Efficient Emptiness Check for Timed Biichi
Automata

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz

LaBRI (Université de Bordeaux -CNRS)

Abstract. The Biichi non-emptiness problem for timed automata
concerns deciding if a given automaton has an infinite non-Zeno run sat-
isfying the Biichi accepting condition. The standard solution to this prob-
lem involves adding an auxiliary clock to take care of the non-Zenoness.
In this paper, we show that this simple transformation may sometimes
result in an exponential blowup. We propose a method avoiding this
blowup.

1 Introduction

Timed automata [I] are widely used to model real-time systems. They are ob-
tained from finite automata by adding clocks that can be reset and whose values
can be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. This model has been implemented in verification
tools like Uppaal [3] or Kronos [7], and used in industrial case studies [12J4I13].

While most tools concentrate on the reachability problem, the questions con-
cerning infinite executions of timed automata are also of interest. In the case
of infinite executions one has to eliminate so called Zeno runs. These are ex-
ecutions that contain infinitely many steps taken in a finite time interval. For
obvious reasons such executions are considered unrealistic. In this paper we
study the problem of deciding if a given timed automaton has a non-Zeno run
passing through accepting states infinitely often. We call this problem Biichi
non-emptiness problem.

This basic problem has been of course studied already in the paper introducing
timed automata. It has been shown that using so called region abstraction the
problem can be reduced to the problem of finding a path in a finite region graph
satisfying some particular conditions. The main difference between the cases of
finite and infinite executions is that in the latter one needs to decide if the path
that has been found corresponds to a non Zeno run of the automaton.

Subsequent research has shown that the region abstraction is very inefficient
for reachability problems. Another method using zones instead of regions has
been proposed. It is used at present in all timed-verification tools. While sim-
ple at the first sight, the zone abstraction was delicate to get right. This is
mainly because the basic properties of regions do not transfer to zones. The
zone abstraction also works for infinite executions, but unlike for regions, it is
impossible to decide if a path in a zone graph corresponds to a non-Zeno run of
the automaton.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 148{161,[2010.
© Springer-Verlag Berlin Heidelberg 2010

Efficient Emptiness Check for Timed Biichi Automata 149

There exists a simple solution to the problem of Zeno runs that amounts to
transforming automata in such way that every run passing through an accepting
state infinitely often is non-Zeno. An automaton with such a property is called
strongly non-Zeno. The transformation is easy to describe and requires addition
of one new clock. This paper is motivated by our experiments with an imple-
mentation of this construction. We have observed that this apparently simple
transformation can give a big overhead in the size of a zone graph.

In this paper we closely examine the transformation to strongly non-Zeno
automata [I7], and show that it can inflict a blowup of the zone graph; and this
blowup could even be exponential in the number of clocks. To substantiate, we
exhibit an example of an automaton having a zone graph of polynomial size,
whose transformed version has a zone graph of exponential size. We propose
another solution to avoid this phenomenon. Instead of modifying the automaton,
we modify the zone graph. We show that this modification allows us to detect if
a path can be instantiated to a non-Zeno run. Moreover the size of the modified
graph is |ZG(A)|.|X|, where |[ZG(A)| is the size of the zone graph and |X]| is
the number of clocks.

In the second part of the paper we propose an algorithm for testing the exis-
tence of accepting non-Zeno runs in timed automata. The problem we face highly
resembles the emptiness testing of finite automata with generalized Biichi con-
ditions. Since the most efficient solutions for the latter problem are based on the
Tarjan’s algorithm, we take the same way here. We present an algorithm whose
running time is bounded by |ZG(A)|.|X|?. We also report on the experiments
performed with a preliminary implementation of this algorithm.

Related work. The zone approach has been introduced in Petri net context [5], and
then adapted to the framework of timed automata [9]. The advantage of zones over
regions is that they do not require to consider every possible unit time interval sep-
arately. The delicate point about zones was to find a right approximation operator.
Indeed while regions are both pre- and post-stable, zones are not pre-stable, and
some care is needed to guarantee post-stability. Post-stability is enough for cor-
rectness of the reachability algorithm, and for testing if a path in the zone graph
can be instantiated to a run of the automaton. It is however not possible to de-
termine if a path can be instantiated to a non-Zeno run. The solution involving
adding one clock has been discussed in [T5/T72]. Recently, Tripakis [16] has shown
a way to extract an accepting run from a zone graph of the automaton. Combined
with the construction of adding one clock this gives a solution to our problem.
A different approach has been considered in [I1] where syntactic conditions are
proposed for a timed automaton to be free from Zeno runs. Notice that for obvi-
ous complexity reasons, any such condition must be either not complete, or of the
same algorithmic complexity as the emptiness test itself.

