gradienTv: Market-Based P2P Live Media Streaming on
the Gradient Overlay

Amir H. Payberah2, Jim Dowling', Fatemeh Rahimian'-2, and Seif Haridi'-2

1 Swedish Institute of Computer Science (SICS)
2 KTH - Royal Institute of Technology

Abstract. This paper presents gradienTv, a distributed, market-based approach
to live streaming. In gradienTv, multiple streaming trees are constructed using
a market-based approach, such that nodes with increasing upload bandwidth are
located closer to the media source at the roots of the trees. Market-based ap-
proaches, however, exhibit slow convergence properties on random overlay net-
works, so to facilitate the timely discovery of neighbours with similar upload
bandwidth capacities (thus, enabling faster convergence of streaming trees), we
use the gossip-generated Gradient overlay network. In the Gradient overlay, nodes
are ordered by a gradient of node upload capacities and the media source is the
highest point in the gradient. We compare gradienTv with state-of-the-art New-
Coolstreaming in simulation, and the results show significantly improved band-
width utilization, playback latency, playback continuity, and reduction in the av-
erage number of hops from the media source to nodes.

1 Introduction

Live streaming using overlay networks is a challenging problem. It requires distributed
algorithms that, in a heterogeneous network environment, improve system performance
by maximizing the nodes’ upload bandwidth utilization, and improve user viewing ex-
perience by minimizing the playback latency, and maximizing the playback continuity
of the stream at nodes.

In this paper, we improve on the state-of-the-art NewCoolstreaming system [7] for
these requirements by building multiple media streaming overlay trees, where each tree
delivers a part of the stream. The trees are constructed using distributed algorithms such
that a node’s depth in each tree is inversely proportional to its relative available upload
bandwidth. That is, nodes with relatively higher upload bandwidth end up closer to the
media source(s), at the root of each tree. This reduces load on the source, maximizes
the utilization of available upload bandwidth at nodes, and builds lower height trees
(reducing the number of hops from nodes to the source). Although we only consider
upload bandwidth for constructing the Gradient overlay in this paper, the model can
easily be extended to include other important node characteristics such as node uptime,
load and reputation.

Our system, called gradienTv, uses a market-based approach to construct multiple
streaming overlay trees. Firstly, the media source splits the stream into a set of sub-
streams, called stripes, and divides each stripe into a number of blocks. Sub-streams
allow more nodes to contribute bandwidth and enable more robust systems through

F. Eliassen and R. Kapitza (Eds.): DAIS 2010, LNCS 6115, pp. 2124225)2010.
(© IFIP International Federation for Information Processing 2010

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 213

redundancy [4]. Nodes in the system compete to become children of nodes that are
closer to the root (the media source), and parents prefer children nodes who offer to
forward the highest number of copies of the stripes. A child node explicitly requests
and pulls the first block it requires in a stripe from its parent. The parent then pushes
to the child subsequent blocks in the stripe, as long as it remains the child’s parent.
Children can proactively switch parent when the market-modelled benefit of switching
is greater than the cost of switching.

The challenge with implementing this market-based approach is to find the best pos-
sible matching between parents and children in a timely manner, while having as few
parent switches as possible. In general, for a market-based system to work efficiently,
information and prices need to be spread quickly between participants. Insufficient in-
formation at market participants results in inefficient markets. In a market implemented
using an overlay network, where the nodes are market participants, the communication
of information and prices between nodes is expensive. For example, finding the opti-
mal parent for each node requires, in principle, flooding to communicate with all other
nodes in the system. Flooding, however, is not scalable. Alternatively, an approach to
find parents based on random walks or sampling from a random overlay produces slow
convergence time for the market and results in excessive parent switching, as infor-
mation only spreads slowly in the market. We present a fast, approximate solution to
this problem based on the Gradient overlay [17]. The Gradient is a gossip-generated
overlay network, built by sampling from a random overlay, where nodes organize into
a gradient structure with the media source at the centre of the gradient and nodes with
decreasing relative upload bandwidth found at increasing distance from the centre. A
node’s neighbours in the Gradient have similar, or slightly higher upload bandwidth.
The Gradient, therefore, efficiently acts as a market maker that matches up nodes with
similar upload bandwidths, enabling the market mechanisms to quickly construct sta-
ble streaming overlay trees. As nodes with low relative upload bandwidths are rarely
matched with nodes with high relative upload bandwidths (as can be the case in a ran-
dom overlay), there is significantly less parent-switching before streaming overlay trees
converge.

