source
that non-deterministically generates packets that contain the 6-bit value 0. The
source feeds into a pair of serially connected fifos each of size k, the second of
which feeds into a sink that consumes a packet non-deterministically. The com-
munication between the source, the fifos and the sink is by means of a simple
handshake. We present a formal semantics for these microarchitectural primitives
in Section 3, but we hope that for now this intuitive description suffices.

Consider the problem of verifying that any packet seen at the output of the
second fifo contains the value 0. If we generate Verilog from this description
and use a state-of-the-art rtl model checking engine such as abc [3] (winner of
the 2008 cav Hardware Model Checking contest), we find that this apparently
trivial problem is surprisingly hard even for small values of k. For instance,
even for k = 4, abc takes about 10 minutes to solve this problem on an Intel
3 GHz Xeon processor resorting to interpolation to prove it. Our experience

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 321–338, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

322 S. Chatterjee and M. Kishinevsky

k k

0 (6-bit)

x y z

Fig. 1. A simple microarchitectural model with a source that generates the 6-bit value
0, two queues that can store k elements each and a sink. The components are connected
by channels x, y and z.

with other industrial tools is similar. And this is for a system with only two
queues and a simple topology. In our work on modeling the microarchitecture
of communication fabrics we routinely encounter systems where a packet may
traverse tens of queues in its lifetime (due to pipelining, path splitting and
reconvergence, etc.) and there is complex control logic for resource management.
Therefore, even if each queue is sized minimally and packets are represented
abstractly, there is still a lot of state. rtl model checkers – though useful for
bounded model checking – are unsuccessful in producing proofs for all but the
simplest examples even when run for days or weeks. On the other hand, explicit
state model checkers such as Murphi run out of memory since there are many
interleavings due to non-determinism and deep pipelining.

If we go back to our example, it is obvious to a human designer that the
property should hold. It is obvious since we are able to use our knowledge of
queues in order to reason about the system. However, when we throw this prob-
lem to abc or Murphi, this high-level information is lost. abc sees a sea of
gates, and Murphi a sea of rules. The traditional approach to handling such
verification problems is to resort to theorem proving, or its cousin manual in-
variant strengthening. In manual invariant strengthening, a verification engineer
adds additional invariants (called lemmas) to the model so that the entire set
of invariants becomes inductive. Adding these additional invariants is a black
art often requiring expertise both in formal verification and the system being
verified [10].

In this work, we seek a less labor-intensive way of exploiting the high-level
structure of our models than theorem proving or invariant strengthening. The
key idea is to require that the microarchitectural models be described in terms
of a small set of primitives such as queues, arbiters, forks and joins. Using our
knowledge of these primitives, we can automatically add a number of lemmas
so that the whole set of invariants becomes (1-step) inductive. Most of these
lemmas are not local primitive-specific invariants, but are obtained by global
analysis of the model. The experimental results are very encouraging: with no or
little human effort and little CPU time, we can now prove a number of properties
on real models which could not be proved before. In our example above, all
necessary lemmas are added automatically, and abc discharges the resulting
problem in almost no time.

The requirement that the model be expressed in terms of specific primitives
could be a difficult one to satisfy in general. However, the set of primitives we use
in this work originated in a project aimed at reducing the effort required to write

Automatic Generation of Inductive Invariants 323

microarchitectural models of communication fabrics [4]. Using this modeling
methodology we have been able to capture the microarchitecture of a number of
real designs and to validate them using simulation and bounded model checking.
The goal of this work is to extend verification to obtain full proofs of correctness
for some important types of properties.

The use of “high-level structure” for more efficient model checking is a holy
grail of hardware verification. We believe this work makes a contribution in
that direction by presenting a concrete proposal for describing hardware at a
level of abstraction higher than rtl along with a couple of analysis techniques
that illustrate how such structure could be exploited for efficient verification.
The properties we consider are simpler than those verified in previously pub-
lished manual efforts (e.g. see [9,10] and references therein) but we seek more
automation. On the other hand, the use of high-level structure allows us to infer
invariants which would be very difficult for existing automatic rtl-based meth-
ods (e.g. see [1] and references therein) to discover. What we present is only a
beginning, and we hope that these techniques can be extended to an even larger
class of properties in future work.

2 Methodology

Our microarchitectural models are described by instantiating components from
a library of primitives and connecting them. We refer to these models as xmas
networks (xmas stands for eXecutable MicroArchitectural Specification). The
properties to be verified are specified on these networks. For verification, an
xmas network is compiled down into a synchronous model (single clock, edge-
triggered Verilog to be precise) which is then verified. We refer to this model as
the synchronous model.

Although the techniques presented in this paper could be used to directly ver-
ify xmas models instead of the synchronous models, in this work, we simply use
the high-level structure in the xmas models to discover new invariants which are
then used in the verification of the synchronous model. We choose this approach
partly for engineering convenience (we use a conventional model checker as the
trusted engine and view the analysis described in this paper as providing verifi-
cation hints) and partly because the methods described in this paper cannot be
used to prove all properties of interest (in particular liveness). A nice side effect
of this approach is that the invariants we add get checked by the model checker
rather than being assumed as given.

