Okamoto-Tanaka Revisited: Fully Authenticated
Diffie-Hellman with Minimal Overhead*

Rosario Gennaro, Hugo Krawczyk, and Tal Rabin

IBM T.J. Watson Research Center
Hawthorne, New York 10532
rosario@us.ibm.com, hugo@ee.technion.ac.il, talr@us.ibm.com

Abstract. This paper investigates the question of whether a key agree-
ment protocol with the same communication complexity as the original
Diffie-Hellman protocol (DHP) (two messages with a single group ele-
ment per message), and similar low computational overhead, can achieve
forward secrecy against active attackers in a provable way. We answer this
question in the affirmative by resorting to an old and elegant key agree-
ment protocol: the Okamoto-Tanaka protocol [22]. We analyze a variant
of the protocol (denoted mOT) which achieves the above goal. Moreover,
due to the identity-based properties of mOT, even the sending of certifi-
cates (typical for authenticated DHPs) can be avoided in the protocol.

As additional contributions, we apply our analysis to prove the secu-
rity of a recent multi-domain extension of the Okamoto-Tanaka protocol
by Schridde et al. and show how to adapt mOT to the (non id-based)
certificate-based setting.

1 Introduction

Since the invention of the Diffie-Hellman protocol (DHP) [I0], much work has
been dedicated to armor the protocol against active (“man in the middle”) at-
tacks. Designing authenticated Diffie-Hellman protocols has proven to be very
challenging at the design and analysis level, especially when trying to optimize
performance (both computation and communication). This line of work has been
important not only from the practical point of view but also for understandings
what are the essential limits for providing authentication to the DHP.

In particular, it has been shown that one can obtain an authenticated DH pro-
tocol with the same communication as the basic unauthenticated DHP (at least
if one ignores the transmission of public key certificates); namely, a 2-message
exchange where each party sends a single DH value, and where the two mes-
sages can be sent in any order. A prominent example of such protocols is MQV
[18] (and its provably-secure variant HMQV [I7]) where the cost of computing
a session key is as in the basic unauthenticated DHP plus half the cost of one
exponentiation (i.e., one off-line exponentiation and 1.5 on-line exponentiations).

Protocols such as the 2-message MQV are “implicitly-authenticated proto-
cols;” that is, the information transmitted between the parties is computed

* Extended Abstract. Full version available at http://eprint.iacr.org/2010/068.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 309-B24, 2010.
© Springer-Verlag Berlin Heidelberg 2010

310 R. Gennaro, H. Krawczyk, and T. Rabin

without access to the parties’ long-term secrets while the authentication is ac-
complished via the computation of the session key that involves the long-term
private/public keys of the parties. Unfortunately, implicitly-authenticated proto-
cols, while offering superb performance, are inherently limited in their security
against active attackers. Indeed, as shown in [I7], such protocols can achieve
perfect forward secrecy (PFS) against passive attackers only.

Recall that PFS ensures that once a session key derived from a Diffie-Hellman
value is erased from memory, there is no way to recover the session key even
by an attacker that gains access to the long-term authentication keys of the
parties after the session is established. PFS is a major security feature that
sets DHPs apart from other key agreement protocols (such as those based in PK
encryption) and is the main reason for the extensive use of DHPs in practice (e.g.,
IPsec and SSH). Adding PFS against active attackers to protocols like MQV
requires increased communication in the form of additional messages and/or
explicit signatures.

In this paper we investigate the theoretical and practical question of whether
the limits of DHPs can be pushed further and obtain a protocol with full se-
curity against active attackers (including PFS) while preserving the communi-
cation complexity of a basic DHP (two messages with a single group element
per message) and low computational overhead. We answer this question in the
affirmative by departing from implicitly authenticated protocols and resorting to
an old and elegant key agreement protocol: the Okamoto-Tanaka protocol [22].
We analyze a variant of the protocol (denoted mOT) which achieves the above
minimal communication, incurs a negligible computational overhead relative to
a basic DHP over an RSA group, and yet achieves provable security including
full PFS against active attackerdl. Moreover, due to the identity-based [24] prop-
erties of mOT, even the sending and verification of certificates is avoided in the
protocol.

Our Results. The protocol mOT we analyze is a “stripped down” version of the
“affiliation-hiding” key exchange protocol by Jarecki et al. [I5] (a version of key
agreement where parties want to hide who certified their public keys). We remove
all the extra steps designed to obtain affiliation-hiding (which is not a concern
for our paper) and focus on the 2-message version of the [I5] protocol (the latter
includes a third message and the transmission of additional authentication infor-
mation for the parties to confirm they indeed have the same key). We present a
rigorous proof of security for mOT in the Canetti-Krawczyk (CK) Key-Agreement
Protocol model [B]. The security of the protocol in this model, including weak PFS
(i.e., against passive attacks only), is proven in the random oracle model under
the standard RSA assumption. For the proof of full PFS against active attack-
ers (and only for this proof) we resort to non-black-box assumptions in the form
of the “knowledge of exponent” assumptions. We stress that our goal is to prove
full security (including full PFS) for the 2-message protocol without the extra key

! There are DH protocols that provide full PFS against active attacks with just two
messages, but they require to send (and process) additional information, e.g. explicit
signatures [27] or encrypted challenges [16].

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 311

confirmation steps: indeed the 3-message protocol with key confirmation can be
proven secure (including full PFS) under the standard RSA assumption without
requiring extra assumptions (this proof is actually implicit in [I5]).

Modified Okamoto-Tanaka (mOT). The modified Okamoto-Tanaka protocol
mOT, is described in Figure [(for a precise specification see Section Bl). We
describe the protocol as an identity-based protocol using a KGC (key generation
center) as this setting provides added performance advantages to the protocol.
Following [I5], we include hashing operation on identities as well as the hashing
and squaring operations in the computation of the session key K (these steps
are not part of the original Okamoto-Tanaka).

The Modified Okamoto-Tanaka (mOT) Protocol

Setting: A Key Generation Center (KGC) chooses RSA parameters
N = pgq (such that p and ¢ are random safe primes), and exponents d, e, and
a random generator g of QR ;, the (cyclic) subgroup of quadratic residues
modN.

KGC publishes N, e, g, two hash functions H (with range QR,) and H’
(with range of the desired length of the session key), and distributes to
each user U with identity idy a private key Sy = H(idy)? mod N.

Key agreement: A and B choose ephemeral private exponents x and v,
respectively.