We evaluate gradienTv by comparison with NewCoolstreaming, a successful and
widely used media streaming solution. We show in simulation that our market-based ap-
proach ensures that the system’s upload bandwidth can be near maximally utilized, the
playback continuity at clients is improved compared to NewCoolstreaming, the height
of the media streaming trees constructed is much lower than in NewCoolstreaming, and,
as a consequence, playback latency is less than NewCoolstreaming.

2 Related Work

There are two fundamental problems in building data delivery (media streaming) over-
lay networks: (i) what overlay topology is built for data dissemination, and (ii) how a
node discovers other nodes supplying the stream.

Early data delivery overlays use a tree structure, where the media is pushed from the
root to interior nodes to leave nodes. Examples of such systems include Climber [14],
ZigZag [18]] and NICE [3]. The short latency of data delivery is the main advantage of

214 A.H. Payberah et al.

this approach [24]. Disadvantages, however, include the fragility of the tree structure
upon the failure of nodes close to the root and the fact that all the traffic is only for-
warded by the interior nodes. SplitStream [4] improved this model by using multiple
trees, where the stream is split into sub-streams and each tree delivers one sub-stream.
Orchard [11]], ChunkySpread [[19] and CoopNet [12] are some other solutions in this
class.

An alternative to tree structured overlays is mesh structure, in which the nodes are
connected in a mesh-network [24]], and nodes request missing blocks of data explicitly.
The mesh structure is highly resilient to node failures, but it is subject to unpredictable
latencies due to the frequent exchange of notifications and requests [24]. SopCast [9],
DONet/Coolstreaming [25]], Chainsaw [13]], BiToS [20] and PULSE [15] are examples
of mesh-based systems.

Another class of systems combine tree and mesh structures to construct a data de-
livery overlay. Example systems include CliqueStream [2], mTreebone [22]], NewCool-
Streaming [[7], Prime [10] and [8]. GradienTv belongs to this class, where the mesh is
the Gradient overlay.

The second fundamental problem is how nodes discover the other nodes that supply
the stream. CoopNet [[12] uses a centralized coordinator, GnuStream [6] uses controlled
flooding requests, SplitStream [4] and [8] use DHTs, while NewCoolstreaming [[7]],
DONet/Coolstreaming [25] and PULSE [15] use a gossip-generated random overlay
network to search for the nodes.

NewCoolstreaming [7]] has the most similarities with gradienTv. Both systems have
the same data dissemination model where a node subscribes to a sub-stream at a parent
node, and the parent subsequently pushes the stream to the child. However, gradienTv’s
use of the Gradient overlay to discover nodes to supply the stream contrasts with New-
CoolStreaming that samples nodes from a random overlay (referred to as the partner-
list). A second major difference is that NewCoolStreaming only reactively changes a
parent when a sub-stream is identified as being slow, whereas gradienTv proactively
changes parents to improve system performance.

3 Gradient Overlay

The Gradient overlay is a class of P2P overlays that arrange nodes using a local utility
function at each node, such that nodes are ordered in descending utility values away
from a core of the highest utility nodes [16/17]. As can be seen in Figure[]] the highest
utility nodes (darkest colour) are found at the core of the Gradient, and nodes with
decreasing utility values (lighter grays) are found at increasing distance from the centre.

The Gradient maintains two sets of neighbours using gossiping algorithms: a similar-
view and a random-view. The similar-view of a node is a partial view of the nodes whose
utility values are close to, but slightly higher than, the utility value of this node. Nodes
periodically gossip with each other and exchange their similar-views. Upon receiving
a similar-view, a node updates its own similar-view by replacing its entries with those
nodes that have closer (but higher) utility value to its own utility value. In contrast, the
random-view constitutes a random sample of nodes in the system, and it is used both to
discover new nodes for the similar-view and to prevent partitioning of the similar-view.

