Collaborative Ranking and Profiling: Exploiting
the Wisdom of Crowds in Tailored Web Search*

Pascal Felber!, Peter Kropf!, Lorenzo Leonini',

Toan Luu?, Martin Rajman?, and Etienne Riviere!

! University of Neuchétel, Switzerland
first.last@unine.ch
2 EPFL, Switzerland
first.last@epfl.ch

Abstract. Popular search engines essentially rely on information about
the structure of the graph of linked elements to find the most relevant re-
sults for a given query. While this approach is satisfactory for popular in-
terest domains or when the user expectations follow the main trend, it is
very sensitive to the case of ambiguous queries, where queries can have
answers over several different domains. Elements pertaining to an implic-
itly targeted interest domain with low popularity are usually ranked lower
than expected by the user. This is a consequence of the poor usage of
user-centric information in search engines. Leveraging semantic informa-
tion can help avoid such situations by proposing complementary results
that are carefully tailored to match user interests. This paper proposes a
collaborative search companion system, CoFeed, that collects user search
queries and accesses feedback to build user- and document-centric profil-
ing information. Over time, the system constructs ranked collections of el-
ements that maintain the required information diversity and enhance the
user search experience by presenting additional results tailored to the user
interest space. This collaborative search companion requires a support-
ing architecture adapted to large user populations generating high request
loads. To that end, it integrates mechanisms for ensuring scalability and
load balancing of the service under varying loads and user interest distri-
butions. Experiments with a deployed prototype highlight the efficiency of
the system by analyzing improvement in search relevance, computational
cost, scalability and load balance.

1 Introduction

Search engines certainly play the most significant role in today’s Web usage. Lead-
ing search engines rely on the observation of the structure of linked elements [7]
(i-e., the graph formed by hyperlinks between pages and data items), which is used
in conjunction with the keywords forming a query to decide on the most relevant
elements, or for advanced approaches with user-centric search options and hints
(e.g., when using Google’s SearchWiki [1]). These search engines do not leverage
the collective knowledge that is created by the users as part of their navigation
choices. Instead, the bulk of the score used to decide on this relevance depends

* This work is partially funded by the Hasler fundation and SNF project 102819.

F. Eliassen and R. Kapitza (Eds.): DAIS 2010, LNCS 6115, pp. 226 2010.
© IFIP International Federation for Information Processing 2010

Collaborative Ranking and Profiling 227

on the links pointing to the element, that is, scores are mostly based on struc-
tural information. While efficient for retrieving the most relevant elements when
the implicit semantic search area (i.e., interest domain) is the most popular one,
there exist many situations where the elements that are the most cited, or belong
to the most renowned sites are not those expected by the user.

For instance, a Web search for the query term “Java” returns a list of elements
that overwhelmingly focus on the programming language. This is obviously a re-
sult of the predominance of computers-related resources on the Web. Nonetheless,
a user looking for information on the Indonesian island of “Java” will be dissat-
isfied by not finding any relevant information (from her point of view) before the
items of rank 6 and 1611 The solution for avoiding such a situation and obtaining
better-tailored results is to pair the structural information used by the search en-
gine with some semantic information about the expectations of a particular user.
Concretely, information about which items were deemed interesting by other users
with similar interests can be leveraged to avoid search domain inadequacies. As a
result, the information diversity, which is not well captured by solely monitoring
the structure of the information graph, can be achieved by taking into account
the diversity of expectations from querying users and using the wisdom of crowds,
learned from past accesses, to determine relevant content for one particular user.

Information about one user’s interest can be derived from the set of elements
that she accessed as a results of her previous queries (feedback information), and
from the keywords forming these past queries themselves. Similarly, the set of el-
ements that are deemed interesting by users of some semantic interest profile can
be derived from the elements they accessed after a Web search, that is, relevant
elements can be extracted by correlating user accesses and extracted interests.

We believe that the best

CoFeed:
Collaborative
ranking service

approach for proposing such a
service is to build a companion

c Query + g I3 .
22 A1 ema Que Interest omma 425 serviceto complement search en-
2eE R Profil) NEER- . . .
5 §<_; 2 1o realts \ /"¢ Results | 435 item b 2§ gines, instead of creating a new
8Eg : . k] .
§s8 ssiemi | |83 stand-alone search mechanism.
x 53T . X Q.= .
55§ [niemn 10sitemm| |2 8 Indeed, despite many research
% g8

efforts invested so far to pro-

CoFeed 11 b h
Search engine Collaborative pose collaborative search engines
ra"k'"g service _~ (e.g., Faroo, YaCy, Wowcﬂ no

Insemon of accessed items

c E) (o]
28 e 22 system has been able to reach a
2827 | t.itema | . e | s0itema’ | To @ . .
5% S iamib|- . {@esiemtr| | 2% sufficient level of quality and effi-

£E2 . . 58 el
$s8 [Bememi| |88 ciency to truly compete with its
£3°¢ . . 83 . ..
§55| | nitemn —2 tositemm| | £ 8 centralized counterparts. This is

% Q

o

a direct consequence of the boot-
Fig. 1. Usage of a companion search service strap problem [9]: added value of

a new collaborative search engine becomes perceivable only when the system has
attracted enough users to fully sustain its specific functionalities.

! On http://www.google.com at the time of writing.
2 http://www.faroo.com, http://YaCy.net, http://www.wowd . com/.

http://www.google.com
http://www.faroo.com
http://YaCy.net
http://www.wowd.com/

228 P. Felber et al.

Figure [l presents a general vision of the companion service: the user sends
her request to a keyword-based search engine, which returns results based on
structural information.