A a=¢*Samod N B

< B =gYSp mod N

Ka = (8°/H(idp))** mod N Kp = (a®/H(idA))? mod N
K=Kis=Kp=g¢"¥mod N
A and B set the session key to K = H'(K,ida,idg, a, 3)

Fig. 1. A and B share session key K. See Section [for full details.

Security Proof and Full PFS “for free”. The security result that sets our
protocol and work apart is our proof of full PFS for mOT, namely, perfect for-
ward secrecy against fully active attackers. The proof of full PFS (and only this
proof) requires two additional “non-black-box” assumptions: one is the well-
known KEA1 (knowledge of exponent) assumption [8/I] related to the hardness
of the Diffie-Hellman problem and the second is similar in spirit but applies to
the discrete logarithm problem (see Section H)). Enjoying full PFS is a major
advantage of mOT relative to efficient two-message protocols such as MQV that

312 R. Gennaro, H. Krawczyk, and T. Rabin

can only offer weak PFS. Indeed, in spite of mOT transmitting a single group
element in each of the two messages, it overcomes the inherent PFS limitations
of implicitly authenticated DHPs by involving the sender’s private key in the
computation of each protocol’s message. Most importantly, as we explain below,
this full security against active attackers is achieved with zero communication
and negligible computational overhead relative to the basic DHP. We believe this
to be not just a practical feature of mOT but also a significant contribution to
the theory of key agreement protocols showing that armoring the original DHP
against active attackers can be achieved essentially “for free”.

Performance. The cost of mOT remains essentially the same as in the basic
(unauthenticated) DHP: one message per party, that can be sent in any order,
with each message containing a single group element. No additional authentica-
tion information needs to be transmitted. Thanks to the identity-based proper-
ties of the protocol, public-key certificates need not be sent or verified. The only
extra operation is one exponentiation to the e-th power, which can be chosen to
be 3, and one squaring; that is, just three modular multiplications in all. How-
ever, note that mOT works over an RSA group and therefore exponentiations
are more expensive than over elliptic curves (where protocols like MQV can be
run). Yet, we also note that mOT can be implemented with short exponents,
say 160-bit exponents when the modulus is of size 1024 (or a 224-bit exponent
with a 2048-bit modulus). Our proof of the protocol holds in this case under
the common assumption that in the RSA group the discrete logarithm problem
remains hard also for these exponent sizes. In terms of practical efficiency, for
moderate security parameters (160-200 bit exponents) the cost of one on-line
exponentiation in mOT is competitive with the 1.5 exponentiations over elliptic
curves required by MQV. For larger security parameters the advantage is fully
on the elliptic curve side though in this case one has to also consider the over-
head incurred by certificate processing in a protocol like MQV (which is costly
especially for ECDSA-signed certificates).

Of course, beyond the practical performance considerations, mOT holds a
significant security advantage over 2-message MQV, namely, its full PFS against
active attackers. The fact that mOT can do so well with almost no overhead
over the underlying basic Diffie-Hellman protocol, and with full security against
active attacks, is an important theoretical (and conceptual) aspect of our work
pointing to the limits of what is possible in this area.

More discussion on the performance mOT can be found in the full version.

The Need for a Key Generation Center (KGC). As an identity-based
protocol, mOT avoids the need for certificates (a significant communication and
computational advantage). The id-based setting, however, introduces the need
for a KGC that generates and distributes keys to users. This results in a differ-
ent trust model than the traditional certification authority (CA) that certifies
public keys but does not generate or know the private keys of parties. Note,
however, that in mOT the private keys are used only for authentication. Thus,
while a KGC can impersonate a party, it cannot learn keys exchanged by that
party (we note — see full version — that the PFS property holds also against a

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 313

corrupted KGC). Note that a regular CA can also impersonate parties at will
by issuing certificates with the user’s name but with a private key known to the
CA. Interestingly, as we show below, mOT can be modified to work also in the
traditional CA setting.

Further results. In the full version we extend the above proofs and analysis to
a recent extension of the Okamoto-Tanaka protocol proposed by Schridde, Smith
and Freisleben [25] that allows the execution of the protocol between users that
belong to different domains, i.e., to different key generation centers (KGC).

The full version also shows that the mOT protocol and its extension from
[25] can be modified to work as “traditional” (i.e., not ID-based) key agreement
protocol.

Related work. Key agreement protocols (KAPs) have played an important role
in the development of identity-based cryptography, with Okamoto [21], Okamoto
and Tanaka [22], Gunther [I2] being early examples of id-based cryptography.
(Even earlier, the work by Blom [2] on key distribution can be seen as a precursor
of id-based schemes.) With the flourishing of pairings-based cryptography, many
more id-based KAPs have been designed; yet getting them right has been a chal-
lenging task. See the survey by Boyd and Choo [3] and Chen, Cheng, and Smart
[6] for good descriptions and accounts of the main properties of many of these
protocols. Even to date it seems that very few (e.g., [4129]) were given full proofs
of security (many others were broken or enjoy only a restricted notion of secu-
rity, such as partial resistance to known-key attacks). In all, the mOT protocol
studied here compares very favorably with other id-based and traditional KAPs
in provability and security properties (e.g., PFS) as well as performance-wise.

We already discussed the relationship of our work with [I5]. We stress again
that the security analysis there is for the protocol with the extra key confirmation
messages, while we analyze the minimalistic 2-message protocol in Figure [l

Multi-domain extensions of id-based KAPs have been proposed in [7J19] but
without full proofs of security. The multi-domain extension of the mOT protocol
that we fully analyze here is from Schridde et al. [25] which also contains a good
discussion of the benefits of multi-domain identity-based protocols.

In general, while interactive authenticated KAPs, especially those authenti-
cated with signatures, can easily accommodate certificates (which a party can
send together with its signature), avoiding the need for certificates constitutes a
significant practical simplification of many systems. In particular, they provide
more convenient solutions for revocation and less management burden [28]. The
Okamoto-Tanaka example shows that the identity-based setting can sometimes
even improve performance.