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 215

°
e P
® ® ®
[
. []
o

Fig. 1. Gradient overlay network

4 GradienTv System

In gradienTv, the media source splits the media into a number of stripes and divides
each stripe into a sequence of blocks. GradienTv constructs a media streaming overlay
tree for each stripe, where blocks are pushed from parents to children. Newly joined
nodes discover stripe providers using the Gradient overlay and compete with each other
to establish a parent-child relationship with providers. A node proactively changes its
parent for a stripe, if it finds a lower depth parent for that stripe and if that parent either
has a free upload slot or prefers this node to one of its existing children.

We use the term download slot to define a network connection at a node used to
download a stripe. Likewise, an upload slot refers to a network connection at a node
that is used to forward a stripe. If node p assigns its upload slot to node ¢’s download
slot, we say p is the parent of q and q is the child of p.

Our market model uses the following three properties, calculated at each node, to
match nodes that can forward a stripe with nodes that want to download that stripe:

1. Currency: the total number of upload slots at a node, that is, the number of stripes a
node is willing and able to forward simultaneously. A node uses its currency when
requesting to connect to another node’s upload slot.

2. Connection cost. the minimum currency that should be provided for establishing
a connection to receive a stripe. The connection cost to a node that has an unused
upload slot is zero, otherwise the node’s connection cost equals the lowest currency
of its already connected children. For example, if node p has three upload slots and
three children with currencies 2, 3 and 4, the connection cost of p is 2.

3. Depth: the shortest path (number of hops) from a node to the root for a particular
stripe. Since the media stream consists of several stripes, nodes may have different
depths in different trees. The lower the depth a node has for a stripe, the more
desirable a parent it is for that stripe. Nodes constantly try to reduce their depth
over all their stripes by competing with other nodes for connections to lower depth
nodes.

4.1 Gradient Overlay Construction

Each node maintains two sets of neighbouring nodes: a random-view and a similar-
view. Cyclon [21] is used to create and update the random-view and a modified version

216 A.H. Payberah et al.

Fig. 2. Different market-levels of a system, the similar-view of node p and its fingers

of the Gradient protocol is used to build and update the similar-view. The node refer-
ences stored in each view contain the utility value for the nodes. The utility value of a
node is calculated using two factors: a node’s upload bandwidth and a disjoint set of
discrete utility values that we call market-levels. A market-level is defined as a range of
network upload bandwidths that have the same utility value. For example, in figure 2]
we define some example market-levels: mobile broadband (64-127 K bps) with utility
value 1, slow DSL (128-511 Kbps) with utility value 2, DSL (512-1023 Kbps) with
utility value 3, Fibre (>1024 Kbps) with utility value 4, and the media source with
utility value 5. A node measures its upload bandwidth (e.g., using a server or trusted
neighbour) and calculates its utility value as the market-level that its upload bandwidth
falls into. For instance, a node with 256 Kbps upload bandwidth falls into slow DSL
market-level, so its utility value is 2.

A node prefers to fill its similar-view with the nodes from the same market-level
or one level higher. A feature of this preference function is that low-bandwidth nodes
only have connections to one another. However, low bandwidth nodes often do not
have enough upload bandwidth to simultaneously deliver all stripes in a stream. There-
fore, in order to enable low bandwidth nodes to utilize the spare slots of higher band-
width nodes, nodes maintain a finger list, where each finger points to a node in a higher
market-level (if one is available). In Figure 2] each ring represents a market-level, the
black links show the links within the similar-view and the gray links are the fingers to
nodes in higher market-levels.