Meanwhile, the same query is sent to the collaboratively built companion se-
mantic search service. Note that the latter request is paired with some semantic
profile, which is a representation of the user’s interest field. The companion service
then returns a set of elements tailored to the user requirements on the basis of her
semantic profile, and ranked according to their relevance to her interest domains.
The additional results can then be presented together with the results from the
traditional search engine used, in a similar manner that context-sensitive ads are
presented as suggestions to the user for a query on most current centralized search
engines’ results. This simple presentation is also used by [15]. Although more elab-
orate presentations of the results to the user can be devised, we consider this to be
aresearch task on its own, and not the focus of this paper. Information about sub-
sequent accesses (i.e., which item is accessed for some query and in which order)
are sent to the semantic ranking service and used for building, for each request, a
set of items that preserves information diversity.

Building such a system poses a set of challenging research issues related to in-
formation management (Section [2]). First, how to accurately capture the seman-
tic information associated with user activities (profiling interests, using actual
accesses to construct a representation of some user’s interests)? Second, how to
process the feedback information to maintain sets of relevant elements that cap-
ture information diversity? Third, how to efficiently construct from these sets a
tailored ranked list of results to answer user requests?

Another challenging question, which this
paper answers in detail (Section[3]), concerns
an appropriate infrastructure for support-
ing such a service. A centralized approach
is easy to implement but scalability in num-
ber of users comes at a prohibitively high
cost, especially if the service also has to tol-
erate failures. Moreover, it poses again a
bootstrap problem, with many resources nec-
essary before being able to serve a reason-
ably sized set of users. On the other hand, a
distributed (collaborative) architecture has
: s storstons ; a much lower cost of bootstrap, and as
the number of users increases, the number
of servers also increasesf Last, beside re-
e R . lieving the bootstrap and scalability issues,
Fig.2. Components & informa- distributed architectures are known to be
tion flow better candidates for implementing fault

Querying Peer (client) : Routing Substrate

) Semantic
1| Profiling Profile

A

- Query ___|
Q

Centralized Search Engine

. Centralized Tailored
Results Results

returns a result list tailored *~
to the user semantic profiling

: Node resp. of Repository P(Q) 1

2"

3 Note that end users are not necessarily acting as servers as in a pure peer-to-peer
model. Instead, institutions can dedicate one or a few servers for provisioning the
system as the popularity of the service increases—hence the collaborative aspect.

Collaborative Ranking and Profiling 229

tolerance and for balancing the load of serving clients over a large set of col-
laborative machines.

Overall Architecture. Before describing in detail the components and algo-
rithms of CoFeed, we start by a general overview of its architecture, as depicted
in Figure 2l CoFeed consists of a software component on the client computer
(typically a browser plugin) and a distributed infrastructure that implements
the collaborative ranking. The distributed infrastructure is composed of a pos-
sibly large number of nodes that collectively store and update repositories of
items and associated relevance feedback information.

Queries from a client are sent to some existing search engine. At the same time,
they are sent to CoFeed together with user-specific interest profile information.
The routing substrate is in charge of delivering the query and the profile to
the appropriate node, responsible for the target query’s repository (see arrows
labeled 1 in Figure 2]). Based on the query terms and the profiling information,
the ranking module on that node produces a ranked result list tailored for the
user. The client can then combine the lists obtained from the search engine and
CoFeed to improve the overall quality of the results presented to the user.

Relevance information is gathered on the user’s machine by observing accesses
to elements returned by any of the search methods (documents A, B, and C in
the figure). This information is used by the profiling module to consolidate the
local interest profile of the user. It is also sent to the insertion module on the
node that is in charge of the query repository, and along with the profile of the
user, to update the relevance tracking information for this query (see arrows
labeled 2 in Figure [2)).

2 Profiling, Storing and Ranking

This section describes how our system gathers profiling information, processes
user queries, and stores and ranks relevant documents. The set of information
associated to one query and stored in CoFeed is called a repository. We use the
notations and terminologies denoted in Table [Tl

Profiling user interests. The accesses of users to documents form the basis
for constructing their local user interest profile (UP). Each document from the
result list is associated with a snippet, which contains a larger set of keywords
(or tags) representing the content of the document. These keywords are used to
form the interest profile (UP) of the user, which is used in turn to construct
document profiles (DP) maintained in the distributed repositories. Keywords
are normalized in the system by classical means (stemming, noise-word list, al-
phabetical sort, duplicate words elimination). As storing all keywords for all
accesses is obviously not possible, CoFeed represents profiles using Bloom fil-
ters [6], which are space-efficient probabilistic data structures allowing fast and
false-negative-free inclusion tests over a set of elements. Moreover, Bloom filters
have the added advantage of preserving privacy, as users may not want their set
of accessed elements to be sent in plain over the network.

230 P. Felber et al.

Table 1. Notations

Q Query (a set of keywords, normalized by stemming, stop words removal,
etc.)