Open questions. We believe that the mOT protocol is remarkable for its
“minimalism”, providing full and provable authenticated key-agreement secu-
rity (including full PFS) with the same communication and minimal compu-
tational overhead relative to the underlying unauthenticated DHP. Yet there
are several ways one could hope to improve on this protocol and on our results;

314 R. Gennaro, H. Krawczyk, and T. Rabin

achieving any of these improvements would bring us even closer to the “ultimate”
authenticated DHP:

(i) Find a protocol with the same communication/computation/security
characteristics as mOT but which works over arbitrary dlog groups (in particular
elliptic curves). In this case, the minimalism of mOT would translate into opti-
mal practical performance (even a certificate-based protocol with these properties
would be very useful). (ii) Prove the full PFS security of mOT without resorting
to non-black-box assumptions (while we believe that proofs under these assump-
tions carry a very strong evidence of security, using more standard assumptions is
obviously desirable). (iii) Improve on mOT by avoiding the vulnerability of the
protocol to the exposure of the DH values g%, g¥ or the ephemeral exponents

T, Y.

2 Preliminaries

Let SPRIMES(n) be the set of n-bit long safe primes. Recall that a prime p
is safe if pgl is prime. Let N = pq be the product of two random primes in
SPRIMES(n); denote p = 2p’ + 1 and ¢ = 2¢’ + 1. Let e be an integer which
is relatively prime to ¢(N) = 4p'q’.

We say that the RSA Assumption (with exponent e) holds if for any prob-
abilistic polynomial time adversary 4 the probability that 4 on input N, e, R,
where R €r Z};, outputs = such that 2 = R mod N is negligible in n. The
probability of success of A is taken over the random choices of p,q, R and the
coin tosses of A.

Remark (semi-safe primes). For simplicity, we assume that p = 2p’ + 1
and ¢ = 2¢’ + 1 are safe primes, namely, p’ and ¢’ are prime. We can relax
this assumption to require that ged(p’,¢’) = 1 and that neither p’ or ¢’ have
a prime factor smaller than 2¢ for a given security parameter ¢. With these
assumptions we get that QR is cyclic and that a random element in QR is a
generator with overwhelming (1 — 27*) probability, two properties that we use
in our construction and analysis.

Throughout the paper we use the following well-known result of Shamir [23]:

Lemma 1. Let N,e,d be RSA parameters and f be an integer relatively prime
to e. There is an efficient procedure that given N,e, f (but not d) and a value
(x9)¥ mod N, for x € Z3, computes % mod N.

The cyclic group QR . If N is an RSA modulus product of safe primes, then
the subgroup QR of quadratic residues in Z% is cyclic of order p’q’. Let g be a
random generator of @Ry (such generator can be found by squaring a random
element in Z% (this algorithm yields a generator with overwhelming probability
and the resulting distribution is statistically close to uniform). In protocols and
proofs below we are going to generate random elements in the group generated by
g according to the uniform distribution and with known exponents (i.e., their dlog
to the base g). Such a random element X could be generated by choosing an integer

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 315

x € [1..p'¢'] uniformly at random and setting X = ¢® mod N. But this option
implies knowledge of the factorization of N (knowing the value p’q’ is equivalent to
factoring V). Parties who do not know the value p’¢’ can approximate the uniform
distribution over (g) as follows: generate z € [1..|N/4]] and set X = ¢g* mod N.
It is not hard to see (cf. [9]) that if p’ and ¢’ are of the same size (as required here)
then the uniform distributions over [1..p'¢’] and [1..| N/4]] are statistically close
with an exponentially small gap.

Let g be a random generator of QR and let X = ¢® mod N and Y = ¢g¥ mod
N two random elements in QR . We say that the Computational Diffie-Hellman
(CDH) Assumption (for N and g¢) holds if for any probabilistic polynomial time
adversary A the probability that A on input N, g, X,Y outputs Z such that
Z = ¢g™¥ mod N is negligible in n. The probability of success of A is taken over
the random choices of p, ¢, z, y and the coin tosses of A. We know from [26] that
the hardness of factoring N (and therefore the RSA Assumption) implies the
CDH Assumption.

3 The Modified Okamoto-Tanaka Protocol

Protocol Setup. A key generation center KGC (for “trusted authority”) chooses
an RSA key (N, e, d), where N is the product of two safe primes p, g. As usual e, d
are such that ed = 1 mod ¢(N). The KGC also chooses a random generator g for
the subgroup of quadratic residues QR 5. The public key of the KGC is (N, e, g)
and its secret key is d.

Two hash functions H, H' are public parameter. The first function H outputs
elements in the group generated by ¢ (this can be achieved by setting H to be the
square mod N of another hash function with range Z%). The second hash function
H' outputs k-bit strings, where k is the length of the required session key.

Each user in the system has an identity; for convenience we sometimes asso-
ciate a name to an identity. For example, Alice will be the name of a party while
her identity is denoted id4. We also denote A = H(id4) and B = H (idp) (thus,
A, B are elements in QR). When Alice requests her secret key from the KGC,
she receives the value S4 = A? mod N as her secret key (we can think of this as
the KGC’s RSA signature on Alice’s id).

The key agreement. Alice chooses a random integer x from a set S that

we specify below. She then computes X = ¢g* mod N and sends to Bob a =

X -S4 mod N. Bob chooses a random y in S, sets Y = ¢g¥ mod N, and sends

to Alice the value 8 = Y - Sp mod N. Alice computes a shared secret value

K4 = (8°/B)* mod N while Bob computes it as K = (a¢/A)? mod N. (Alice

and Bob check that the incoming value is in Z% or else they abort the session.)
Notice that the values K 4, K are equal:

KA _ Y2ze . (S%/B)2z _ Y2ze(Bed/B)2z _ 92zye _ ((XSA)E/A)2y _ KB

Alice and Bob set K as this sharedisecret value K = K4 = Kg = ¢®*¥° mod N
and set the session key to K = H'[K,id4,idp, o, 8]. Since we want both parties

316 R. Gennaro, H. Krawczyk, and T. Rabin

to compute the same session key we need to determine an ordering between
ida and idp, and between o and [in the input to the hash; for example, a
lexicographic ordering (note that we are not assuming necessarily that there is
a definite role of “initiator” and “responder” in the protocol, and hence we do
not use such roles to determine the ordering of the above values).

Protection of ephemeral values. We specify that the ephemeral Diffie-Hellman
values X, Y chosen by the parties be given the same protection level as the private
keys Sa, Sp (indeed, learning these ephemeral values is equivalent to learning the
private keys). In particular, if these values are stored in the (less secure) session
state they need to be stored encrypted under a (possibly symmetric) key stored
with the private key. (This is analogous to the need for protecting the ephemeral
value k in a DSA signature.) In addition, we specify that in the computation of
the session key, the hashing of the value K be performed in protected memory
and only the session key be exported to a session state or application (learning
the shared secret K value opens some attack venues as explained in the full
version).