Organization of the paper. In the next section we formalize our problem, and dis-
cuss region and zone abstractions. As an intermediate step we give a short proof
of the above mentioned result from [I6]. Section Bl explains the problems with
the transformation to strongly non-Zeno automata, and describes our alternative
method. The following section is devoted to a description of the algorithm.

150 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

2 The Emptiness Problem for Timed Biichi Automata

2.1 Timed Biichi Automata

Let X be a set of clocks, i.e., variables that range over R>(, the set of non-
negative real numbers. Clock constraints are conjunctions of comparisons of
variables with integer constants, e.g. (x < 3 Ay > 0). Let &(X) denote the
set of clock constraints over clock variables X.

A clock valuation over X is a function v : X — Rsq. We denote R, for
the set of clock valuations over X, and 0 : X — {0} for the valuation that
associates 0 to every clock in X. We write v = ¢ when v satisfies ¢, i.e. when
every constraint in ¢ holds after replacing every x by v(x).

For a valuation v and § € Rxg, let (v + J) be the valuation such that (v +
0)(x) =v(xz)+ 6 for all z € X. For a set R C X, let [R]v be the valuation such
that ([R]v)(z) =0 if 2 € R and ([R]v)(z) = v(x) otherwise.

A Timed Biichi Automaton (TBA) is a tuple A = (Q, qo, X, T, Acc) where @
is a finite set of states, qg € @ is the initial state, X is a finite set of clocks,
Acc C @Q is a set of accepting states, and T C @ x ®(X) x 2% x @Q is a finite set
of transitions (g, g, R, q’) where g is a guard, and R is a reset of the transition.

A configuration of A is a pair (q,v) € Q x RE; with (go,0) being the initial

configuration. A discrete transition between configurations (g, v) BN (¢', V") for
t=(q,9,R,q) is defined when v E g and v/ = [R]v. We also have delay transi-

tions between configurations: (g, v) 2 (g,v +9) for every ¢, v and 0 € R>o. We
write (g, V) LN (¢',v'") if (¢,v) LS (q,v+9) BN (¢, V).
A run of A is a finite or infinite sequence of configurations connected by LN
transitions, starting from the initial state gy and the initial valuation vy = 0:
(q0,10) Joito, (q1,v1) b,
A run o satisfies the Biichi condition if it visits accepting configurations infinitely

often, that is configurations with a state from Acc. The duration of the run is
the accumulated delay: >, d;. A run o is Zeno if its duration is bounded.

Definition 1. The Biichi non-emptiness problem is to decide if A has a non-
Zeno run satisfying the Bilichi condition.

The class of TBA we consider is usually known as diagonal-free TBA since clock
comparisons like x — y < 1 are disallowed. Since we are interested in the Biichi
non-emptiness problem, we can consider automata without an input alphabet
and without invariants since they can be simulated by guards.

The Biichi non-emptiness problem is known to be PSPACE-complete [I].

2.2 Regions and Region Graphs

A simple decision procedure for the Biichi non-emptiness problem builds from A
a graph called the region graph and tests if there is a path in this graph satisfying
certain conditions. We will define two types of regions.

Efficient Emptiness Check for Timed Biichi Automata 151

Fix a constant M and a finite set of clocks X. Two valuations v, € R>0 are
region equivalent w.r.t. M, denoted v ~p; ' iff for every x,y € X:
1. v(z) > M iff V' (x) > M;
2. if v(x) < M, then |v(z)] = |V (2)];
3. if v(z) < M, then {v(x)} =0 iff {v/(x)} =
4. if v(x) < M and v(y) < M then {v(z)} < {1/(VHiff {V(x)} < {V(y)}.

The first three conditions ensure that the two valuations satisfy the same guards.
The last one enforces that for every § € R there is ¢’ € Rxq, such that
valuations v + 6 and v/ + ¢’ satisfy the same guards.

We will also define diagonal region equivalence (d-region equivalence for short)
that strengthens the last condition to

44, for every integer ¢ € (—M, M): v(z) —v(y) < ciff V/(z) — V' (y) < ¢

This region equivalence is denoted by ~4,. Observe that it is finer than ~ ;.

A region is an equivalence class of ~y;. We write [v]~,, for the region of v,
and Ry for the set of all regions with respect to M. Similarly, for d-region
equivalence we write: []2 ~and R$,. If r is a region or a d-region then we will
write r F g to mean that every valuatlon in r satisfies the guard g. Observe that
all valuations in a region, or a d-region, satisfy the same guards.