P(Q) Node in charge of the repository for query Q

RFitem A relevance feedback item (composed of Q, D, UP, Snippet)

D URL of a feedback item

DP Document profile (Bloom filter)

UpP Interest profile of the user (Bloom filter)

Snippet Summary of the document (title & synopsis with some/all query terms)

Freq Frequency of a feedback item for a query @ as managed by node P(Q)
(calculated as a moving average)

Thrst First arrival time of a feedback item for a given query @ on P(Q)

Tlast Last arrival time of a feedback item for a given query @ on P(Q)

A Bloom filter maps elements from an unbounded set to a bounded set of
k bits in a bit array of medium size (8,192 bits in our prototype) by using k
different uniform hash functions (we use 3 hash functions in CoFeed). Elements
(keywords from snippets and queries) are inserted in the profiles (UP) by set-
ting the k bits corresponding to these hash functions in the associated filter.
The inclusion is tested by checking the bits corresponding to each of the k hash
functions, and can yield some false positives. This is not much of a concern
in CoFeed, as Bloom filters are not used for inclusion tests but for estimating
union and intersection sizes of two sets. This is done by counting respectively
the number of bits set in the logical OR, or the logical AND of the two corre-
sponding bloom filters. In CoFeed, we compare two profiles S; and S by using
the Jaccard similarity: }gi U gz} This similarity metric between an UP and a
DP represents the adequacy to the user interest domain of a document. The

same metric between two D Ps represents their semantic distance.
In order to avoid the saturation of bloom filters over time as new queries are

performed and as more feedback is inserted in CoFeed, we use for both document
and user profiles a variant of bloom filters called time-decaying bloom filters [§]. In
this variant, bits that are set are associated to decaying timers. Newer elements
have a higher weight and older information gradually disappears over time. The
larger memory required for each bit is compensated by the frequent removal of
elements (and thus the clearance of some bits) from the set. Using this structure
allows CoFeed to spontaneously adapt to variations in the popularity of queries and
users to receive a feedback that is more relevant to their ongoing search session.

Collecting interest feedback. When a user browses the result list for a query,
the title, document reference, and snippet help her select the most relevant docu-
ments w.r.t. her query and her interests. The action of accessing some document
following a query produces a feedback information item. It represents an implicit
vote for a document that the user, given her implicit expectations (as summa-
rized by her user profile UP), deemed interesting for the query. The following
information is tracked and forms an RF'item: (1) the original query @, (2) the
document reference D, e.g., a URL, (3) the local interest profile UP of the user

Collaborative Ranking and Profiling 231

after it has been updated with keywords from @ and the snippet, and (4) the
snippet of the document, when available. Elements that are not accessed are
simply ignored.

Managing repositories. The repository for a query @ is maintained by a
specific node P(Q) in the system. Section [3explains how this node is reached and
how the load for popular queries is dynamically shared amongst several nodes.
Managing a repository for some query @ consists of two operations: (1) the
management of the relevance feedback information received for @, and (2) the
generation of the results to be sent to a user submitting a request for Q.

We maintain one entry per tuple (@, D) in the storage. The entries contain ad-
ditional information (DP, Snippet, Freq, Thrst, Tlast), which are used for various
tasks: sorting query results, storage management and garbage collection. Upon
arrival of a new RFitem (Q, D, U P, Snippet) at time ¢ (see arrows labeled 2 in Fig-
urefd), if an item (@, D) already exists, it is updated by computing the union of the
D P and U P bloom filters, updating the frequency, and setting Tj.st to t; otherwise,
a new item is created and initialized using the content of the new RFitem.

Item ranking. When the node P(Q) receives a request under the format (Q, U P)
(see arrows labeled 1 in Figure[Z)), the storage manager extracts RFitems from the
list associated with query @ and sorts them according to the similarity score w.r.t.
the user profile (i.e., Sim(UP, DP)) and to the frequency. The resulting ranked
list of document descriptors (U RL, Snippet) is then sent back to the user.

To ensure that a user profile U P provides sufficiently meaningful information
to rank search results according to the user’s interests, we use on the client side
a threshold that specifies the minimum number of distinct documents from the
ongoing search session that must be embedded in the user profile for it to be
sent along with the query. This helps ensure a minimum level of quality in the
results returned by CoFeed and avoids spending bandwidth and resources when
no gain can be expected from the ranking information.

Garbage collection. Clients are continuously inserting new feedback informa-
tion in the system. The storage on each node may be limited. A garbage collection
mechanism allow to reclaim periodically some storage space while making sure that
the most important information is preserved. Whenever a predefined limit for stor-
age size has been reached (or no resources are available), a set of rules based on
(with decreasing order of priority): (1) frequency of items updates and last update
time; (2) popularity thresholds; (3) utility of items for constructing results list. We
omit further details of the garbage collection mechanisms for the sake of brevity.

3 Distributed Storage System

This section presents the design rationale of CoFeed’s distributed storage sys-
tem for managing repositories and allowing efficient processing of ranking and
feedback insertion requests. We describe the resulting architecture and focus
specifically on its two key features, routing and load balancing mechanisms.

232 P. Felber et al.

As previously mentioned, our objective in the design of CoFeed is to support
large populations of clients, each submitting many requests. To avoid the prohibi-
tive cost of scalable centralized solutions (e.g., high traffic server farms), we
propose a decentralized approach in which a set of nodes cooperates to provide
the service. These nodes may be provided by ISPs or participating institutions
(e.g., universities) that collectively share the processing load. The growth of
the numbers of these nodes will follow the number of clients and allows solving
the bootstrap problem from a resource provisioning perspective. The repository
associated with a query is under the responsibility of a specific node in the
system, but high loads are shared amongst several nodes. This node is located
by using an efficient key-based routing protocol, which is described below.