The exponents set S and performance considerations. The performance
cost of the protocol is dominated by the exponentiation operations; hence the
choice of the set S from which ephemeral exponents are selected is important.
A first choice would be to define S as the interval [1..|v/N/2|]. In this case, as
shown in [I1] (following the results in [14]), the two distributions

{g° for z €g [1..|N/4]]} and {g" for = €g [1..[VN/2]]}

are computationally indistinguishable under the assumption that factoring N is
hard. Therefore, one can use exponents of length half the modulus without any
loss in security. However, performance can be significantly improved by setting
S to be the set of exponents of length k, where & is twice the security parameter
(e.g., £ = 224). Indeed in this case, the security of the protocol relies on the
common assumption that discrete log (over Z3) is hard also when the exponents
are of length «. Indeed (see Lemma 3.6 in [11]), this assumption implies that the
two distributions

{¢” for x €r [1..|N/4]]} and {g* for z €g [1..2"]}

are computationally indistinguishable, and hence using the short or long expo-
nents is equivalent. Therefore, we recommend the protocol to be implemented
using short exponents; in particular, we use this case when discussing the pro-
tocol’s performance.

3.1 Proof of the mOT Protocol

We prove first the following theorem showing the basic security of the mOT
protocol. In the full paper we prove further security properties, namely, resistance
to KCI and to reflection attacks, and weak PFS. We defer the proof of full PFS
(which requires a more involved proof and additional assumptions) to Section [

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 317

Theorem 1. Under the RSA assumption, if we model H, H' as random oracles,
the mOT protocol is a secure identity-based key agreement protocol.

Proof. The proof is carried in the Canetti-Krawczyk Key-Agreement security
model [5] (a succinct summary of this model is presented in the full version)
and it follows a typical simulation/reduction argument: We assume an efficient
KA-attacker M that breaks the security of the mOT protocol and use it to build
an algorithm that inverts RSA on random inputs.

We start by noting the following fact about an attacker against mOT: Since the
session identifier (ida,idg, «, 3) is hashed together with the shared secret value
K to obtain the session key K, we know that two different sessions necessarily
correspond to two different session keys. Moreover, since the hash function H’
is modelled as a random oracle then the only way for the attacker to calculate,
identify, or distinguish a session key is by computing the value K and explicitly
querying it from H’ B

We call the algorithm that we build for inverting RSA a “simulator” (denoted
SIM) since it works by simulating a run of the mOT protocol against the KA-
attacker M which is assumed to win the test-session game with non-negligible
probability.

Input to SIM. The input to SIM is a triple (N, e, R) where N, e are chosen
with the same RSA distribution as used in the mOT protocol and R is a random
element in Z%. The goal of STM is to output R% mod N where d is such that
ed =1 mod ¢(N).

Some conventions: We often omit the notation “mod N” when operating in the
group Zy. When saying that we chose a random element u from QR we mean
choosing v €g Z3 and setting u = v2 mod N. To choose a value u in Z} with
a known “RSA signature” s = u?, we first choose s and then set u = s°. If
U= g* W = ¢g" are elements of QR, we denote with DH,(U, W) the value
g, i.e. the result of the Diffie-Hellman transform in base g applied to U, W.

SIM runs a virtual execution of the mOT protocol (consisting of multiple
sessions) against the attacker M, simulating all protocol actions, including the
determination of private keys and responses to queries to the functions H, H'
made by M. In particular, we allow STM to “program” the hash functions H, H’
(as long as outputs are chosen independently of each other and with uniform
distribution) as is customary when modeling H, H' as random oracles.
Identities and keys. Each participant in the protocol has an identity, idp, possibly
chosen by M; we denote P = H(idp). Of all party identities participating in
the protocol, SIM chooses one at random; we denote it by idp and will refer
to this party as Bob. For each participant idp other than Bob, SIM chooses a

2 Note that if parties A and B have a session where they exchanged messages
(from A to B) and 8 (from B to A), and another session where the same messages
were exchanged but in the reverse direction, both sessions will have the same key.
However, as long as one of A and B is honest, each session will have at least one
fresh message (except for the negligible probability that two random values in QR
coincide), hence the above cannot happen even with the attacker’s intervention (who
can only choose one message in each session).

318 R. Gennaro, H. Krawczyk, and T. Rabin

random value p €g QRN and sets P = H(idp) = p°. In this way, SIM also
knows the private key of the participant, i.e., Sp = P? = p (note that P and Sp
are elements of QR). For Bob, SIM sets H(idg) = B = R> mod N, where R
is the input to SIM (note that R? is random in QR).

Choosing a QR generator. SIM sets the random generator g of QR to be
used in the protocol as following: it chooses random 7 €r QR ,;, sets r = 7¢, and
g = (rB)¢. Note that with these choices B = g¢/r and 7 = r¢; also note that g
and B are random in QR and independent.

Guessed test session. Before starting the simulation of session establishments,
SIM chooses at random a (future) session that it conjectures will be chosen by
M as the test session. SIM does so by guessing the holder of the test session
among all the parties in the orchestrated protocol run (we refer to this party as
Alice) and guessing the order number of the session among all of Alice’s sessions.
This allows SIM to know when the guessed session is activated at Alice in the
protocol’s run. In addition, STM also guesses that the peer to the test session
will be Bob (defined above). We specify that, if at any point in STM’s simulation,
it is determined from the protocol’s run that the guessed session is not to be
chosen as the real test session by M (e.g., if either Alice or Bob are corrupted, or
another test session is chosen by M, etc.) the simulator aborts. The probability
that the guessed session will actually be chosen by M as the test session is
non-negligible (as long as the simulation of the protocol by SIM is correct).

Session Interactions (non-test sessions). Attacker M can choose to initiate and
schedule sessions between any two participants and can input its own values
into the various sessions, either by utilizing corrupted players or by delivering
messages allegedly coming from honest parties. The simulator STM needs to
act on behalf of honest parties in these interactions. Simulating the actions of
any uncorrupted party other than Bob is simple for STM, as it knows their
private keys and can choose their ephemeral exponents. Sessions in which Bob
is a participant are more problematic since SIM does not know Bob’s private
key Sp = B? Whenever Bob is activated in a session, SIM will set the value
B = g°/7 as the outgoing message from Bob where b € [1..|N/4]] is chosen
afresh with each activation of Bob and the value 7 is fixed and defined above.
Clearly, f is distributed uniformly over QR as in the real runs of mOT. While
STM cannot compute session keys with such choice of 5 we will still see that it
can answer the attacker’s session-key queries.