3 xmas Models

xmas models are constructed by instantiating components from a library of
microarchitectural primitives and connecting them with channels. Channels are
typed. In the synchronous model, a channel x with type α has two boolean
signals x.irdy (for initiator ready) and x.trdy (for target ready) for control and
one signal x.data that has type α for the data.

324 S. Chatterjee and M. Kishinevsky

source

o

e

sink

i

fork

i
a

b

f

g

join

a

b
o

h
i

switch

a

b

sf

i o

function

k

i o

queue

a

b
o

merge

Fig. 2. A key showing the symbols for the various primitives used to model microar-
chitectural blocks. Section 3 describes these components in detail. The italicized letters
(k, f , e, g, h and s) indicate parameters. Whenever we use these primitives in a diagram
we need to specify values for these parameters. Often, to avoid clutter we do not show
these values explicitly trusting that they are clear from the context. In contrast, the
gray letters (i, o, a, and b) in this figure only indicate port names and are only shown
to help you understand the formal definitions in Section 3. Observe that for some com-
ponents such as the fork, we place the parameter close to the “corresponding” port in
the diagram.

A channel is connected to exactly two components: one component called
the initiator that “writes” to the channel (via an output port) and another
component called the target that “reads” from the channel (via an input port).
In the synchronous model, the initiator drives irdy and data signals (and reads
trdy) whereas the target drives trdy (and reads irdy and data). Intuitively, a
data element (or a packet) is transferred across a channel in those cycles when
both irdy and trdy are true. Note that a channel is just a three wires and stores
no state. A channel is represented in our diagrams by a line.

An xmas network may be viewed as a directed graph with the components as
nodes and channels as edges. Edges are directed from initiator to target.

Example. In Figure 1, there are three channels x, y and z. For channel x, the
initiator is the source and the target is the first queue. Thus x is connected to
the output port of the source and to the input port of the first queue. The output
port of the first queue is connected to channel y.

Figure 2 shows the library of kernel primitives. We formally specify each primi-
tive by providing the synchronous equations that are generated for it. We present
this in some detail because the exact definitions are important to understand
the invariants that we generate later. These definitions may be skimmed on a
first reading.

Queue. In our models, storage is implemented by queues.1 In terms of interface,
a queue is one of the simplest primitives. It is parameterized by a type α of
the elements stored in the queue and a non-negative integer k that indicates
the capacity of the queue. It has one input port i which is connected to the
target end of a channel that is used to write data into the queue. Clearly, this
channel must have type α, and for convenience we say that port i also has
type α, denoted by i : α. Likewise, the output port o : α is connected to the

1 Our queues are always fifo i.e. first-in-first-out.

Automatic Generation of Inductive Invariants 325

initiating end of the channel that reads data out of the queue. The equations for
a queue are:

o.irdy := (pre(num) �= 0) i.trdy := (pre(num) �= k)
enq := i.irdy and i.trdy deq := o.irdy and o.trdy

where enq and deq are combinational signals defined for convenience, and num
is the current occupancy of the queue given by:

num := pre(num) + 1 if enq and not deq
pre(num) − 1 if deq and not enq
pre(num) otherwise

where pre is the standard synchronous operator that returns the value of its
argument in the previous cycle and the value 0 in the first cycle [2]. The elements
in the queue are stored in an array called mem of size k of signals of type
α. These are indexed by head and tail pointers used for reading and writing,
correspondingly.

head := if deq then inck(pre(head)) else pre(head)
tail := if enq then inck(pre(tail)) else pre(tail)

where inck(x) ≡ if x = k − 1 then 0 else x + 1. For j ∈ {0, k − 1} we have
memj := if enq and j = pre(tail) then i.data else pre(memj)

and,

o.data := pre(mem0) if pre(head) = 0
pre(mem1) if pre(head) = 1

...
pre(memk−1) if pre(head) = k − 1

Among our set of primitives a queue is the only one that can store data. It is
also the only delay element: even if the queue is empty, an input packet is visible
at the output only after 1 cycle.

Source. A source is a primitive which is parameterized by a constant expression
e : α.2 Each cycle, it non-deterministically attempts to send a packet e through
its output port. A source has a single output port o : α and is governed by the
following equations:3

o.irdy := oracle or pre(o.irdy and not o.trdy) o.data := e

where oracle is an unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. Each source has its own
oracle. We define o.irdy in this specific manner to keep it persistent regardless
of the oracle behavior: i.e. once a source makes a value available on the channel,
it preserves that value until a transfer. Also note that one can imagine more
complex sources which emit arbitrary values from a given set. However, for ease
of exposition we stick to the simpler definition above.

2 Henceforth we only mention the value parameters of a component and leave the type
parameters implicit.

3 When o.irdy is false, o.data is a don’t care. But for brevity in the equations, we
always assign to o.data rather than only when o.irdy is asserted.