Nodes bootstrap their similar-view using a bootstrap server, and, initially, the similar-
view of a node is filled with random nodes that have equal or higher utility value.
Algorithm [I] is executed periodically by the node p to maintain its similar-view. The
algorithm describes how on every round, p increments the age of all the nodes in its
similar-view. It removes the oldest node, ¢, from its similar-view and sends a subset of
nodes in its similar-view to ¢ (lines 3-6). Node ¢ responds by sending back a subset of
its own similar-view to p. Node p then merges the view received from ¢ with its existing

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 217

Algorithm 1. Updating the similar-view

1: procedure UpdateSimilarView (this)

2: this.similarView.updateAge()

3 q < oldest node from this.similarV iew

4: this.similarView.remove(q)

5: pView « this.similarView.subset()

6: Send pView to g

7 Recv ¢View from g

8 for all node; in ¢View do

9 if Up(node;) = U(p) OR Up(node;) = U(p) + 1 then

> a random subset from p’s similarView

> qView is a subset of ¢’s similarView

10: if this.similarView.contains(node;) then

11: this.similarView.updateAge(node;)

12: else if this.similarV iew has free entries then

13: this.simialrView.add(node;)

14: else

15: node; «— pView.poll() > get and remove one entry from pView
16: this.similarView.remove(node;)

17: this.simialrView.add(node;)

18: end if

19: end if

20: end for

21: for all node, in this.randomView do

22: if Up(nodeq) = U(p) OR Up(node,) = U(p) + 1 then
23: if this.similarV iew has free entries then

24 this.simialrView.add(nodeg)

25: else

26: nodey, «— (x € this.similarView such that Uy (z) > U(p) + 1)
27: if (nodey, # null) then

28: this.similarView.remove(nodey)

29: this.simialrView.add(node,)

30: end if

31: end if

32: end if

33: end for

34: end procedure

Algorithm 2. Parent assignment

1: procedure assignParent ()

2: for all stripe; in stripes do

3: candidates « findParent(i)

4: if candidates # null then

5: new Parent < arandom node from candidates
6: send (ASSIGNREQUEST | i) to new Parent

7: end if

8: end for

9:

end procedure

Algorithm 3. Select candidate parent from the similar-view and the fingers

1: procedure findParent (7)

2: candidates «— @
3: if this.stripe;.parnet = null then
4: this.stripe;.parnet.depth + oo
5: endif
6: for all node; in (similarView |J fingers) do
7. if node;.stripe;.depth < this.stripe;.parent.depth
8: AND node;.connectionCost < this.currency then
9: candidates.add(node;)
10: end if
11: end for
12: return candidates

13: end procedure

218 A.H. Payberah et al.

similar-view by iterating through the received list of nodes, and preferentially selecting
those nodes in the same market-level as p or at most one level higher. If the similar-view
is not full, it adds the node, and if a reference to the node to be merged already exists
in p’s similar-view, p just refreshes the age of its reference. If the similar-view is full,
p replaces one of the nodes it had sent to ¢ with the selected node (lines 8-20). What is
more, p also merges its similar-view with its own local random-view, in the same way
described above. Upon merging, when the similar-view is full, p replaces a node whose
utility value is more than p’s utility value plus one (lines 21-33).

The fingers to higher market-levels are also updated periodically. Node p goes
through its random-view, and for each higher market-level, picks a node from that
market-level if there exists such a node in the random-view. If there is not, p keeps
the old finger.

4.2 Streaming Tree Overlay Construction

Algorithm Qlis called periodically by nodes to build and maintain a streaming overlay
tree for each stripe. For each stripe ¢, a node p checks if it has a node in its similar-
view or finger list that has (i) a lower depth than its current parent, and (ii) a connection
cost less than p’s currency. If such a node is found, it is a added to a list of candidate
parents for stripe 7 (Algorithm [3). Next, we use a random policy to select a node from
the candidate parents, as it fairly balances connection requests over nodes in the system.
In contrast, if we select the candidate parent with the minimum depth, then for even low
variance in currency of nodes, it causes excessive connection requests to those nodes
with high upload bandwidth.

Algorithm 4. Handling the assign request

1: upon event (ASSIGNREQUEST | i) from p

2: if has free uploadSlot then
3: assign an uploadSlot to p
4. send (ASSIGNACCEPTED | i) to p
5: else
6: worstChild < lowest currency child
7 if worstChild.currency > p.currency then
8: send (ASSIGNNOTACCEPTED | i) to p
9: else
10: assign an uploadSlot to p
11: send (RELEASE |) to worstChild
12: send (ASSIGNACCEPTED | 1) to p
13: end if
14: endif

15: end event

Algorithm[Mlis called whenever a receiver node ¢ receives a connection request from
node p. If ¢ has a free upload slot, it accepts the request, otherwise if p’s currency is
greater than the connection cost of ¢, ¢ abandons one of its children with the lowest
currency and accepts p as a new child. In this case, the abandoned node has to find a
new parent. If ¢’s connection cost is greater than p’s currency, g declines the request.