For an automaton A, we define its region graph, RG(A), using ~) relation,
where M is the biggest constant appearing in the guards of its transitions. Nodes

of RG(A) are of the form (g,r) for ¢ a state of A and r € Ry a region. There
is a transition (g,7) SN (¢',7") if there are v € 7, § € Ryp and v/ € ' with

(q,v) o, (¢’,v'). Observe that a transition in the region graph is not decorated
with a delay. The graph RG?(A) is defined similarly but using the N(Ii\/l relation.
It will be important to understand the properties of pre- and post-stability of

regions or d-regions [I7]. We state them formally. A transition (g,) Lo,
in a region graph or a d-region graph is:
— Pre-stable if for every v € r there are v/ € v/, § € R> s.t. (q,v) 21, (¢,v).
. 3,
— Post-stable if for every v/ € r’ there are v € r, § € R>¢ s.t. (¢,v) 2, (¢, V).
The following lemma (cf. [6]) explains our interest in ~¢, relation.

Lemma 1 (Pre and post-stability). Transitions in RG%(A) are pre-stable
and post-stable. Transitions in RG(A) are pre-stable but not necessarily post-
stable.

Consider two sequences

(0, v0) ~210 (qu,vy) 225 - (1)
(q0,70) == (q1,m1) == - (2)

where the first is a run in A, and the second is a path in RG(A) or RG4(A). We
say that the first is an instance of the second if v; € r; for all ¢ > 0. Equivalently,
we say that the second is an abstraction of the first. The following lemma is a
direct consequence of the pre-stability property.

152 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Lemma 2. FEvery path in RG(A) is an abstraction of a run of A, and con-
versely, every run of A is an instance of a path in RG(A). Similarly for RG(A).

This lemma allows us to relate the existence of an accepting run of A to the
existence of paths with special properties in RG(A) or RG4(A). We say that a
path as in ([2)) satisfies the Biichi condition if it has infinitely many occurrences
of states from Acc. The path is called progressive if for every clock x € X:

— either z is almost always above M: there is n with r; F x > M for all i > n;
— or z is reset infinitely often and strictly positive infinitely often: for every n
there are ¢, j > n such that r; F (z = 0) and r; F (x > 0).

Theorem 1 ([1]). For every TBA A, L(A) # 0 iff RG(A) has a progressive
path satisfying the Biichi condition. Similarly for RG(A).

While this theorem gives an algorithm for solving our problem, it turns out that
this method is very impractical. The number of regions RA(A) is O(|X[121X]
MX1) [1] and constructing all of them, or even searching through them on-the-
fly, has proved to be very costly.

2.3 Zones and Zone Graphs

Timed verification tools use zones instead of regions. A zone is a set of valuations
defined by a conjunction of two kinds of constraints : comparison of the difference
between two clocks with a constant, or comparison of the value of a single clock
with a constant. For example (x —y > 1) A (y < 2) is a zone. While at first sight
it may seem that there are more zones than regions, this is not the case if we
count only those that are reachable from the initial valuation.

Since zones are sets of valuations defined by constraints, one can define dis-

crete and delay transitions directly on zones. For § € R, we have (¢, Z) 2

(¢,Z") if Z' is the smallest zone containing the set of all the valuations v + §
with v € Z. Similarly, for a discrete transition we put (g, Z) BN (¢',Z2") it Z' is

the set of all the valuations 1/ such that (q,v) - (¢/,+/) for some v € Z; Z' is
a zone in this case. Moreover zones can be represented using Difference Bound
Matrices (DBMs), and transitions can be computed efficiently on DBMs [9]. The
problem is that the number of reachable zones is not guaranteed to be finite [§].

In order to ensure that the number of reachable zones is finite, one introduces
abstraction operators. We mention the three most common ones in the literature.
They refer to region graphs, RG(A) or RGY(A), and use the constant M that
is the maximal constant appearing in the guards of A.

— Closurep(Z): the smallest union of regions containing Z;
— Closurel;(Z): similarly but for d-regions;
— Approz ;(Z): the smallest union of d-regions that is convex and contains Z.

The following lemma establishes the links between the three abstraction opera-
tors, and is very useful to transpose reachability results from one abstraction to
the other.

Efficient Emptiness Check for Timed Biichi Automata 153

Lemma 3 ([6]). For every zone Z: Z C ClosureS;(Z) C Approz,, (Z) C
Closure (Z).

A symbolic zone S is a zone approximated with one of the above abstraction
operators. Now, similar to region graphs, we define simulation graphs where after
every transition a specific approximation operation is used, that is each node in
the simulation graph is of the form (g, S) with S being a symbolic zone . So we
have three graphs corresponding to the three approximation operations.