326 S. Chatterjee and M. Kishinevsky

Sink. Dually, a sink is a component which non-deterministically consumes a
packet. It has one input port i : α and is characterized by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

Function. A function primitive is used to model transformations on the data.
It is parameterized by a function f : α → β. It has an input port i : α and an
output port o : β and is fully characterized by the following equations:

o.irdy := i.irdy o.data := f(i.data) i.trdy := o.trdy

Note that f is a combinational function that is applied to the input data to
generate the output data.

Fork. A fork is a primitive with one input port i : α and two outputs ports a : β
and b : γ parameterized by two functions f : α → β and g : α → γ. Intuitively,
a fork takes an input packet and creates a packet at each output. It coordinates
the input and outputs so that a transfer only takes place when the input is ready
to send and both the outputs are ready to receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f(i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

Join. A join is the dual of a fork. It has two input ports a : α and b : β and
one output port o : γ. It is parameterized by a single function h : α × β → γ.
Intuitively, a join takes two input packets (one at each input) and produces a
single output packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the output is ready to
receive. Formally,

a.trdy := o.trdy and b.irdy b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Switch. A switch is a primitive to route packets in the network. It has an input
port i and two output ports a and b, all of type α. It is parameterized by a
switching function s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a, and otherwise it
routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

Merge. Arbitration is modeled by a merge primitive that selects one packet
among multiple competing packets. A merge has multiple input ports and one
output port. Requests for a shared resource are modeled by sending packets to a
merge, and a grant is modeled by the selected packet. For simplicity we present
here a complete definition of a two-input merge that has two input ports a : α
and b : α and one output o : α.

Automatic Generation of Inductive Invariants 327

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy and a.irdy
b.trdy := not u and o.trdy and b.irdy

where u is a local Boolean state variable to ensure fairness. We could choose a
specific fairness algorithm such as

u := 1 if a.irdy and not b.irdy
0 if not a.irdy and b.irdy
not pre(u) if pre(o.irdy and o.trdy)
pre(u) otherwise

Example. Figure 3 shows two agents P and Q communicating via a router.
Packets are modeled by triples (t, s, d), where t ∈ {req, rsp} is the type of the
packet, s ∈ {P, Q} is the source and d ∈ {P, Q} is the destination. Each agent
creates new requests for the other agent or for itself. When an agent receives a
request (from the other agent or from itself) it produces a response by changing
the type of the message and swapping the source and the destination. The re-
sponse is produced after a non-deterministic delay. The response is sent back to
the requester where it is sunk after a non-deterministic delay. The router routes
messages according to their destinations i.e. d. (In practice this simplified mi-
croarchitecture would not be used since it deadlocks. Deadlocks can be avoided
by using virtual channels as we discuss later.)

nd-delay

nd-delay

(rsp sink)

(rsp sink)

agent Q

agent P

k

k

(ingress
queue)

(ingress
queue)

m m

n

n

router

(req,P,Q) (req,P,P)

(req,Q,P)(req,Q,Q)

(t,s,d) (rsp,d,s)

(t,s,d) (rsp,d,s)

(t,s,d) (d==P)

(t,s,d) (d==Q)

(t,s,d) (t==req)

(t,s,d) (t==req)

Fig. 3. Example showing a pair of agents communicating over a simple fabric (see text
for details). The nd-delay box models non-deterministic delay (the functions of the
fork are identity). Since each symbol has a precise formal semantics (see Section 3) this
figure is a precise executable description.

328 S. Chatterjee and M. Kishinevsky

4 Analysis for Channel Properties

A very common verification problem on xmas networks is to check that all values
flowing through a channel satisfy some property. For instance, at the input of
an agent, we may wish to check that all packets that arrive have the agent as
the destination. Invariants of this kind are called channel properties, and in this
section we see how such invariants may be strengthened.

4.1 Channel Properties

If x is a channel that has type α, a channel property is a function p : α → {0, 1}.
Intuitively, if a property p is asserted on a channel x, it means that whenever a
valid value is seen on the channel (i.e. x.irdy is asserted), the data on the channel
must satisfy p. Formally, a channel property p on a channel x corresponds to the
ltl invariant G(x.irdy =⇒ p(x.data)) in the synchronous model. For brevity,
we sometimes simply say property instead of channel property.

Example. The verification problem in the introduction corresponds to verifying
the channel property v �→ (v = 0) on channel z.4 This corresponds to the ltl
property G(z.irdy =⇒ (z.data = 0)) in the synchronous model.

4.2 Propagating Channel Properties

Given a channel property p, we can derive properties on other channels that are
“implied” by p using a set of rules. These rules are similar in spirit to Hoare
rules [8] used in program verification and are derived syntactically (i.e. no rea-
soning is involved). The goal is to strengthen the ltl invariant corresponding
to p in the synchronous model with the additional invariants obtained from the
new channel properties. The soundness of these rules may be verified from the
definitions given in Section 3.