Response to party corruption and session key queries (non-test sessions). If at
any point M corrupts a party, SIM provides all information for that party in-
cluding the private key (which STM knows). Note that if the attacker asks to
corrupt Bob, STM aborts since it is a sign that STM did not guess correctly the
test session. Session-key queries for sessions where one of the messages was gen-
erated by an honest party other than Bob, can be answered by SIM who chooses
the ephemeral exponent for the session. The problematic cases are sessions where
Bob is a peer and for which the incoming message to Bob was chosen by the
attacker (rather than by STM itself), and provided to Bob as coming from some

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 319

party idc (we refer to it as Charlie), which may be honest or corrupted, but
different than BoH3. In this case STM does not know the ephemeral exponents
of either party to the session so it cannot compute the session key. Instead the
simulation proceeds as follows.

The idea is that as long as M does not query the session value K from the
random oracle H', then STM can answer the session key query with a random
value. However, if M does know the value K, and it actually queries H' on
this value, then STM needs to answer consistently. Specifically, we are dealing
with a session where the peers are Bob and Charlie, whose hashed identities
are B = H(idp) and C = H(idc), respectively, and the exchanged values are
v, chosen by the attacker, and § chosen by SIM as specified above. Thus, the
session key is H'(K,idc,idpg,~,[3) for the appropriately computed K. Before
answering the session-key query, STM needs to check whether an input of the
form (Q,idc,idp,, 3) was queried from H’ where Q = K. If such a query with
Q = K was indeed performed then STM will answer the session-key query with
the existing value H'(Q, id¢,idp,, 3). If not, STM will choose a random value
p in the range of H' and will return p as the value of the session key.

The main question is how will SIM verify whether Q = K for a prior query.
The value K can be represented as DH,(Z?2, 3¢/ B) for Z = v/Sc. By our choice
of B =g%/r, B =g°/F and r = 7°, we have that 3°/B = (¢°*7¢)/(g%r~ ') =

g~ and therefore,

K = DH,(Z% 3°/B) = DH,(Z?, g®~%) = 7z*(b=4) (1)

Now, since exponentiation to the e is a permutation over Z3, we have that
Q = K if and only if Q¢ = K¢, and by Equation () this is the case if and only
if Q° = (z2(eb-d))e = Z2(€*=1) Byt this last computation can be performed
by SIM who knows all the involved values, including b that SIM chose and Z
(since Z = v/S¢ and SIM knows both v and Sc)A

Simulating the test session. When M activates the session at Alice that STM
chose as its guess for the test session, SIM acts as follows. Let the identity of
Alice be id4 and denote A = H(id4). Since Alice is assumed to be the holder of
the test session, it means that it is Alice (or STM in our case) who chooses the
outgoing message « from the session, not the attacker. SIM sets this message
to the value o = (rB)fS4, where r, B are as described at the begining of the
simulation, S4 = A% is Alice’s private key (which STM knows) and f is chosen
as f =te+1fort g [1..|IN/4]]. With this choice, a’s distribution is statistically
close to uniform over QR . Indeed, we have (rB)t*! = (gd)tetl = gdgt with

3 We assume for the time being that Bob does not run a KA session with itself (thus
C # B). The case where both session peers have the same identity is called a
reflection attack and is proved in the full version.

4 We note for future reference, that knowing Sc is not strictly necessary for SIM
to carry this simulation step. If SIM does not know Sc¢ (as in some other proofs
in this paper) it does not know Z either. Instead SIM will use Z¢ = +°/C which
it does know, and instead of checking Q¢ = Z 2(e?b=1) it will check the equivalent
QEQ — (Ze)2(52b71)'

320 R. Gennaro, H. Krawczyk, and T. Rabin

t €r [1..[IN/4]] (recall that in the real protocol Alice chooses o = ¢g*Sa with
g* also statistically close to uniform distribution over QR). It also makes it
independent of other values in the protocol including B and (.

The peer to the test session is Bob (or else SIM aborts) and the incoming
message is denoted by 3. This value can be chosen by the attacker (which delivers
it to Alice as coming from Bob) or by Bob itself. In the latter case, 3 is chosen by
SIM as described above for other sessions activated at Bob. In case M chooses
0, it can be any arbitrary value. Below, we make no assumption on 3 other than
being in Z%. The session key in this case is K = H'(K,id,idg, o, 3) where K
is computed as follows: if X = g% denotes the value a/S4 then K = (3¢/B)?*.
Now, by our choice of parameters a, g, B,r (in particular, 7B = g%), we have
that X = a/S4 = (rB)f = (¢%)7 and hence = = df mod ¢(N)/4. Thus,

K = (5°/B)* 2)

Since SIM cannot compute this value (it does not know the ephemeral exponent
of either peer to the session) we need to show how STM responds to a test-session
query (assuming the guessed session is indeed chosen by M as the test session).
Upon such a query, STM will check if there was any query made to H of the
form (Q,id4,idg,a, 3) and if so, it will check if Q equals the session value K.
This is done by checking whether Q¢ = (3°/B)?f (which involves values known
to SIM). Indeed, note that Q = K if and only if Q¢ = K* (as exponentiation
to e is a permutation) and using Equation (2)) we have K¢ = (8¢/B)f. If SIM
identifies such a @Q, SIM has learned K from which it can compute its target
RSA forgery as we explain below. If not, STM responds to the session-key query
with a random value. From now on, it monitors M’s queries to H to see if a
Q = K is identified, in which case SIM learns the session key and outputs the
forgery.

Computing the forgery R?. The goal of SIM is to compute R? mod N where
R er Z3, was given to SIM as input. We now show that whenever STM learns
the session key corresponding to the test session (as shown above) it can compute
R?. Indeed, it is easy to see from Equation (2)) that (B2/)? = 32/ /K, and since
SIM chose B = R? then (R*)? = 3%/ /K. Using Lemmal[I] and the fact that 4 f
is relatively prime to e we derive R? from (R*/)<.

Finally, we note that in order to win the test-session game with non-negligible
advantage it must be that M queries the correct K from H with non-negligible
probability, then SIM is guaranteed to learn K, and hence compute R?, also
with non-negligible probability.

In the full version we prove further security properties of mOT , such as resistance
to reflection and key compromise attacks.