Take an automaton A and let M be the biggest constant appearing in the
guards of its transitions. In the simulation graph SG(A) the nodes are of the
form (q, Closurep;(Z)) where ¢ is a state of A and Z is a zone. The initial node

is (qo, Closurep(Zy)), with go the initial state of A, and Zy the zone setting

all the variables to 0. The transitions in the graph are (q, Closurey(Z)) -

(¢', Closurep;(Z')) where Z' is the set of valuations v/ such that there exist
v € Closurepy(Z) and ¢ € R satistying (¢, v) o, (¢',v'). Similarly for SG?(A)
and SG*(A) but replacing Closure; with operations C’losure}iw and Approx ;,
respectively. The notions of an abstraction of a run of A, and an instance of a
path in a simulation graph are defined in the same way as that of region graphs.

Tools like Kronos or Uppaal use Approx ; abstraction. The two others are less
interesting for implementations since the result may not be convex. Nevertheless,
they are useful in proofs. The following lemma (cf. [§]) says that transitions in
SG(A) are post-stable with respect to regions.

Lemma 4. Let (¢,5) - (¢/,S') be a transition in SG(A). For every region

v C S, there is a region r C S such that (q,7) SN (¢’,7") is a transition in

RG(A).
We get a correspondence between paths in simulation graphs and runs of A.

Theorem 2 ([16]). Every path in SG(A) is an abstraction of a run of A, and
conversely, every run of A is an instance of a path in SG(A). Similarly for SG?
and SG*.

Proof. We first show that a path in SG(A) is an abstraction of a run of A.

Take a path (go, So) o, (q1,51) L, in SG(A). Construct a DAG with
nodes (4, q;,r;) such that r; is a region in S;. We put an edge from (i, ¢;,7;) to
(i+1,¢it1,miv1) if (qi,74) L, (git1,7i+1)- By Lemmal every node in this DAG
has at least one predecessor, and the branching of every node is bounded by
the number of regions. Hence, this DAG has an infinite path that is a path in
RG(A). By Lemma [2] this path can be instantiated to a run of A.

To conclude the proof one shows that a run of A can be abstracted to a path in
SG4(A). Then using Lemma [3 this path can be converted to a path in SG*(A),
and later to one in SG(A). We omit the details.

Observe that this theorem does not guarantee that a path we find in a simulation
graph has an instantiation that is non-Zeno. It is indeed impossible to guarantee
this unless some additional conditions on paths or automata are imposed.

154 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

In the subsequent sections, we are interested only in the simulation graph
SG®. Observe that the symbolic zone obtained by the approximation of a zone
using Approz,, is in fact a zone. Hence, we prefer to call it a zone graph and
denote it as ZG*. Every node of ZG* is of the form (q, Z) where Z is a zone.

3 Finding Non Zeno Paths

As we have remarked above, in order to use Theorem 2l we need to be sure that
a path we get can be instantiated to a non-Zeno run. We discuss the solutions
proposed in the literature, and then offer a better one. Thanks to pre-stability
of the region graph, the progress criterion on regions has been defined in [I for
selecting runs from RG(A) that have a non-Zeno instantiation (see Section 2.2)).
Notice that the semantics of TBA in [I] constrains all delays J; to be strictly
positive, but the progress criterion can be extended to the stronger semantics
that is used nowadays (see [I7] for instance). However, since zone graphs are not
pre-stable, this method cannot be directly extended to zone graphs.

3.1 Adding One Clock

A common solution to deal with Zeno runs is to transform an automaton into a
strongly non-Zeno automaton, i.e. such that all runs satisfying the Biichi condi-
tion are guaranteed to be non-Zeno. We present this solution here and discuss
why, although simple, it may add an exponential factor in the decision procedure.

The transformation of A into a strongly non-Zeno automaton SN Z(A) pro-
posed in [I7] adds one clock z and duplicates accepting states. One copy of the
state is as before but is no longer accepting. The other copy is accepting, but
it can be reached only when z > 1. Moreover when it is reached z is reset to 0.
The only transition from this second copy leads to the first copy. (See Vi and
W on Figure[I]for an example.) This construction ensures that at least one unit
of time has passed between two visits to an accepting state. A slightly different
construction is mentioned in [2]. Of course one can also have other modifications,
and it is impossible to treat all the imaginable constructions at once. Our objec-
tive here is to show that the constructions proposed in the literature produce a
phenomenon that causes proliferation of zones that can sometimes be exponen-
tial in the number of clocks. The discussion below will focus on the construction
from [I7], but the one from [2] suffers from the same problem.

The problem comes from the fact that the constraint z > 1 may be a source
of rapid multiplication of the number of zones in the zone graph of SNZ(A).
Consider Vi, and W, from Figure [for k& = 2. Starting at the state b of Vs
in the zone 0 < y < 1 < x9, there are two reachable zones with state b2,
Moreover, if we reset x; followed by y from the two zones, we reach the same
zone 0 < y < z; < zo. In contrast starting in % of Wy = SNZ(V,) from
0<y<uz <xy < zgives at least d zones, and resetting x; followed by y still
yields d zones.