Rule for Queue. Since a queue does not modify the data it holds, a property
holds on the output of a queue iff it holds on the input.

Example. In our running example (Figure 1), the property v �→ (v = 0) holds at
z iff it holds at y. Similarly the property holds at y iff it holds at x. It turns out
that adding the ltl properties corresponding to the channel properties for x and
y, does not make the resulting verification problem on the synchronous model
inductive. We need further strengthening, and we return to this topic shortly.

Rule for Function. Given an instance of a function primitive with the parameter
f : α → β, a channel property p holds at the output iff the property p′ = p ◦ f
holds at the input.

Rule for Switch. Consider an instance of a switch whose switching function
is s : α → β. The channel property p holds at the output a iff the property
4 By “v �→ (v = 0)” we mean the function that is 1 iff the input is equal to 0, i.e. the

function λv.(v = 0) using λ notation.

Automatic Generation of Inductive Invariants 329

v �→ (s(v) =⇒ p(v)) holds at the input. Likewise, a property p holds at output
b iff the property v �→ ((¬s(v)) =⇒ p(v)) holds at the input.

Rule for Mux. A channel property holds on the output iff it holds on each input.

Rule for Fork. A channel property p holds on the output a of a fork iff p′ = p◦f
holds on the input. Similarly, p holds on the output b of a fork iff p′ = p◦g holds
on the input.

Rule for Restricted Join. Propagating a property across a join is tricky since
the output of a join in general could be functionally dependent on both inputs.
However, in our examples drawn from the domain of communication fabrics, joins
are only used to control access to resources (e.g. see examples of credit logic and
virtual channels in Section 5). Therefore, the join function depends only on at
most one input of the join (called the functional input) i.e. it is of the form
h : α → γ (instead of h : α×β → γ). In such cases the other input carries tokens
(i.e. values having the unit type). It is easy to detect such joins automatically
since the join function h syntactically depends only on one of the inputs. If h
is constant, then either input may be taken as the functional input. Given such
a join with the restricted function h : α → γ, a property p holds at the output
iff p′ = p ◦ h holds at the functional input of the join. Extending propagation
to general joins appears to be a hard problem since it involves reasoning about
multiple channels.5

4.3 Queue Invariants

If we have a channel property p at the output of a queue, using the rule for
queues presented above, we also have the property p at the input of the queue.
However, simply adding the invariants from these properties to the ltl model
does not make the synchronous problem (1-step) inductive. It is easy to see why:
Suppose a queue is in a state where it has more than 2 elements. Even if these
properties hold at the output and input of the queue, at best they guarantee that
only the oldest and youngest element in the queue satify p. They say nothing
about the other elements in the queue.

Therefore we need additional invariants to ensure that every element stored
in the queue satisfies p. For j ∈ [0, k), where k is the size of the queue, we add
the ltl invariant (recall the state variables of a queue from Section 3)

G(usedj =⇒ p(memj))

where usedj is a predicate over the state that indicates if the jth storage element
in the queue is used or not. It is defined as follows:

usedj := (head < tail and (head ≤ j and j < tail)) or
(head > tail and (head ≤ j or j < tail)) or (num = k)

5 Even with general joins there is an easy case. If p is a property such that p′ = p ◦ h
depends on only one variable, then it suffices to propagate p′ along the corresponding
input.

330 S. Chatterjee and M. Kishinevsky

Along with this, we add the ltl assertions G(num ≤ k), G(head < k) and G(tail
< k) to ensure that these state variables are within bounds. Finally, we need to
add the following invariants to establish the correct relationship between these
3 state variables:

G(head < tail =⇒ head + num = tail)
G(head > tail =⇒ head + num = tail + k)
G(head = tail =⇒ num = 0 or num = k)

These assertions are used to ensure that the head and tail pointers behave as
expected and provide a local over-approximation of the state-space.

4.4 A Note on Local Invariants

The queue invariants added above block off portions of the unreachable state
space that would otherwise lead to false counter examples in induction. However
since these invariants are local, any correlation between different queues is not
captured. However, this is exactly how a human designer thinks about the sys-
tem: for example seldom would the correctness of a design depend on say two
head pointers in two different queues taking on the same value in all portions of
the reachable state space.

Indeed, if the correct operation of a design relies on the correlation between
different components, typically this is enforced in the design by some explicit
communication structure between them. A common case in our models for this
case is when the occupancy of multiple queues are correlated in the reachable
state space. We study this problem in the next section where we follow this
communication trail to infer the appropriate invariants.

The queue is our main state holding element. Among all the primitives, the
only other interesting state holding element is the merge which maintains state
for fairness. If the merge has multiple inputs, then the appropriate local invari-
ants for the fairness logic need to be added. (For the particular 2-input merge
presented in Section 3, we do not need to add constraints for the u variable since
it can take on both 0 and 1 values in the reachable space.)