4 Proof of the PFS Property of the mOT Protocol

In this section we prove that the Modified Okamoto-Tanaka protocol enjoys
full Perfect Forward Secrecy (PFS) against active attackers. For this proof we

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 321

need to resort to two additional assumption&ﬁ (on top of the RSA Assumption
required for the proof of the basic security of the protocol, i.e. Theorem [).
The first assumption is the well-known “Knowledge of Exponent Assumption”
introduced by Damgard [8] (and further used and studied in [I3/1]). Intuitively,
it states that to compute a DH value ¢g*¥ out of a triple g, g%, g¥ one has to
necessarily know either x or y. We will refer to this assumption (called KEA1 in
1) as KEA-DH.

Knowledge of Exponent Assumption for Diffie-Hellman (KEA-DH).
Let G be a cyclic group, and let g, h be distinct generators of G. The assumption
says that for every algorithm M that on input G, g, h outputs (y, z) where y = ¢g*
and z = h* for some integer z, there exists an algorithm M”* which outputs z.

A fully formal statement of the assumption can be found in [I]; in particular,
it is assumed that for every set of random coins used by M, if M outputs
(y = ¢®, z = h*) then for the same set of random coins M™ outputs x.

Our second assumption is close in spirit to KEA-DH but it applies to the
discrete logarithm problem; we refer to it as KEA-DL*. The idea is as follows:
Under the discrete log assumption, given a pair (g, B = ¢°) (for random b) it is
hard to find b. But what if in addition to the pair (¢, B = ¢®) one is also given
a dlog oracle where one can input any value in G other than B, and receive its
dlog to base g. Obviously, one can find b by querying, for example, the value Bg;
more generally, one can query BV where V = B’g? for known 4, j, and compute
b out of the dlog of BV. The KEA-DL* assumption states that if one is allowed
a single query to the oracle then the above strategy is the only feasible one.
Namely, if an algorithm finds b by querying a single value from the oracle then
there is another algorithm that outputs values i, j as above. In addition we also
need to assume that the knowledge of the e-th root of B (for a fixed value e) does
not help the attacker to find the dlog of B in the above game. More formally@:

Modified Knowledge of Exponent Assumption for Discrete Log (KEA-
DL*). Let G be the subgroup of Quadratic Residues in Z% where N is an RSA
modulus. We modify the KEA-DL assumption to allow M to receive also the
e-root of B (where e is an RSA exponent). The modified assumption is as follows:

1. Challpyr- provides M with N, e, g, B = g® where g, B are random quadratic
residues in Zy;

2. M is allowed to query an element V € G,

3. Challpy~ responds with the discrete log of BV and the e-root of B;

4. M outputs an integer b’; M wins if b =0'.

5 Tt is important to note that, as shown in the full version, weak PFS — i.e. against pas-
sive attackers — is a direct consequence of Theorem [[land does not require additional
assumptions.

5 A fully formal statement of the assumption quantifies over each set of random coins
of algorithms M and Mx; the details are similar to the treatment of the KEA-DL*
assumption in [I] and are omitted from this extended abstract.

322 R. Gennaro, H. Krawczyk, and T. Rabin

The KEA-DL* assumption states that for every algorithm M that wins the
above game, there exists an algorithm M™ which outputs integers 4, 7 such that
V = Bigl.

Theorem 2. Under the RSA, KEA-DH and KEA-DL* assumptions, if we
model H, H' as random oracles, then the mOT protocol enjoys perfect forward
secrecy (PFS) (against passive and active attackers).

Proof. The PFS case differs from the non-PFS case, proven in Theorem [I in
that, after completing the test session between Alice and Bob, the attacker is
given the values Sy = A% and Sp = B?, i.e., the private keys of the peers to the
session. Only after receiving these values, the adversary needs to distinguish the
test key from random.

Recall that due to the fact that the session key is the hash of the resulting
secret value K = ¢?*¥°, where the hash is modeled as a random oracle, distin-
guishing the key is equivalent to finding K. Thus, in the sequel we assume that
a successful attacker is one that guesses this value g2*¥e.

Examining the proof of Theorem [I] we can see that in all the simulations in
that proof, the simulator knows the secret key S4 of Alice, and therefore it can
provide it to the adversary upon corruption of Alice.

The difficulty in proving full PFS is the need to provide the attacker M with
Sp = B? before M outputs its guess for the session key. This is very different
than the case of Theorem [I] where the simulator first receives the attacker’s
guess and only then it uses this value to compute the forgery B?. Still, with
some significant changes to the simulation and some added assumptions, we will
be able to prove the theorem by transforming a successful mOT attacker M into
an RSA forger F' that inverts RSA on a random input. We show this reduction
now.

The RSA Forger F. The forger F'is given as input an instance N,e, R €r QR y
of the RSA problem and needs to compute R mod N with non-negligible prob-
ability. F' starts by running a simulation of the mOT protocol against attacker
M (which we assume to guess the test session key with non-negligible proba-
bility). For this F' sets up the public parameters of mOT as N, e, g where N, e
are from F’s input and g = h® mod N for h chosen by F' at random in QRy.
As in the proof of Theorem [Il, F' generates private keys for all parties except
BoH1 by programming the random oracle H (i.e., for each party idp, F' chooses
p €Er QRN and sets H(idp) = P = p®, and Sp = p).

For Bob, F' chooses the value B = H(idg) by programming H as follows. It
sets a value U = g" mod N where F' chooses u as a random integer in the range
[1..|V/2]] (note that with this choice of u, the distribution of the value U is
statistically close to uniform in QR — by a similar argument as in Section [2).

7 Bob is the peer to the test session - as in the previous proof we assume that the
simulator successfully guesses the test session and its peers, an event that happens
with non-negligible probability.

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 323

Then, it flips an unbiased coin coin, and sets

H(idp) = B = {R2 mod N if coin =0 (where R is part of F’s input)
U¢mod N if coin=1

Notice that the distribution of B is correct, i.e., (statistically close to) random in

@R 5 and independent of other values in the protocol. To simulate all the sessions

other than the test session, F' follows the same simulation as in Theorem [In

other words, we keep the proof of Theorem [l intact up to the point in that proof

titled “Simulating the test session”.

It remains to show how F' simulates the test session interaction with M in the
PFS case, and how this simulation results in the computation of R?. For this we
are going to first modify the attacker M into an attacker M that behaves like
M but, in addition, in runs where M guesses correctly the test session, M will
output some additional values that will allow F' to complete its forgery. Thus, F’
will be running against the modified M rather than against M. We now show
how we transform M into M via several intermediate “games”. We start by
presenting a first game that represents the interaction with a KA-attacker in the
test session experiment in the PFS setting.