A challenging aspect when designing the CoFeed distributed infrastructure
is that the popularity distribution of queries is typically very sparse (that is,
distributed according to a power law). This means that a small subset of the
queries is requested extremely often while the vast majority is only rarely re-
quested. Given the high skew in the distribution, one must ensure that popular
queries do not overload specific nodes in the infrastructure. To protect against
such scenarios, we have designed adaptive load balancing mechanisms to dynam-
ically offload nodes experiencing too much incoming load. These mechanisms rely
neither on fixed load threshold parameters nor manual tuning (see Section [3]).

Routing. Each query @ is associated with a node P(Q). This node stores the
repository associated to @: documents references, relevance tracking and interest
profiling information. Our overall design is a specialized form of a distributed hash
table (DHT). It associates a key-based routing layer (KBR) and a storage layer.
The role of the KBR layer is to locate the node responsible for some query based
on its key. To that end, it relies on a structured overlay (e.g., an augmented ring),
where each node is assigned a unique identifier and the responsibility of a range of
data items identifiers. In our case, each query @ has an identifier determined by
hashing its terms to a key h(Q). The node P(Q) whose range covers h(Q) is re-
sponsible for maintaining @Q’s repository and for providing the appropriate sorted
set of document references when asked to by some remote node. During the rout-
ing process, on each routing step towards the destination, the storage layer can be
notified by a Transit call that a message is transiting via the local node. It can in
turn modify the content of this message, or even answer the request on behalf of
P(Q). This mechanism is used in our design to implement load balancing.

A typical DHT provides a raw put/get interface to the application. Elements
are stored as blocks on the node responsible for their key, and also retrieved as
blocks. Our design differs in the important following point: our storage layer does
not store information blindly, but provides an interface and functionalities that are
specific to the storage and processing of ranking and feedback information. This has
a strong impact on the design of fault-tolerance and load balancing mechanisms.

We based our system on the routing layer of Pastry [18], known for its sta-
bility and its performance (small number of hops, usage of network distance for
choosing neighbors, etc.). In Pastry, nodes are organized in an augmented ring
and maintain routing tables of size O(log,N), where b is a system parameter

Collaborative Ranking and Profiling 233

(keys are expressed in base b). Greedy routing succeeds in at most O(logyN)
steps. When routing a request to its destination, each intermediary node selects
as the next hop a node from its routing table with an identifier that has a longer
common prefix with the target key than itself. As each routing step “resolves”
at least one digit, at most d = O(log, N) routing steps are required. An interest-
ing property of such a greedy routing strategy is that routing paths towards a
destination converge to the same set of nodes, and do so with an increasing prob-
ability as they get closer to the destination: the more digits have been resolved,
the less nodes remain that have a longer common prefix with the target key.
Routes from all nodes to some key in the network collide in the last hops. The
path convergence property is particularly useful for the design of load balancing
mechanisms [I7[21], as described next.

Load balancing. CoFeed needs to manage large numbers of users simultane-
ously and support the storage and access to repositories in a scalable manner.
The sparseness of query popularities is the main problem, as nodes responsible
for storing most popular queries may receive unbearable amounts of traffic.

When some node P(Q) gets overloaded by requests to a popular query @,
it replicates its responsibility for managing information and answering requests
related to Q. A wide range of techniques has been proposed for balancing load
in structured overlays (e.g., [I3,I7,19,21]). All these proposals however target
scenarios where the number of accesses is much greater than the number of
updates to the data. These systems support access to non-mutable data by
placing replicas on nodes that lie on the path towards its key.

Our system requirements are
 Links Used > Poriodic Updates different. First, the amount
-+ Links Not Used ~----= delegate’s copy master's copy

_____ oy e of writes (insertion of inter-
Aopliaton (updated) est tracking information) and
w ol g = the amount of reads (queries)

i (upda‘e:;(aza are of the same order. Caching
only read accesses is thus not
‘ ‘ P@) del }‘delegates:{ r@) possible: routing every inser-
P o A tion for a query @ to the node
Send (msg) T Tst\e(:’i:"sg) Delver (ns0) P(Q) would involve notifying

! ™
[

Y ‘ all copies, resulting in a load
KBR }——{ KBR } rrrrrrrrrrrrr » KBR
—>— Query or Relevance Tracking information Propagation —>

Insert (Relevance)
r

o
Query (Q)

Storage
Layer

similar to the one avoided by

> Propagation without delegt caching access requests. It is

thus necessary to also cache in-

Fig. 3. Delegation mechanism sertions, that is, to allow copies

of information about a query to

be modified independently from the “master” copy. We call such a copy a del-

egate: a replica onto which modifications are possible with only loose synchro-

nization to its master copy. Second, queries are very dynamic by nature (e.g.,

a little-known personality can suddenly become famous and trigger millions of

searches). Therefore, load balancing needs to be reactive, i.e., be able to initiate
and cancel delegation dynamically as a function of the actual load.

234 P. Felber et al.

SET: cand < {c € pin | p.inc > 3 ;, p.ins/|p.in[}
foreach c € cand (in parallel) do
retrieve p.load, from ¢
if p.load, > Ydel X) ccana Pl0adc/|cand| then
// Details of logging ommited for brevity
during time Ajqg, log requests from nodes cand
foreach c € cand do
€.q, C.Qioad <— Mmost frequent query from ¢, and its associated load
ploadayg < (pload, + Y .. .,ap-loade) / (Jcand| 4 1)
choose d € cand that yields the minimal |p.loadq(d.¢ — d) — p.loadavg|
if d.qioad > Zzep.mp-inz X €4er then
send a copy of the repository for query d.q to d
delegate d.q to ¢