4.5 Propagation Algorithm

Given a property p on a channel, we try to maximally propagate it backwards
using the obvious iterative algorithm. This is done by looking at the initiator
of the channel, and applying the corresponding rule from Section 4.2. This cre-
ates new properties at the inputs of the initiator. This process is repeated for
each newly added property. If the initiator is a source, then the property is not
(cannot be!) propagated further. If the xmas network has a directed cycle, the
above process will not terminate. We handle this by recording the “parent” and
stopping when a cycle is encountered.

After all properties have been propagated in this manner, for each queue in
the system, we add the local invariant according to the scheme described in
Section 4.3 for each property at the output of the queue.

Automatic Generation of Inductive Invariants 331

Theorem 1 (Partial Completeness). Given an acyclic xmas network N
where all joins are restricted, and a property p on a channel in N that holds,
the above algorithm adds sufficiently many invariants to make the synchronous
problem 1-step inductive.

The propagation algorithm often leads to the creation of a large number of prop-
erties. However, many properties can be discharged locally i.e. during the prop-
agation process, they become tautologies i.e. the constant 1 function. Therefore
we use a reasoning engine to detect tautological properties and do not propagate
them further. This is an important optimization in practice.

Example. In the example of Figure 3, let l be the property (t, s, d) �→ (d = P) at
the ingress queue of agent P . If we propagate l backwards through the queues
and switches in the router using the above algorithm, we find that the properties
that are obtained from l at each input of the router are of the form (t, s, d) �→
((d = P) =⇒ (d = P)) which is a tautology. These tautological properties need
not be propagated further.

Remark on cycles. Most properties become tautologies during propagation, so
cycles in the xmas network are not a problem (as in the example above). How-
ever, for those that do not become tautologies, it may be necessary to add ad-
ditional channel invariants on loops to “break” the cycle. Furthermore, in many
cases in communication fabrics we find that packets loop at most k times, where
k is small (i.e. 1 or 2). For example in Figure 3, k = 2 (for a self-request). We
could handle such cases automatically by unrolling loops k + 1 times.

5 Invariants from Flows

As remarked in Section 4.4, if the correct operation of a design relies on cor-
relation between state variables in different components then in a real design
there is usually an explicit communication mechanism between them for coordi-
nation. In this section we present an algorithm to analyze a commonly-occuring
communication of this form that leads to correlation among the occupancies of
different queues in the system. The invariants added by this analysis allow us
to prove an important class of safety properties that check that the queues in
a system are sized correctly. Such safety properties are necessary for reasoning
about liveness.

5.1 The Basic Idea

Example (credits). Consider the xmas network shown in Figure 4 which shows
a master agent M communicating with a target T . The credit logic portion of
T issues at most k outstanding credits to M at any given time. Credits are
modeled as values of the unit type called tokens. M has to wait for a credit
before it can send a request to T . The purpose of this mechanism is to ensure
that there is always room in T ’s ingress queue for requests from M i.e. nothing

332 S. Chatterjee and M. Kishinevsky

credit
logic

master M target T

k

k

k
t

r

(outstanding
credits)

token

(credit queue)

(request
sink)

(request
source)

(ingress queue)

s

f

e

p
n

u

v
w

z

Fig. 4. Credits introduce correlation between the occupancies of different queues. Both
joins are restricted in the sense of Section 4.2 since at least one input is a token.

gets stuck on channel r. Thus r is non-blocking i.e. satisfies the LTL property:
G (r.irdy =⇒ r.trdy). Credits are freed up when data is read from the ingress
queue of T .

The non-blocking property on r is not inductive. However, by adding the
invariant

G(numc + numi = numo)

to the synchronous model, the problem becomes inductive.6 Here, numc is the
num variable of the credit queue in M , numi the same for the ingress queue in
T and numo for the outstanding credits queue in T .

The question now is how can we detect such global assertions automatically?
If x is a channel, let λx denote the number of packets that have been transferred
on x upto a given point in time (i.e. λx is the count of the number of cycles so
far in which x.irdy and x.trdy were both asserted). Now, from the equations of
a join in Section 3 it is easy to see that either a transfer happens on both inputs
and the output of a join or there is no transfer at any input or the output. Thus
for the two joins in Figure 4 we have,

λe = λf = λr and λs = λw = λz .

Similarly, for a fork it can be verified that either a transfer happens on both
output and the input or there is no transfer at all. Thus for the two forks in the
system we have the equations

λu = λt = λv and λp = λn = λs.

A queue is more interesting. Any packet that enters a queue is either still in the
queue or has exited through the output channel. Thus from the three queues in
Figure 4 we get the following three equations:

λr = numi + λp λt = numc + λe λv = numo + λw

6 Assuming that the (local) assertions G(num ≤ k) for each queue have already been
added.

Automatic Generation of Inductive Invariants 333

A

B

credit
logic

credit
logic

(ingressA)

master M target T

k

k

m

m

t1

r

t2

(ingressB) (sinkB)

(sinkA)

l1

l2
(egress
arbiter)

(ingress
switch)

e1

e2

f1

f2

n1

n2
p2

p1

g1

g2

t (t=A)

Fig. 5. Example of a shared communication path that requires more precise flow anal-
ysis. The credit logic bubbles encapsulate the logic shown in the credit logic box of
Figure 4. The switch in the target routes A packets to l1 and B packets to l2. The joins
in M are restricted and have the identity function.