The PFS Game. The following game represents the test session interaction
between a “PFS challenger”, Challprg, and the KA-attacker M where M is
allowed to corrupt Bob after the test session key is complete. In this case, M
sends the incoming message 5 (allegedly coming from Bob) into the test session
held by Alice, and Alice outputs a value «. After these values are set, the attacker
receives Bob’s secret key Sp = B? and M wins the game if it outputs K = g>°*¥.

PFS Game:

1. Challppgs sends to M the values N, e, g, B, X.
Here X represents the value a sent by Alice; indeed, since we assume that
M can also be given S (which F' chooses and hence knows) then providing
a = X -5, is equivalent to providing X.

2. The adversary sends a value § which in turn determines a value Y defined
as Y = /B
Note that 3, which is chosen by M, may not be an element of QRy, and
the same holds for Y. However, Y2 mod N is necessarily in QR and hence
generated by ¢. Defining y = logg(Y2 mod N), and thanks to the squaring
operation in the computation of the session key in mOT, we get that the
session key ¢2*¥¢ equals XV¢.

3. Challprg sends B?.

4. M sends K. The adversary, M, wins if K = Xve.

We now show how to transform an attacker M that wins the above PFS game
(with non-negligible probability) into a modified attacker M (with the same
probability of success) that I will use to compute its RSA forgery. We arrive

to M from M through a series of adversaries (M, M*, M1, M7, M) defined in
the following games.

324 R. Gennaro, H. Krawczyk, and T. Rabin

The adversary M”*: Note that M, in the above PFS game, can be changed
to also output Y2¢ (computed as 3%¢/B?). So in a winning run on input g, X,
attacker M would output K = X¥¢ and also Y2¢ = g¥°. By invoking the KEA-
DH assumption there is another attacker M™ that behaves as M but in addition
it outputs, in winning runs, ye = log, Y2¢ in step 4.

Building Adversary M; from M*

ChallDL* Ml M*
N7e7g7B

N7e7g7B’X

V — /825 . B—2
B, w = log,(BV)

<

b=w — ye

Fig. 2. Creating a KEA-DL* adversary

The adversary Mi: We now use the modified PFS attacker M™ to build an
attacker My that interacts with a challenger Challpr« in a KEA-DL* game.
The actions of M are described in Figure[2} M uses M™ as a subroutine (where
M acts as the PFS challenger with respect to M™) and uses responses received
from M™ to answer Challpr~ queries. Now, since in a successful run of M* the
last value ye output by M* satisfies g¥¢ = Y?¢ = 32¢/B2? =V, and the value w
output by Challpr~ satisfies w = log, BV = b + ye, then the value b = w — ye
answered by M is correct (i.e., g¢* = B) and M; wins the KEA-DL* game.
In other words, each successful run of M* (which happens with non-negligible
probability) induces a successful run of M; in the KEA-DL* game.

The adversary M;j: By the KEA-DL* Assumption, there is an adversary
M7 that behaves exactly as M except that together with V' it also outputs i, j
such that V' = B'g’. Replacing M; with M in Figure2] we get the same flows
except that now the values i, j as above are added to the second flow from M
to Challpr«. We refer to this as the modified game of Figure[d.

The hybrid adversary M: Using M} we build an attacker M that interacts
in a PFS game as represented in Figure Bl In the first flow M receives inputs
from Challprs as in a regular PFS game. Next M uses these inputs to call
M in the modified game of Figure Pl In this modified game, M] uses these
same values as its first flow to M™. Upon receiving the 3 response from M™,

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 325

Building PFS Adversary M from M;}

Challprs M
N7 e7g7 B7 X
>
-« By, J
B
[
< ye

Fig. 3. A Hybrid PFS Adversary M (values in second flow satisfy 32¢B~2? = B'g?)

M produces the value V = 32¢B~2 as well as i,j such that V = Big’. Then,
M sends to Challprs the values 3,4, j (note that i,j are not part of the basic
PFS game but additional outputs produced by M). In the next flow, M receives
from Challprg the value B¢ as in a PFS game, which M uses as the third flow
from M7 to M*. Finally, upon receiving the response ye from M*, M outputs
this same value as its fourth message in the PFS game.

It is important to observe that the flows involving the value w produced by
the dlog oracle in Figure 2] are not used by M; this is important since in a real
execution of the PFS game — as part of the interaction with a mOT attacker —
there is no such dlog oracle (this only exists as an artifact of the proof).

We note that in a successful run of M, the values (3,1, j, ye output by M
satisfy the following equations:

g% = Y = (3°/B)? mod N (3)
f**B™? =V = B'g’ mod N (4)

which yield
¢¥¢ = B¢’ mod N (5)

Also note that by virtue of the above sequence of games, if M succeeds with
non-negligible probability then M succeeds in outputting the above values also
with non-negligible probability.

Summarizing the above transformations, we showed that the existence of a
successful PFS attacker M implies (via the KEA assumptions) the existence of
a second PFS attacker M that in addition to the normal outputs of M (i.e.,
0 and the session key guess), it also outputs the values i, j, ye that satisfy the
above equations.

Applying the above to the key agreement setting of mOT we get that one
can take a KA-attacker M that successfully breaks the PFS property of mOT
and transform it into an equivalent KA-attacker M, that differs from M in that
it also outputs the above values i, j, ye during a successful interaction in the
test session experiment. We use this modified KA-attacker M to complete the
description of the forger F'.

326 R. Gennaro, H. Krawczyk, and T. Rabin

Back to the RSA Forger F. We have seen before how F' simulates a run of
mOT against a KA-attacker M except for the test session interaction. Here we
complete the description of this part of the simulation and show how F' computes
its RSA forgery. For this we consider a run of F' (as described so far) against
the modified KA-adversary M defined above; that is, M behaves exactly as M
but, in successful runs of M, in addition to (3 it outputs ¢, j and in addition to
the guess of the session key it outputs ye.

The way F uses M to generate a forgery depends on two values: whether i
output by M is 0 or not, and whether the coin chosen by F (see above) is 0 or
1. We now show these different cases.