Algorithm 1. Node p’s periodic (Age;) auditing of incoming links

Table 2. Delegation: constants and notations

Constants Value
Ader Auditing period 15mn
Aog Request logging period 5mn
Ydel Imbalance tolerance before delegating 180%
Edel Minimum relative gain for delegation decision 10%
Notations

p.in All “last-hop” nodes that sent some re- pload, ——=fy ||

. quest to p during last perloc.l Adel cand O
p.ing; Number of requests p received from x
during last period Agel
p.load; Inc. request load at as known to p

.....

p.in

Figure B] presents the principle of delegation: a request (either for ranking
or for insertion) is sent by the node on the left side and is routed towards the
node P(Q) on the right side. As the next to last node on the path is a delegate
of P(Q) for @, it notices that a request for @ is going through its KBR layer
and intercepts it. It replies on behalf of P(Q) or inserts the information in its
local copy. Periodic synchronization takes place between the delegates and their
delegator (which may itself be a delegate).

Delegates are chosen according to the auditing Algorithm [which is run
periodically by each node to evaluate its need for delegation. Table [2] gives the
default parameter values used by the algorithm, as well as the notations used in
the pseudocode.

The periodic auditing of the local load for deciding on a new delegation works
as follows. P(Q) keeps a counter p.in, of the number of requests received on
each of its incoming links p.in, labeled by the previous hop z. Note that p does
not maintain information about which query was targeted, as the role of this
lightweight passive monitoring is only to detect load imbalance and not to spot
their origin. All nodes in p.in that sent more than the average load received on

Collaborative Ranking and Profiling 235

all p’s incoming links are asked for their own incoming load, normalized to the
period Age;. This information is stored in p.load, for node x.

The auditing of nodes for delegation is done only if sufficient imbalance is
detected between the incoming load on node p and the load experienced by
nodes in the cand (candidates) set. The imbalance threshold is vge: a value
of 180% indicates that p has to handle more than 80% more requests than
the average of cand nodes being investigated for possible delegation. If some
imbalance is detected, the node enters a logging phase (active monitoring) in
which the requests received from cand are recorded. This phase does not have to
be as long as the passive monitoring phase, as only the most requested queries are
of interest to p for deciding on a delegation, and those are likely to occur in great
quantity even in a short period. Then, the most popular query received from
each node ¢ € cand is evaluated as a potential target for delegation. Basically,
we select as delegate a node such that, when ignoring the most popular set of
request for the same query coming from that node, the difference between the
load experienced by p and the average load experienced by the nodes in cand is
minimal. Said differently, the goal is less to unload p than to evenly distribute
the processing load on all nodes. Moreover, in order to prevent oscillations of
delegations and un-delegations, p requires that at least £4o1 percent of its load
will be handled by the new delegate.

When the delegation of a query by node d is decided, p sends a copy of the
repository it has for the delegated query and instructs d to handle requests on
its behalf. The cost of sending a delegation depends only on the size of the
repository, which is typically small (in the order of a few kilobytes).

Delegates can in turn use this mechanism for redelegating @: the master copy
on P(Q) and its delegates form a tree. Synchronization between the copies is
performed periodically when the number of changes, denoted delta in Figure [3]
reaches a configurable threshold. Pair-wise synchronization is used to aggregate
the two copies in a new list, either by inserting “new” elements in the master
list or by re-ranking the union of the two lists and keeping the k highest items.
This list is then forwarded along the tree, resetting all deltas to 0.

Delegations are revoked by similar mechanisms: a node can revoke a delega-
tion, based on the observation of requests load, either if it receives notably more
requests than the other node for which it is a delegate, or if the revocation of the
delegation helps balancing the load between a delegate and its delegator (i.e.,
the mean incoming load for both nodes gets closer to the average load observed
by the delegate). This process uses hysteresis-based threshold values to avoid
oscillations: the threshold for triggering delegation is higher than the threshold
used for revoking one. We omit the detailed algorithm for brevity.

4 Evaluation

In this section, we evaluate CoFeed using two methods. Both use an actual
implementation of the system. First, we assess the validity of interest profiling
by running it against user behavior models. Second, we evaluate the performance

236 P. Felber et al.

and effectiveness of the infrastructure itself by observing the peak performance
on a single node and the scalability in terms of managed elements, as well as
distributed aspects: performance of routing, load balancing and reactiveness to
dynamically changing loads.

Experiments were conducted on a cluster of 11 dual-core computers, each
with 2 GB of main memory and running GNU/Linux. In experiments that do
involve large number of nodes but no time-based performance measurements,
each machine of the cluster executes multiple processes that represent different
nodes. Naturally, for experiments that evaluate the performance of a single node
w.r.t. time or peak performance, machines are used exclusively by one process.
The implementation is based on a combination of C and Lua deployed using the
SPLAY infrastructure [I1].

User-centric ranking effectiveness. We first evaluate the effectiveness of
interest-based profiling and ranking to actually report better tailored results to
the user, especially in the case where this user issues request for ambiguous query
terms. To that extent, we developed both a synthetic data distribution model
and a user behavior model. We do not consider distributed system aspects in
this first part of the evaluation and assume that one node replies to all requests
coming for one particular query (i.e., there is no use of load balancing). Our
evaluation metrics are the ranks of elements of interest for the user, given her
interest domain, with and without interest profiling.