From these 7 equations, we can eliminate the λ variables to get the desired re-
lationship between the num variables. This can be done automatically in the
following manner. First we create a matrix from the equations where all λ vari-
ables are to the left and all num variables are to the right. Then this matrix is
converted to Reduced Row Echelon (rre) form by Gaussian elimination (over
the rationals). Finally, we select the equations from the rre form which involve
only the num variables (i.e. the coefficients of all λ variables are 0).

Note that the λ variables are unbounded and by this elimination process, we
are only left with relations in only the num variables (which are bounded by
the size of the queues). Hence these relations can be added as invariants to the
synchronous model.

The technique described in this section resembles generation of place invari-
ants in Petri nets [5]. However, rather than modeling the communication fabric
with Petri nets (which leads to an overhead of using explicit back-pressure arcs
and complexity in modeling the data-path) we derive those invariants directly
from more compact and natural xmas specifications.

5.2 Shared Communication

In the presence of shared communication channels the approach presented above
needs to be refined.

Example (virtual channels). Virtual channels lead to sharing. They are com-
monly used in communication fabrics to multiplex multiple logical streams onto
a single physical link with the guarantee that even if one stream is blocked at
the receiver, the other streams still make progress [7].

Figure 5 shows a simple example of virtual channels. A master agent M sends
two types of messages A and B (think of these as perhaps requests and responses)
to a target T over a single channel r. The ingress switch in T routes A and B
packets to their respective ingress queues. The credit pattern of Figure 4 is used

334 S. Chatterjee and M. Kishinevsky

to ensure that whenever a packet is presented to the egress arbiter of M , there
is guaranteed to be room in the corresponding ingress queue in T . Thus channel
r is non-blocking.

Once again, the non-blocking property on r is not inductive. However, if we
add the invariants G(numcA + numiA = numoA) and G(numcB + numiB =
numoB) for each credit loop, then the problem becomes inductive. Here, numcA

refers to the num variable of the credit queue in M associated with the A packets,
and so on. However, if we try the approach from the previous example (with
suitable extensions for muxes and switches) we find that we can only derive the
weak invariant: G(numcA + numiA + numcB + numiB = numoA + numoB) which
is not enough to prove the property.

We can improve the precision of the analysis by defining a λ variable per flow
through a channel. For example we know that two types of values flow through
channel r. Therefore we introduce two variables λA

r and λB
r for r where λA

r is
a count of the number of cycles when r.irdy and r.trdy have been asserted and
r.data was equal to A. Similarly, λB

r for B. Since there are two flows through r,
we assume that two flows are possible through g1 and g2 and through f1 and f2

and associate two λ variables from each of these channels: one for A and one for
B. For all the other channels, we associate only a single λ variable since there are
only single flows through them. (We will see later how to automatically figure
out the number of flow variables needed.)

Since the ingress switch in T routes A to channel l1 and B to channel l2, we
have

λA
r = λl1 and λB

r = λl2

For a merge, a packet at the output must come from one or the other input.
Therefore, we have the following equations for the egress arbiter in M :

λA
g1

+ λA
g2

= λA
r and λB

g1
+ λB

g2
= λB

r

Observe that one input of each join in M is a token input i.e. the joins are re-
stricted. We have the following relations between the outputs and the functional
inputs:

λA
f1

= λA
g1

λB
f1

= λB
g1

λA
f2

= λA
g2

λB
f2

= λB
g2

and the following relations between the token inputs and the outputs:

λe1 = λA
g1

+ λB
g1

λe2 = λA
g2

+ λB
g2

Each source however generates only one type of packet. Therefore we can set the
other λ variable on the output channel to zero i.e. λB

f1
= 0 and λA

f2
= 0.

All the other components only interface with channels carrying single flows,
and we add equations as in the credit example. Finally, as before, by eliminating
the λ variables using Gaussian elimination, we obtain the desired relations among
the num variables.

Automatic Generation of Inductive Invariants 335

5.3 Algorithm for Discovering Flow Invariants

Formally, if x is a channel that has type α, a flow on x is a function p : α → {0, 1}.
(Note the similarity with channel properties.) Our goal is to compute the set of
flows for each channel and the equations relating the λ variables for these flows.

Step 1. Sort the xmas graph in reverse “topological” order starting from the
sinks using the textbook depth-first-search (dfs) based topological sort algo-
rithm [6, §22.4]. If the xmas network is cyclic, this has the effect of topologically
sorting the dag obtained by deleting the backedges in the dfs.