Case ¢ = 0. With probability 1/2 we also have that coin = 0 and therefore B =
R?mod N. In this case, F is running M on g = h¢, B = R? and X € QR.
Assuming the run of M is successful and i = 0, the forger F obtains the value
j = yemod p'q’ in the second message from M in Figure [(recall that by (5]
we have ye = ib+ j mod p'q’). F then uses j to compute Y? as follows:

hi = h¥¢ = (¢%)¥¢ = g¥ = Y% mod N,

and uses Y2 to compute (R*)? = B¢ = (2/Y?) mod N. Using Lemma [[] and
the fact that 4 and e are relatively prime F' can compute, out of the value (R*)?,
the required forgery R? mod N.

Important: In the above case, F' only needs to know j to complete its forgery;
therefore it does not need to complete the third and fourth flows in Figure [
(that involve BY) before it can forge.

Case ¢ # 0. With probability 1/2 we also have that coin = 1 and therefore
B =U° = g*°* mod N where, by definition, v is a random integer in the range
[1..[N/2]]. In this case, F knows B% = U and hence can complete the full run
against M in Figure B That is, F' runs M sending (g, B, X) in the first message
and U in the third message. F' receives from M the values i, in the second
message and y’ = ye in the last message. F' will use ¢, 5,73’ to find two values s
and t from which it will derive (whp) the factorization of N.

Specifically, F' sets s = ie and t = 3’ — j (these operations are over the
integers). It holds (mod p'q’) that

t=y —j=ye—j=1ib=ieu= sumodpq

where the third equality is from Equation (&) and b = eu mod p’q’ holds by the
choice B =U° = g“°.

Thus, the integer ¢t — su is a multiple of p’q’ that F' can compute as it knows
s,t,u. If this number is non-zero then F factors N (as it is well known, the
factorization of N can be found from such a multiple of p'¢’, e.g. [20]). Now,
note that there are at least two values of the integer u that will result in the
same element U in QR (since u €g [1..|N/2]] and |N/2| > 2p/'q). Since M
knows U but not the specific u (indeed, from the value U one cannot learn which
of the possible values of u was chosen by F'), the probability that ¢ and s (that

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman 327

are derived from M outputs) result in ¢ — su being zero is at most 1/2 (at most
one of the u’s can satisfy this equation).

In all, we have that if F interacts with a successful run of M (which implies a
successful run of M) and i = 0 then with probability 1/2 F correctly computes
R%. 1f the run of M is successful and i > 0 then with probability 1/2 F factors N
and hence can produce R? as well. Since M (and M) succeed with non-negligible
probability so does F in computing the forgery R? mod N. O

Acknowledgment. Research was sponsored by US Army Research laboratory
and the UK Ministry of Defense and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the US Army Research Laboratory, the
U.S. Government, the UK Ministry of Defense, or the UK Government. The US
and UK Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

References

1. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273-289. Springer, Heidelberg (2004)

2. Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335-338.
Springer, Heidelberg (1985)

3. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In:
Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229-243.
Springer, Heidelberg (2005)

4. Boyd, C., Mao, W., Paterson, K.G.: Key Agreement Using Statically Keyed Au-
thenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 248-262. Springer, Heidelberg (2004)

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

6. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Int. J. Inf. Sec. 6(4), 213-241 (2007)

7. Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from
Pairings. In: 16th IEEE Computer Security Foundations Workshop - CSFW 2003,
pp. 219-233. IEEE Computer Society Press, Los Alamitos (2003)

8. Damgard, I.: Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445-456. Springer, Heidelberg (1992)

9. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: STOC '94, pp. 522-533. ACM Press, New York (1994)

10. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Info.
Theor. 22(6), 644654 (1976)

11. Goldreich, O., Rosen, V.: On the security of modular exponentiation with applica-
tion to the construction of pseudorandom generators. Journal of Cryptology 16(2),
71-93 (2003)

328

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

R. Gennaro, H. Krawczyk, and T. Rabin

Gunther, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29-37. Springer,
Heidelberg (1990)

Hada, S., Tanaka, T.: On the Existence of 3-round Zero-Knowledge Protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 408. Springer, Heidelberg
(1998)

Hastad, J., Schrift, A., Shamir, A.: The Discrete Logarithm Modulo a Composite
Hides O(n) Bits. J. Comput. Syst. Sci. 47(3), 376-404 (1993)

Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Au-
thenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352-369. Springer, Heidelberg (2008)

Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Internet.
In: 1996 Internet Society Symposium on Network and Distributed System Security,
NDSS (1996)

Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Heidelberg
(2005)

Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient Protocol
for Authenticated Key Agreement. Designs, Codes and Cryptography 28, 119-134
(2003)

McCullagh, N., Barreto, P.S.L.M.: A New T'wo-Party Identity-Based Authenticated
Key Agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262—
274. Springer, Heidelberg (2005)

Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

Okamoto, E.: Key Distribution Systems Based on Identification Information. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194-202. Springer, Hei-
delberg (1988)

Okamoto, E., Tanaka, K.: Key Distribution System Based on Identification Infor-
mation. IEEE Journal on Selected Areas in Communications 7(4), 481-485 (1989)
Shamir, A.: On the Generation of Cryptographically Strong Pseudorandom Se-
quences. ACM Trans. Comput. Syst. 1(1), 38-44 (1983)

Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer,
Heidelberg (1985)

Schridde, C., Smith, M., Freisleben, B.: An Identity-Based Key Agreement Protocol
for the Network Layer. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN
2008. LNCS, vol. 5229, pp. 409-422. Springer, Heidelberg (2008)

Shmuely, Z.: Composite Diffie-Hellman Public-Key Generating Systems are Hard
to Break, Technical Report 356, CS Dept., Technion, Israel (1985)

Shoup, V.: On formal models for secure key exchange (version 4) (November 15,
1999), http://www.shoup.net/papers/

Smetters, D.K., Durfee, G.: Domain-based Administration of Identity-Based Cryp-
tosystems for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th
Conference on USENIX Security Symposium, Berkeley, CA, USA, p. 15. USENIX
Association (2003)

Wang, Y.: Efficient Identity-Based and Authenticated Key Agreement Protocol.
Cryptology ePrint Archive, Report 2005/108 (2005),
http://eprint.iacr.org/2005/108/

http://www.shoup.net/papers/
http://eprint.iacr.org/2005/108/

	Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman with Minimal Overhead
	Introduction
	Preliminaries
	The Modified Okamoto-Tanaka Protocol
	Proof of the {\sf mOT} Protocol

	Proof of the PFS Property of the {\sf mOT} Protocol
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