We consider a set of U users uq,us,..., interested in a set of queries Q =
q1,q2,--- (e.g., “java”, “jaguar”, etc.). All these terms are ambiguous, and are
associated to a set of documents (or elements) belonging to two or more interest
domains chosen amongst D = dj,ds, The actual number of domains dom(g;)
for one query g; is determined randomly using a power-law distribution: dom(q;)
=1 + extra(q;), with Prlextra(q;)] x extra(q;)”*dom/avers . This means that
most queries are associated with documents along 2 domains, a smaller set with
documents over 3 domains, an even smaller with 4. No query is associated to
more than 4 domains, and the parameter dtqom /query determines the skewness of
this distribution. Each domain has a popularity, which is also determined using
a power-law distribution: Pr{d; € D] oc i~ ®demrer, For each query g¢;, the dom(q;)
domains are selected according to this domain popularity distribution. Each user
is interested in one single domain, also selected according to the same domain
popularity distribution, and issues requests for elements related to this domain.

We consider a set of documents (or elements) E = ej,ez..., each of which
is associated with one single interest domain chosen according to the domains’
popularity distribution. For each domain d; we create a list of documents E(d;),
which is used as follows to generate a set of elements at each repository. Each
query g; is associated with a sorted set of 100 documents F(g;) representing the
repository’s content. Each element in this set is dedicated to one of the domains
for which ¢; is associated, chosen according the domain popularity distribution.
The elements of the set are then filled by using a randomly picked and shuffled
subset of F(d;). We use the values in Table Bl for the parameters of the workload.

Collaborative Ranking and Profiling 237

Table 3. Workload parameters

Name Value Role

|U] 500 Number of users

Q| 2,000 Number of queries

|D| 20 Number of interest domains

|E|/|D| 400 Number of documents/elements per domain

Qdom /query 1 Distribution of the number of extra domains per query
Qdompop 0.8 Distribution of the popularity of interest domains

Each document is associated with some text that represents the content of the
document. This text is composed of a random number of keywords (between 15
and 30) chosen among queries from the domains associated with the document.
To simulate the fact that the snippet returned by a centralized search engine for
a given document will vary according to the search keywords (e.g., it highlights
the sentences that surround the occurrence of the keywords in the original doc-
ument), the snippet is generated as a random subset of 5 to 7 keywords forming
the document content. One such snippet is generated initially for each query a
document is attached to.

The search and access behavior of users is modeled using two phases. In a
first phase, each user issues requests for queries that are attached to her interest
domain and receives the list of elements as it is stored in the repository (i.e.,
without using interest-based ranking). This process continues until the user has
sent at least 100 interest feedback items to the system (by simulated clicks on
some of the returned results). This first phase helps construct the user and
document profiles.

We simulate the behavior of a user interested in the domain d receiving a list
of items for some query ¢ as follows. The user favors elements that are (1) higher
up in the list, and (2) related to domain d. To model this behavior, we choose
accessed elements according to a power-law distribution of the ranks in the list,
with Praccessing it" element] oc i ~%-%, and we drop links that are not in d with
probability 80%. In other words, there is a 20% chance that a user accesses some
links that are not in her interest domain. This accounts for some “pollution” in
the user and document profiles that is representative of real users’ behaviors.

In a second phase, we compare the impact on the lists received by the users
for their queries, of the use of the profiles and interest-based ranking. This allows
us to evaluate whether the user profiling helps in leveraging links interesting to
the user by ranking them higher.

For our evaluation, we consider two sets of domains: the 25% most popular
ones (ranked 1 to 5) and the 25% least popular ones (ranked 16 to 20). We
consider all the requests made by users that are interested in any of the domains
of each set. For each such request, we examine the ranks of items that belong to
the corresponding interest domain. We consider the ranks of the first 5 elements
in the returned lists that are of the correct domain: the higher these 5 elements
are in the list, the more effective the search mechanism is from the user point

238 P. Felber et al.

100

100
gg 0 least popular, using profiling -+
o o 80 least popular, no profiling
® 70 w 70 most popular, using profiling ——
o 60 °o 60 most popular, no profiling —%—
> e >
£ 50 I g 50 XX
2 40 e E 40 « o
3 s Teast popular, using profiling 3 % e
20 - least popular, no profiling ¥ 20
10 most popular, using profiling =+ 10
0 most popular, no profiling == 0
0 5 10 15 20 0 5 10 15 20
Ranks Ranks

(a) 25% least and most popular domains (b) 5% least and most popular domains

Fig. 4. Impact of interest-based profiling

of view. We compare the distribution of these ranks both when using the direct
result from the simulated search engine, and when using CoFeed.

Obviously, there are more users interested in the 25% more popular interest do-
mains than in the 25% least popular ones, and elements that are in the latter are
ranked lower in the list returned by the centralized search engine model (being at-
tached to an ambiguous query, they compete for positions in the list with at least
one more popular domain). The goal of CoFeed is to promote links that are related
to the user’s domain of interest toward the first positions of her tailored list.

Figure shows the cumulative distribution of the rank in the returned list
for these first 5 elements, both when CoFeed interest-based ranking is used and
when it is not, considering the 25% most/least popular elements. We observe that
elements for the popular domains are already ranked higher than elements for the
least popular domains: the median of the ranks of elements for popular domains is
5, while it is about 20 for unpopular domains. It follows that for both sets, CoFeed’s
ability to promote in the list the elements that are really of interest to the user is
real, as in these representative sets, a vast majority of such elements appears in the
first 5 ranks of the list. Figurepresents a similar plot, but when considering
the 5% most /least popular set of the interest domains. We observe similar results,
with unpopular domains ranked much higher in the list for the users who need it.