We now exploit this fact to give an example of a TBA A, whose zone graph
has a number of zones linear in the number of clocks, but B,, = SNZ(A,,) has a

Efficient Emptiness Check for Timed Biichi Automata 155

U P €L e CI) SO) Q w} Q
N N

y<d {z1,... 251} 2>1 y<dA

as

C—

Vi Wk = SNZ (Vi)

An SRaoVufo - S[Ra o] Be S[Ru W] o Ra]

Fig. 1. Gadgets for A,, and B, = SNZ(A,)

zone graph of size exponential in the number of clocks. A,, is constructed from
the automata gadgets V. and Ry as shown in Figure [Il Observe that the role
of Ry is to enforce an order 0 < y < x; < --- < xp between clock values. By
induction on k one can compute that there are only two zones at locations b*
since Ry+1 made the two zones in ph+1 collapse into the same zone in b*. Hence
the number of nodes in the zone graph of A,, is O(n).

Let us now consider B,,, the strongly non-Zeno automaton obtained from A,
following [I7]. Every gadget Vi gets transformed to Wj. While exploring W,
one introduces a distance between the clocks xx_1 and xj. So when leaving it one
gets zones with xp — xx_1 > ¢, where ¢ € {0,1,2,...,d}. The distance between
zr and xp_1 is preserved by Ry. In consequence, W, produces at least d + 1
zones. For each of these zones W,,_1 produces d 4+ 1 more zones. In the end, the
zone graph of B,, has at least (d + 1)"~! zones at the state b2.

We have thus shown that 4, has O(n) zones while B, = SNZ(A,) has
an exponential number of zones even when the constant d is 1. Observe that
the construction shows that even with two clocks the number of zones blows
exponentially in the binary representation of d. Note that the automaton A,, does
not have a non-Zeno accepting run. Hence, every search algorithm is compelled
to explore all the zones of B,,.

3.2 A More Efficient Solution

Our solution stems from a realization that we only need one non-Zeno run satis-
fying the Biichi condition and so in a way transforming an automaton to strongly
non-Zeno is an overkill. We propose not to modify the automaton, but to intro-
duce additional information to the zone graph ZG*(A). The nodes will now be
triples (¢, Z,Y) where Y C X is the set of clocks that can potentially be equal
to 0. It means in particular that other clock variables, i.e. those from X —Y are

156 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

assumed to be bigger than 0. We write (X —Y) > 0 for the constraint saying
that all the variables in X — Y are not 0.

Definition 2. Let A be a TBA over a set of clocks X. The guessing zone graph
GZG*(A) has nodes of the form (q,Z,Y) where (q,Z) is a node in ZG*(A)
and Y C X. The initial node is (qo, Zo, X), with (qo, Zo) the initial node of
ZG(A). There is a transition (q,2,Y) 5 (¢, Z',Y UR) in GZG*(A) if there
is a transition (q,Z) SN (¢',7Z") in ZG*(A) with t = (q,9,R,q’), and there
are valuations v € Z, v' € Z', and § such that v+ 3§ E (X —Y) > 0 and
(q,v) o, (q,V"). We also introduce a new auziliary letter T, and put transitions
(,2,Y) 5 (¢, Z,Y") forY' =0 orY' =Y.

Observe that the definition of transitions reflects the intuition about Y we have
described above. Indeed, the additional requirement on the transition (¢, Z,Y) SN
(¢’, Z',Y U R) is that it should be realizable when the clocks outside Y are strictly
positive; so there should be a valuation satisfying (X — Y') > 0 that realizes this
transition. As we will see later, this construction entails that from a node (g, Z, 0)
every reachable zero-check is preceded by the reset of the variable that is checked,
and hence nothing prevents a time elapse in this node. A node of the form (g, Z,)
is called clear. We call anode (¢, Z,Y) accepting if it contains an accepting state g.

Ezample. Figure Pl depicts a TBA A; along with its zone graph ZG%(A;) and
its guessing zone graph GZG%(A;) where 7-loops have been omitted.

- faz=0 {3} T faz=0,0
r<1 r<1
= - >1 >1
(o} zz21 {a} = s, v
l2)
T
A ZG*(Ay) GZG*(Ar)

Fig.2. A TBA A; and the guessing zone graph GZG* (A1)

Notice that directly from the definition it follows that a path in GZG*(A) de-
termines a path in ZG%(A) obtained by removing 7 transitions and the third
component from nodes.

A variable x is bounded by a transition of GZG*(A) if the guard of the tran-

sition implies = < ¢ for some constant ¢. More precisely: for (¢, Z,Y") 9.Rd),
(¢',Z',Y"), the guard g implies (z < ¢). A variable is reset by the transition if
it belongs to the reset set R of the transition.