Step 2. Assign the constant 1 function as the flow on the inputs to the sinks
and on the backedge channels. Now we process each component in the network in
the reverse “topological” order computed above by applying the following rules
to propagate flows (we use the same parameter names as in Figure 2 and use
port names to refer to the corresponding channels):

Queue. For each flow p on the output channel o, we create a new flow p on the
input channel i. We also add a new state variable called nump to the queue that
tracks how many elements satisfying p are currently in the queue. We also add
an assertion that equates nump to the number of elements that satisfy (usedj

=⇒ p(memj)) in the queue. Finally, we add the equation λp
i = nump + λp

o.

Function. For each flow p on the output channel o, we create a new flow p′ = p◦f

on the input channel i and add the equation λp′
i = λp

o.

Switch. For each flow p on the output channel a, we create a flows p′ = v �→
(s(v)and p(v)) on the input channel i and add the equation λp′

i = λp
a. Similarly

for flows on output b.

Merge. For each flow p on the output channel o, we create a flow p on input a
and another flow p on input b and add the equation λp

a + λp
b = λp

o.

Fork. For each pair (p, q) where p is a flow on output a and q on output b, we
create a new flow r = v �→ (p(f(v))and q(g(v))) on input. For each flow p on
output a, we add the equation λp

a = Σrλ
r
i where r ranges over flows that were

added to i due to p. Similar equations are added for each flow on b.

Join. Once again, we limit our attention to restricted joins. For each flow p on
the output channel o, we add a flow p′ = p ◦ h to the functional input (suppose
it is the input a). We add the constant 1 flow to the other input (i.e. b) and the
equations λp′

a = λp
o and λ1

b = Σpλ
p
o where p ranges over all the flows on o.

Source. For each flow p in the output o, we check if p(e) is true or not. If p(e)
is false, then we add the equation λp

o = 0 and mark p as dead.

During the above process, each time a new flow is created, we record its par-
ent(s). Furthermore, if a new flow is unsatisfiable i.e. the constant 0 function we
mark it dead and do not propagate it further.

336 S. Chatterjee and M. Kishinevsky

Step 3. If the xmas dag is cyclic, for each channel x that is a backedge,
the above propagation process adds new flows. These need to be related to the
constant 1 flow which was assigned before starting propagation. Therefore we
add λ1

x = Σpλ
p
x where p ranges over all the flows added to x during propagation.

Step 4. If all children of a flow p at a channel x are dead, we mark x as dead
as well and add the equation λp

x = 0. We repeat this process until no new flows
can be marked dead.

Theorem 2 (Inductivity). The set of equations obtained by this process is an
inductive invariant of the synchronous model.

Step 5. Finally, the λ variables are eliminated as explained before to obtain
relations between the num variables. Note that it is possible that there are no
relations among the num variables (e.g. Figure 1).

Remark. Since the λ variables correspond to channels which hold no state, we
conjecture that eliminating them does not destroy inductivity. This has been
confirmed by our experiments.

6 Experimental Results

6.1 Micro-benchmarks

Since the state-of-the-art model checking algorithms are unable to converge on
any of our real examples, we present a comparison on the small examples from
this paper. Table 1 shows the results of running abc (version 91206p) on several
examples (parameterized on k) without the addition of invariants as described
in this paper.

The first example is from Figure 1 where each queue is of size k. In the second
example we have a series of k queues (similar to Figure 1). In the third we
check the property in the example of Section 4.5, but to make the example more
realistic we set the the source and destination to be 2 bits wide in the packet.
Fourth and fifth are self-explanatory. In the last example we add k queues on
the channel r in Figure 5.

Column i in the table is the number of primary inputs (oracles); r and n are
number of registers and aig nodes (after synthesis). A depth of (m, n) means

Table 1. Comparison with interpolation on micro-benchmarks. See Section 6.1 for de-
tails. Most rows have two data points corresponding to different values of the parameter
k of the corresponding example.

Description k i r n depth time k i r n depth time

Two queues of size k 3 2 49 348 (5, 12) 23 4 2 63 381 bmc 24 −
k queues of size 2 3 2 49 302 (9, 12) 76 4 2 64 396 bmc 20 −
Figure 3 with all queues sized to 2 - 8 99 659 bmc 11 −
Figure 4 8 4 14 104 (13, 9) 38 12 4 14 121 bmc 27 −
Figure 5 with all queues sized to 2 - 4 17 95 (7, 4) 40

above with k queues on r 1 4 24 135 (6, 7) 112 2 4 29 151 bmc 13 −

Automatic Generation of Inductive Invariants 337

interpolation converged in n iterations when starting from a bmc of depth 1+m.
The time is in seconds (on a 3GHz Intel Xeon CPU) with a timeout of 300 secs
indicated by a dash (and we show the final bmc depth in the previous column).
Note that interpolation times out on many examples.

The first three rows correspond to examples for channel propagation. In all
cases when we add the invariants as described in Section 4, abc is able to solve
the problem in no time. Even if we set k = 100, the first example is solved in 7
seconds, the second in 1 second and the third in 40 seconds.