Repository peak performance. Next, we observe the performance of our pro-
totype by running a single repository P(Q) on a single machine (Core 2 Duo pro-
cessor at 2.4 GHz with 2 GB memory) submitting synthetic request loads in a
synchronous manner: we therefore achieve the highest possible throughput of re-
quests that can be handled by one node in the system. We do not limit the size
of the repository, as we want to highlight the relative cost of inserting feedback
information and ranking elements as a function of the number of stored elements.

Figure[l presents the maximal throughput evolution for insertions and ranking
requests submitted alternatively. We observe that for reasonable repository sizes
(up to 8,000 elements, which we expect to be the common case in practice),
the throughput is consistently higher than 100 requests served per second. Note
that the costs for one single request increase logarithmically in the size of the
repository. The throughput still achieves as many as 50 ranking and 100 insertion
requests per second with 30,000 items in the repository.

Collaborative Ranking and Profiling 239

50 | Size of the repository
18 r for Q at node P(Q)

0 5 10 15 20 25 30

Items stored
(thousands)
EN
o

600

Insertions
Ranking requests

Insertion/Ranking
requests per second

0 5 10 15 20 25 30
Time (minutes)

Fig. 5. Performance, single repository: max. possible load vs. repository size.

Day 1: balancing from Day 2-3: transient popular
skewed popularities query load adaptation
i , X i i , e i
Primary I |

-
N

Maximum

90" perc.
th

75" perc.
th

50" perc.
th

25" perc.

)
N o O

]

5" perc.

[S NS SRV N |

Requests per second
(all queries, distribution)

o »~
Requests per second
(one pop. query, cumulative)

0 4 8 12 16 20 24 32 40 48 56 64 72
Time (hours) Time (hours)
20/s

Request rate evolution
for one popular query

2/s

Fig. 6. Evaluation of the delegation mechanism reactiveness and efficiency

Routing layer. We measured the distribution of route lengths at the KBR
layer for various system side. As expected [I§], the distribution of route lengths
is balanced around a low average route size (3.7 for 128 nodes, 5.7 for 4,096
nodes, 6.5 for 16,3984 nodes), which grows logarithmically in the system size.

Delegation-based load balancing: efficiency and reactiveness. Figure
shows a 3-days experiment using real request load from AOL [IG]E The experi-
ment evaluates two aspects: a bootstrap phase with no dramatic change in the
user interest, showing the balancing process with stable popularity distributions,
and a second phase with a previously unknown query Qpop (artificially added
to the AOL data set) suddenly generating a massive load in the system followed
by a massive loss of popularity. During this time period, the associated P(Qpop)
has to efficiently tackle the massive and sudden load imbalance.

The first day (on the left) presents the evolution of the distribution of the
request load on all 1024 nodes, as delegation progressively takes place. The

4 Unfortunately we could not use this data set for our evaluation of the profiling and
ranking effectiveness because it lacks the necessary feedback information.

240 P. Felber et al.

system starts up without bootstrap at time ¢y = 0 hours and initially no dele-
gation is made. The evolution of the load distribution is presented by stacking
up percentiles: the median load is thus represented by the 50" percentile and
the maximal load by the lightest shade of gray. We observe that, from an ini-
tial high imbalance (where some nodes receive 10 times more load than 50% of
all nodes), the system quickly converges to a reasonable imbalance (the most
loaded node receives approximately twice as many requests than 50% of the
nodes). Further balancing could probably be achieved by modifying vge; and Eqel
(see Section [3)), but the small extra gain would likely not compensate for the
additional synchronization messages necessary to more evenly balance the load.

The two last days (on the right) present the reactiveness of the system for one
single and suddenly popular query Q pop (while the first day presented results for all
queries). At time t,=24 hours, randomly chosen nodes in the system start issuing
requests for Qpop. The rate (shown in the bottom-right graph) reaches 20 requests
per second in 4.8 hours, i.e., 10 times more than the median overall load at each
node; it then remains constant for 9.6 more hours, before decreasing during 19.2
hours. The upper graph presents the load for Qpop at P(Qpop) (black bars) and its
delegates (gray bars). Each bar represents the load and number of delegates at the
end of a 70-minutes observation period. We observe that the number of delegates
follows the popularity trend closely, in both directions (gain and loss). Furthermore,
theload at P(Qpop) experiences asmall increase in the beginning but remains very
low and stable when delegation is active. While some delegates may have only a
very small portion of the load, they are still serving 1 or 2 queries per second, i.e.,
about the median load at all nodes. This is due to delegation decisions being made
not based on fixed threshold but on the comparison of the loads of several nodes.
Similarly, some delegates have a higher load than others but the imbalance remains
within the limits imposed by the v4e1 and €401 parameters.

5 Related Work

Many of the research efforts on P2P Web search focus on decreasing the band-
width consumption as compared to a centralized approach [BIT12[T422]. However,
none of these P2P systems has yet succeeded in gaining sufficient popularity as
they all suffer from the bootstrapping problem. CoFeed avoids this problem by
leveraging existing search engines and providing added value to the user.

The personalization of search results for a user based on her interest profile
was studied by [23,[24] but not exploited in the context where knowledge is
collaboratively built and aggregated. The use of social annotations (e.g., from
bookmarking platforms such as del.icio.us) to improve Web search has been
recently explored [4120]. Another example is the PeerSpective system [15], which
leverages implicit interest between communities of users based on the posting of
links from one page to the other on social networks (e.g., FaceBook, MySpace,
etc.). Such services operate in a centralized way and require intervention from
the user to bookmark and annotate accessed items, which restricts them to a
small subset of power users.