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 219

5 Experiments and Evaluation

In this section, we compare the performance of gradienTv with NewCoolstreaming un-
der simulation. In summary, we define three different experiment scenarios: join-only,
flash-crowds, and catastrophic failure, and, we show that gradienTv outperforms New-
Coolstreaming in all of these scenarios for the following metrics: playback continuity,
bandwidth utilization, playback latency, and path length

Experiment setup

We have implemented both gradienTV and NewCoolstreaming using the Kompics plat-
form [1]]. Kompics provides a framework for building P2P protocols, and simulation
support using a discrete event simulator. Our implementation of NewCoolstreaming is
based on the system description in [7123]]. We have validated our implementation of
NewCoolstreaming by replicating, in simulation, the results from [7].

In our experimental setup, we set the streaming rate to 512 Kbps and unless stated
otherwise, experiments involve 1000 nodes. The stream is split into 4 stripes and each
stripe is divided into a sequence of 128 K B blocks. The media source is a single node
with 40 upload slots. Nodes start playing the media after buffering it for 30 seconds.
This is comparable with the most widely deployed P2P live streaming system, Sop-
Cast’s that has average startup time of 30-45 seconds [9]. The size of a node’s partial
view (the similar-view in gradienTY, the partner list in NewCoolstreaming) is 15 nodes.

The number of upload slots for the non-root nodes is picked randomly from 1 to 10,
which corresponds to upload bandwidths from 128 Kbps to 1.25 Mbps. As the average
upload bandwidth of 704 K bps is not much higher than the streaming rate of 512 Kbps,
nodes have to find good matches as parents in order for good streaming performance.
We assume all the nodes have enough download bandwidth to receive all the stripes
simultaneously. In gradienTv, we define 11 market-levels, such that the nodes with the
the same number of upload slots are located at the same market-level. For example,
nodes with one upload slot (128 Kbps) are the members of the first market-level, nodes
with two upload slots (256 K bps) are located in the second market-level, and the media
source with 40 upload slots (>5 Mbps) is the only member of the 11th market-level.

Latencies between nodes are modelled using a latency map based on the King data-
set [5]. In the experiments, we measure the following metrics:

1. Playback continuity: the percentage of blocks that a node received before their play-
back time. In our experiments to measure playback quality, we count the number
of nodes that have a playback continuity of greater than 90%;

2. Bandwidth utilization: the ratio of the total number of utilized upload slots to the
total number of requested download slots;

3. Playback latency: the difference in seconds between the playback point of a node
and the playback point at the media source;

4. Path length: the minimum distance in number of hops between the media source
and a node for a stripe.

! The source code and the results are available at: http://www.sics.se/~amir/gradienty

220 A.H. Payberah et al.

100 s 100
Ly

80 -

-3
S

60 -

@
S

0 ||

IS
3
Playback continuity

Playback continuity

] 20 -
gradientv - join only —— newcoolstreaming - join only ——
gradientv - flash crowd newcoolstreaming - flash crowd

n
S]

o) gradientv - failure - o) newcoolstreaming - failure <
0 200 400 600 800 1000 0 200 400 600 800 1000
(a) gradienTv. (b) NewCoolstreaming.

Fig. 3. Playback continuity in percent (Y-axis), against time in seconds (X-axis)

We compare our system with NewCoolstreaming using the following scenarios:

1. Join-only: 1000 nodes join the system following a Poisson distribution with an
average inter-arrival time of 100 milliseconds;

2. Flash crowd: first, 100 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds. Then, 1000 nodes join following
the same distribution with a shortened average inter-arrival time of 10 milliseconds;

3. Catastrophic failure: as in the join-only scenario, 1000 nodes join the system fol-
lowing a Poisson distribution with an average inter-arrival time of 100 milliseconds.
Then, 400 existing nodes fail following a Poisson distribution with an average inter-
arrival time 10 milliseconds. The system then continues its operation with only 600
nodes.