The remaining rows correspond to examples for flow invariants. Again without
the flow invariants, interpolation has a hard time. However, in these examples we
found that bdd-based reachability could solve these quickly. In all cases in our
experience, the algorithm for discovering flow invariants finds exactly those in-
variants that are interesting. For example, in the fifth example, there are initially
43 variables and 32 equations. After elimination, we are left with two invariants
(with 6 terms) corresponding to the two credit loops as expected. The time needed
for both property propagation and for detecting flow invariants is neglible.

6.2 Experience on Real Examples

We have applied the techniques described in this paper to verify a number of
abstract models used to validate the microarchitecture of future designs. These
are drawn from the domain of communication fabrics and are characterized by
deeply pipelined logic for multi-phase transactions, presence of ordering logic and
several virtual channels, and peer-to-peer traffic. Even in minimal configurations,
there are tens of simultaneous transactions in flight.

As a data point, previously on one of our simpler examples we were able to
obtain a proof of a critical non-blocking property,7 only by severely limiting the
state space by reducing the number of simultaneous outstanding transactions an
agent can issue. The proof was obtained with an explicit state model checker
with maximal reachability depth of 159 in 12 hours using 17GB of memory. In
contrast, using the flow analysis from Section 5 on the original model, 16 flow
relations are discovered (from an initial set of 176 equations on 220 variables)
and abc solves the resulting problem in 4.5 sec.

A big advantage of this technique is its robustness and scalability. Rather than
be limited to minimal configurations (and consequently reduced concurrency), we
can now verify more realistic models. Channel property verification is robust and
most properties are discharged automatically. For a few properties we need to add
additional channel properties to break loops. However, these invariants are natu-
ral and easy to add since they only talk about data and do not involve control at
all. Finally, although it may appear that flow invariants could lead to scalability
problems, so far we have not encountered any problems, even on our larger exam-
ples with dozens of flow invariants, many with tens of terms. For such problems,
an inductive engine that assumes all invariants in one cycle and then checks each
invariant separately in the following cycle appears to be scalable.

7 To check for adequate buffering to avoid deadlocks.

338 S. Chatterjee and M. Kishinevsky

7 Conclusion and Future Work

The concrete proposals for capturing and exploiting high-level information in
hardware models presented in this work have proved very useful in practice
allowing us to prove with little computational effort many hard sequential prop-
erties on real microarchitectural models which could not be proved before. The
benefit seems to be in separating control from data and exploiting knowledge of
the control to reduce the problem to a combinational one on the data.

The invariants we add may be seen as providing a bag abstraction for queues.
Although the bag abstraction has proven adequate to handle our current ex-
amples (systems with restricted joins), it appears insufficient to handle systems
with general joins. It would be interesting to extend the methods of this paper
to reason about such systems.

Finally, a lot of the computational overhead of verifying the synchronous
model may be eliminated by switching to an axiomatic semantics for xmas mod-
els for a more direct verification. This may also be an interesting direction for
building bridges to the rtl implementation.

Acknowledgments

We thank Amit Goel, Alexander Gotmanov, Chandramouli Kashyap, Umit Ogras
and Sayak Ray for many helpful discussions on this work and Jesse Bingham for
reviewing an early draft.

References

1. Baumgartner, J., et al.: Scalable conditional equivalence checking: An automated
invariant-generation based approach. In: FMCAD 2009, pp. 120–127 (2009)

2. Benveniste, A., et al.: The synchronous language twelve years later. Proc. of the
IEEE 91(1), 64–83 (2003)

3. Berkeley Logic Synthesis Group, http://www.eecs.berkeley.edu/~alanmi/abc/
4. Chatterjee, S., Kishinevsky, M., Ogras, U.Y.: Quick formal modeling of communi-

cation fabrics to enable verification. In: HLDVT 2010 (to appear, 2010)
5. Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets. In: Proc. of

Appl. and Theory of Petri Nets, 79–112 (1991)
6. Corman, T.H., et al.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge

(1990)
7. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Mor-

gan Kaufmann, San Francisco (2004)
8. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. of the

ACM 12(10), 576580–576583 (1969)
9. Jhala, R., McMillan, K.L.: Microarchitecture Verification by Compositional Model

Checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 396–410. Springer, Heidelberg (2001)

10. Kaivola, R., et al.: Replacing Testing with Formal Verification in Intel Core i7
Processor Execution Engine Validation. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 414–429. Springer, Heidelberg (2009)

http://www.eecs.berkeley.edu/~alanmi/abc/

	Automatic Generation of Inductive Invariants from High-Level Microarchitectural Models of Communication Fabrics
	Introduction
	Methodology
	XMAS Models
	Analysis for Channel Properties
	Channel Properties
	Propagating Channel Properties
	Queue Invariants
	A Note on Local Invariants
	Propagation Algorithm

	Invariants from Flows
	The Basic Idea
	Shared Communication
	Algorithm for Discovering Flow Invariants

	Experimental Results
	Micro-benchmarks
	Experience on Real Examples

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