Collaborative Ranking and Profiling 241

Our approach is more similar to the Chora [9] and Sixearch [3] systems, which
also use decentralized architectures for sharing and leveraging user search expe-
riences. CoFeed differs from these systems in several ways, notably they do not
use interest profiling nor do they target information diversity.

A decentralized storage specifically designed for P2P Web search has been
proposed in [10] for term frequency-inverse document frequency (TF-IDF). Un-
like CoFeed, this system does not provide any mechanism for handling the skew
in the popularity of queries, and it does not deal with the terms extraction nor
use user-centric information to answer the queries.

Lopes et al. have proposed in [I3] a storage architecture for large data on top
of a DHT, using B+-trees to balance the storage load over several nodes. This
architecture was designed for TF-IDF and only supports non-mutable data. Sev-
eral other systems use the inverse routing paths convergence property, notably
for load balancing [2I] and or for replication and performance [I7].

6 Conclusion

We have presented the architecture and building blocks of anovel collaborative rank-
ing service, CoFeed, that can efficiently complement existing search engines. CoFeed
leverages user-centric information such as interest profiling and relevance track-
ing in order to return search result lists tailored to the user interests. Collaborative
ranking allows us to present tailored results to users, which can be more relevant es-
pecially when the user expectations do not follow the main trend. CoFeed combines
methods for interest profiling and mechanisms to maintain information diversity.
It builds on a support distributed P2P systems that combines classical key-based
routing with an application specific storage layer. This layer proposes novel load
balancing mechanisms based on the application needs and characteristics.

References

1. http://googleblog.blogspot.com/2008/11/
searchwiki-make-search-your-own.html

2. Adamic, L.A., Huberman, B.A.: Zipf’s law and the internet. Glottometrics 3, 143-150
(2002)

3. Akavipat, R., Wu, L.-S., Menczer, F., Maguitman, A.: Emerging semantic commu-
nities in peer web search. In: P2PIR 2006 (2006)

4. Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using
social annotations. In: WWW 2007 (2007)

5. Bender, M., Michel, S., Weikum, G., Zimmer, C.: The Minerva project: Database
selection in the context of P2P search. Datenbanksysteme in Business, Technologie
und Web 65, 125-144 (2005)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422-426 (1970)

http://googleblog.blogspot.com/2008/11/searchwiki-make-search-your-own.html
http://googleblog.blogspot.com/2008/11/searchwiki-make-search-your-own.html

242

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

P. Felber et al.

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7), 107-117 (1998)

Cheng, K., Xiang, L., Iwaihara, M., Xu, H., Mohania, M.M.: Time-decaying bloom
filters for data streams with skewed distributions. In: RIDE-SDMA 2005 (2005)

. Gylfason, H., Khan, O., Schoenebeck, G.: Chora: Expert-based p2p web search.

In: AAMAS 2006 (2006)

Klemm, F., Aberer, K.: Aggregation of a term vocabulary for peer-to-peer infor-
mation retrieval: a DHT stress test. In: Moro, G., Bergamaschi, S., Joseph, S.,
Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005. LNCS, vol. 4125, pp. 187-194.
Springer, Heidelberg (2005)

Leonini, L., Riviere, E.; Felber, P.: SPLAY: Distributed systems evaluation made
simple (or how to turn ideas into live systems in a breeze). In: NSDI 2009 (2009)
Li, J., Loo, B., Hellerstein, J., Kaashoek, F., Karger, D., Morris, R.: The feasibil-
ity of peer-to-peer web indexing and search. In: Kaashoek, M.F.; Stoica, I. (eds.)
IPTPS 2003. LNCS, vol. 2735. Springer, Heidelberg (2003)

Lopes, N., Baquero, C.: Taming hot-spots in dht inverted indexes. In: LSDS-IR, 2007
(2007)

Luu, T., Klemm, F., Podnar, 1., Rajman, M., Aberer, K.: Alvis peers: A scalable
full-text peer-to-peer retrieval engine. In: Proc of P2PIR 2006 (2006)

Mislove, A., Gummadi, K.P., Druschel, P.: Exploiting social networks for internet
search. In: HotNets 2006 (2006)

Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: InfoScale 2006,
New York, NY, USA (2006)

Ramasubramanian, V., Sirer, E.G.: Beehive: O(1)lookup performance for power-
law query distributions in peer-to-peer overlays. In: NSDI 2004 (2004)

Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

Rowstron, A., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: SOSP 2001 (2001)

Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X.,
Weikum, G.: Efficient top-k querying over social-tagging networks. In: SIGIR 2008
(2008)

Serbu, S., Bianchi, S., Kropf, P., Felber, P.: Dynamic load sharing in peer-to-peer
systems: When some peers are more equal than others. IEEE Internet Computing,
Special Issue on Resource Allocation 11(4), 53-61 (2007)

Suel, T., Mathur, C., Wu, J.-W., Zhang, J., Delis, A., Kharrazi, M., Long, X., Shan-
mugasundaram, K.: Odissea: A peer-to-peer architecture for scalable web search
and information retrieval. In: WebDB 2003 (2003)

Tan, B., Shen, X., Zhai, C.: Mining long-term search history to improve search
accuracy. In: SIGKDD 2006 (2006)

Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis
of interests and activities. In: SIGIR-IR, 2005 (2005)

	Collaborative Ranking and Profiling: Exploiting the Wisdom of Crowds in Tailored Web Search
	Introduction
	Profiling, Storing and Ranking
	Distributed Storage System
	Evaluation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