We say that a path is blocked if there is a variable that is bounded infinitely
often and reset only finitely often by the transitions on the path. Otherwise the
path is called unblocked.

Efficient Emptiness Check for Timed Biichi Automata 157

Theorem 3. A TBA A has a non-Zeno run satisfying the Bichi condition iff
there exists an unblocked path in GZG*(A) visiting both an accepting node and
a clear node infinitely often.

The proof of Theorem [3] follows from Lemmas [l and 6l below. We omit the proof
of the first of the two lemmas and concentrate on a more difficult Lemma [6 It
is here that the third component of states is used.

At the beginning of the section we had recalled that the progress criterion in [I]
characterizes the paths in region graphs that have non-Zeno instantiations. We
had mentioned that it cannot be directly extended to zone graphs since their tran-
sitions are not pre-stable. Lemmal[Gl below shows that by slightly complicating the
zone graph we can recover a result very similar to Lemma 4.13 in [].

Lemma 5. If A has a non-Zeno run satisfying the Biichi condition, then in
GZG*(A) there is an unblocked path visiting both an accepting node and a clear
node infinitely often.

Lemma 6. Suppose GZG*(A) has an unblocked path visiting infinitely often
both a clear node and an accepting node then A has a non-Zeno run satisfying
the Bichi condition.

Proof. Let o be a path in GZG%(A) as required by the assumptions of the lemma
(without loss of generality we assume every alternate transition is a 7 transition):

(quZ()vYO) (q07207YO) (QNZZ’}/Z) (QZaZZaY) 1

Take a corresponding path in ZG*(A) and one instance p = (qo, 1), (q1,v1) - - -
that exists by Theorem [2l If it is non-Zeno then we are done.

Suppose p is Zeno. Let X" be the set of variables reset infinitely often on o.
By assumption on o, every variable not in X" is bounded only finitely often.
Since p is Zeno, there is an index m such that the duration of the suffix of the
run starting from (g, Vs,) is bounded by 1/2, and no transition in this suffix
bounds a variable outside X”. Let n > m be such that every variable from X"
is reset between m and n. Observe that v, (z) < 1/2 for every x € X".

Take positions 4, j such that i,j > n, Y; =Y; = () and all the variables from
X" are reset between ¢ and j. We look at the part of the run p:

8isti Sit1,ti
(g5 vi) =25 (@1, vie1) ——— . (g5, v5)
and claim that every sequence of the form
i,ti Git1,ti
(giV}) =5 (Gig1, Vi) —— ... (g5, V)

is a part of a run of A provided there is (€ R>(such that the following three
conditions hold for all k =14,...,7:

1. I/k(Y=wvp(x)+(+1/2forallx g X7,

2. v (x) = vp(z) +1/2 if 2 € X" and 2 has not been reset between ¢ and k.

3. v, (x) = vg(x) otherwise, i.e., when 2 € X" and x has been reset between ¢
and k.

158 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

Before proving this claim, let us explain how to use it to conclude the proof. The
claim shows that in (¢;, ;) we can pass 1/2 units of time and then construct
a part of the run of A arriving at (g;,v;) where v}(x) = v;(x) for all variables
in X7, and v}(x) = v;j(z) + 1/2 for other variables. Now, we can find [> j, so
that the pair (j,1) has the same properties as (i,j). We can pass 1/2 units of
time in j and repeat the above construction getting a longer run that has passed
1/2 units of time twice. This way we construct a run that passes 1/2 units of
time infinitely often. By the construction it passes also infinitely often through

accepting nodes.

. . iy O ti
It remains to prove the claim. Take a transition (g, V) RLILN (@ht1, Vit1)

Ok rtn . .-
and show that (g,v;,) LLIUN (qk+1,V},4,) is also a transition allowed by the

automaton. Let g and R be the guard of t; and the reset of tj, respectively.

First we need to show that v} 4y, satisfies the guard of ¢;. For this, we need to
check if for every variable € X the constraints in g concerning = are satisfied.
We have three cases:

— If x ¢ X7 then z is not bounded by the transition tj, that means that in g
the constraints on z are of the form (x > ¢) or (z > ¢). Since (v + dx)(x)
satisfies these constraints so does (v}, + i) (x) > (v + 0k)(2).

— If 2 € X" and it is reset between ¢ and k then v (z) = vi(z) so we are done.

— Otherwise, we observe that x ¢ Yj. This is because Y; =), and then only
variables that are reset are added to Y. Since z is not reset between ¢ and
k, it cannot be in Y. By definition of transitions in GZG%(A) this means
that g A (z > 0) is consistent. We have that 0 < (v + d;)(z) < 1/2 and
1/2 < (v, +61)(z) < 1. So v}, + 0, satisfies all the constraints in g concerning
T as v + 0 does.

81tk .
This shows that there is a transition (g, ;) 2 (qry1, ') for the uniquely

determined v = [R](v}, + 0x). It is enough to show that v/ = v _ ;. For variables
not in X" it is clear as they are not reset. For variables that have been reset
between i and k this is also clear as they have the same values in v, and /.
For the remaining variables, if a variable is not reset by the transition ¢; then
condition (2) holds. If it is reset then its value in v/ becomes 0; but so it is in
vy, 41, and so the third condition holds. This proves the claim.

Finally, we provide an explanation as to why the proposed solution does not
produce an exponential blowup. At first it may seem that we have gained nothing
because when adding arbitrary sets Y we have automatically caused exponential
blowup to the zone graph. We claim that this is not the case for the part of
GZG*(A) reachable from the initial node, namely a node with the initial state
of A and the zone putting every clock to 0.

We say that a zone orders clocks if for every two clocks x, y, the zone implies
that at least one of z <y, or y < x holds.

Lemma 7. If a node with a zone Z is reachable from the initial node of the zone
graph ZG*(A) then Z orders clocks. The same holds for GZG*(A).

Suppose that Z orders clocks. We say that a set of clocks Y respects the order
giwen by Z if whenever y € Y and Z implies x < y then z € Y.

Efficient Emptiness Check for Timed Biichi Automata 159

Lemma 8. If a node (q,Z,Y) is reachable from the initial node of the zone
graph GZG*(A) then'Y respects the order given by Z.

Lemma [follows since a transition from a zone that orders clocks gives back a
zone that orders clocks, and the Approz,, operator approximates it again to a
zone that orders clocks. Notice that the initial zone clearly orders clocks. The
proof of Lemma [8 proceeds by an induction on the length of a path. The above
two lemmas give us the desired bound.

Theorem 4. Let |ZG*(A)| be the size of the zone graph, and | X| be the num-
ber of clocks in A. The number of reachable nodes of GZG*(A) is bounded by
1ZG*(A)].(IX]+1).

The theorem follows directly from the above two lemmas. Of course, imposing
that zones have ordered clocks in the definition of GZG*(A) we would get the
same bound for the entire GZG*(A).

4 Algorithm

We use Theorem Bl to construct an algorithm to decide if an automaton 4 has
a non-Zeno run satisfying the Biichi condition. This theorem requires to find
an unblocked path in GZG*(A) visiting both an accepting state and a clear
state infinitely often. This problem is similar to that of testing for emptiness of
automata with generalized Biichi conditions as we need to satisfy two infinitary
conditions at the same time. The requirement of a path being unblocked adds
additional complexity to the problem. The best algorithms for testing emptiness
of automata with generalized Biichi conditions are based on strongly connected
components (SCC) [I4/I0]. So this is the way we take here.

We apply a variant of Tarjan’s algorithm for detecting maximal SCCs in
GZG*(A). During the computation of the maximal SCCs, we keep track of
whether an accepting node and a clear node have been seen. For the unblocked
condition we use two sets of clocks UBr and Ry that respectively contain the
clocks that are bounded and the clocks that are reset in the SCC I". At the end
of the exploration of I" we check if:

1. we have passed through an accepting node and a clear node,
2. there are no blocking clocks: UBr C Rp.

If the two conditions are satisfied then we can conclude saying that A has an
accepting non-Zeno run. Indeed, a path passing infinitely often through all the
nodes of I would satisfy the conditions of Theorem [giving a required run of
A. If the first condition does not hold then the same theorem says that I" does
not have a witness for a non-Zeno run of A satisfying the Biichi condition.

The interesting case is when the first condition holds but not the second. We
can then discard from I" all the edges blocking clocks from UBp — Rp, and
reexamine it. If I" without discarded edges is still an SCC then we are done. If
not we restart our algorithm on I" with the discarded edges removed. Observe

160 F. Herbreteau, B. Srivathsan, and I. Walukiewicz

that we will not do more than |X| restarts, as each time we eliminate at least
one clock. If after exploring the entire graph, the algorithm has not found a
subgraph satisfying the two conditions then it declares that there is no run of A
with the desired properties. Its correctness is based on Theorem [3l

Recall that by Theorem [the size of GZG*(A) is |[ZG*(A)| - | X|. The com-
plexity of the algorithm follows from the complexity of Tarjan’s algorithm and
the remark about the number of recursive calls being bounded by the number
of clocks. We hence obtain the following.

Theorem 5. The above algorithm is correct and runs in time O(| ZG*(A)|.| X |?).

5 Conclusions

Biichi non-emptiness problem is one of the standard problems for timed au-
tomata. Since the paper introducing the model, it has been widely accepted
that addition of one auxiliary clock is an adequate method to deal with the
problem of Zeno paths. This technique is also used in the recently proposed zone
based algorithm for the problem [16].

In this paper, we have argued that in some cases the auxiliary clock may cause
exponential blowup in the size of the zone graph. We have proposed another
method that is based on a modification of the zone graph. The resulting graph
grows only by a factor that is linear in the number of clocks. In our opinion,
the efficiency gains of our method outweigh the fact that it requires some small
modifications in the code dealing with zone graph exploration.

It is difficult to estimate how often introducing the auxiliary clock may cause
an exponential blowup. The example in Figure [suggests that the problem
appears when there is a blocked cycle containing an accepting state. A prototype
implementation of our algorithm shows that a blowup occurs in the Train-Gate
example (e.g. [I1]) when checking for bounded response to train access requests.
For 2 trains, the zone graph has 988 zones whereas after adding the auxiliary
clock it blows to 227482 zones. The guessing zone graph has 3840 zones. To be
fair, among the 227482 zones, 146061 are accepting with a self-loop, so in this
example any on-the-fly algorithm should work rather quickly. Our prototype
visits 1677 zones (in 0.42s). The example from Figure [l with n = 10 and d = 1
has a zone graph with 151 zones and a guessing zone graph with 1563 zones. Its
size grows to 36007 when adding the extra clock. Raising d to 15, we obtain 151,
1563 and 135444 zones respectively, which confirms the expected blowup.

It is possible to apply the modification to the zone graph on-the-fly. It could
also be restricted only to strongly connected components having “zero checks”.
This seems to be another source of big potential gains. We are currently working
on an on-the-fly optimized algorithm. The first results are very encouraging. Of-
ten our prototype implementation solves the emptiness problem at the same cost
as reachability when the automaton has no Zeno accepting runs. For instance,
the zone graph for Fischer’s protocol with 4 processes has 46129 zones and is
computed in 14.2241. To answer the mutual exclusion problem it is necessary

1 On a 2.4GHz Intel Core 2 Duo MacBook with 2GB of memory.

Efficient Emptiness Check for Timed Biichi Automata 161

to visit the entire zone graph. Our algorithm does it in 15.77s. Applying the
construction from [I7] we get the graph with 96913 zones, and it takes 37.10s to
visit all of them. Hence, even in this example, where all the runs are non-Zeno,
adding one clock has a noticeable impact.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183-235 (1994)
Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1-24.
Springer, Heidelberg (2004)

. Behrmann, G., David, A., Larsen, K.G., Haakansson, J., Pettersson, P., Yi, W,

Hendriks, M.: Uppaal 4.0. In: QEST’06, pp. 125-126 (2006)

. Bérard, B., Bouyer, B., Petit, A.: Analysing the pgm protocol with UPPAAL. Int.

Journal of Production Research 42(14), 2773-2791 (2004)

. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri

nets. In: IFIP Congress, pp. 41-46 (1983)

. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in

System Design 24(3), 281-320 (2004)

. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: KRONOS: a

mode-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546-550. Springer, Heidelberg (1998)

. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using

abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313-329.
Springer, Heidelberg (1998)

. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.

In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197-212. Springer, Heidelberg
1990

éaisel)r, A., Schwoon, S.: Comparison of algorithms for checking emptiness on biichi
automata. In: MEMICS’09, pp. 69-77 (2009)

Gémez, R., Bowman, H.: Efficient detection of zeno runs in timed automata. In:
Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 195—
210. Springer, Heidelberg (2007)

Havelund, K., Skou, A., Larsen, K., Lund, K.: Formal modeling and analysis of an
audio/video protocol: An industrial case study using UPPAAL. In: RTSS’97, pp.
2-13 (1997)

Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using UPPAAL TiGA. In: Raskin, J.-F., Thiagarajan, P.S.
(eds.) FORMATS 2007. LNCS, vol. 4763, pp. 227-240. Springer, Heidelberg (2007)
Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-

wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174-190. Springer,
Heidelberg (2005)

Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.)
AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp.
299-314. Springer, Heidelberg (1999)

Tripakis, S.: Checking timed biichi emptiness on simulation graphs. ACM Trans-
actions on Computational Logic 10(3) (2009)

Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed biichi automata emptiness

efficiently. Formal Methods in System Design 26(3), 267292 (2005)

	Efficient Emptiness Check for Timed B\"{u}chi Automata
	Introduction
	The Emptiness Problem for Timed Büchi Automata
	Timed Büchi Automata
	Regions and Region Graphs
	Zones and Zone Graphs

	Finding Non Zeno Paths
	Adding One Clock
	A More Efficient Solution

	Algorithm
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