In addition to these scenarios, we also evaluate the behaviour of gradienTv when vary-
ing two key parameters: (i) the playback buffering time and (ii) the number of nodes.

Playback Continuity

In this section, we compare the playback continuity of gradienTv and NewCoolstream-
ing in three different scenarios: join-only, flash crowd and catastrophic failure. In figures
B(@)and[3(b)} the X-axis shows the time in seconds, while the Y-axis shows the percent-
age of the nodes in the overlay that have a playback continuity more than 90%. We can
see that gradienTv significantly outperforms NewCoolstreaming for the whole duration
of the experiment in all scenarios. Moreover, after the system stabilizes, we observe a
full playback continuity in gradienTv. This out-performance is due to the faster con-
vergence of the streaming overlay trees in gradienTv, where high-capacity nodes can
quickly discover and connect to the source using the similar-view, while in NewCool-
streaming nodes take longer to find parents as they search by updating their random
view through gossiping. Another reason for out-performance is the difference in poli-
cies used by a child to pull the first block from a new parent. In gradienTv, whenever
a node p selects a new parent ¢, p informs ¢ of the last block it has in its buffer, and ¢
sends subsequent blocks to p, while in NewCoolstreaming, the requested block is de-
termined by looking at the head of the partners. This causes NewCoolstreaming to miss
blocks when switching parent.

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 221

Bandwidth Utilization

Our second experiment compares the bandwidth utilization of gradienTv (figure @(a))
and NewCoolstreaming (figure [F(b)). We observe that when the system has no churn,
as in the join-only scenario, both systems equally utilized the bandwidth. In the flash
crowd and catastrophic failure scenarios, the performance of the both systems drops
significantly. However, gradienTv recovers faster, as nodes are able to find parents more
quickly using the Gradient overlay.

100 ; f. 100 3 Cat
H ; £
80 S 1 80 | H
® 9 B 3
g s
60

60 i

40 40 -

Bandwidth utilization
0eeii§ig
Bandwidth utilization

20 20

z gradientv - join only —— 1 ? newcoolstreaming - join only
§ gradientv - flash crowd newcoolstreaming - flash crowd
0 if gradientv - failure - o newcoolstreaming - failure -
0 200 400 600 800 1000 0 200 400 600 800 1000
(a) gradienTv. (b) NewCoolstreaming.

Fig. 4. Bandwidth utilization in percent (Y-axis), against time in seconds (X-axis)

Path Length

In the third experiment, we compare the average path length of both streaming overlays.
Before looking at the experiment results, we calculate the minimum depth of a k-ary
tree with n nodes using logy(n). In our experiments, there are on average 5 upload slots
per node (as upload slots are uniformly distributed from 1 to 10), and the minimum
depth of the trees is expected to be logs(1000) ~ 4.29. Figures[5(a) and [5(b)] show tree
depth of the system for gradienTv and NewCoolstreaming. We observe that gradienTv
constructs trees with an average height of 4.3, which is very close to the minimum
height. The figures also show that the depth of the trees in gradienTv are half the depth
of the trees in NewCoolstreaming. Shorter trees enable lower playback latency.

What is more, we observe that the average depth of the trees is independent of the
inter-arrival time of the joining nodes. This can be seen in figures[5(a)] and [5(b)| where
the depth of the trees, after the system stabilizes, is the same. More interestingly, in the
catastrophic failure scenario, we can see a sharp drop in NewCoolstreaming tree depth,
as a result of the drop in the number of nodes remaining in the system and the fact that
many remaining nodes do not have any path to the media source. The same behaviour
is observed in gradienTv, but since the nodes can find appropriate nodes to connect to
more quickly, the fluctuation in the average depth of trees is less than in NewCool-
streaming.

Playback Latency

This experiment shows how the average playback latency of nodes changes over time
in our three scenarios (figures[6(a)] and [6(b)). In the join-only scenario, we can see that
200 seconds after starting the simulation, the playback latency in gradienTv converges

222 A.H. Payberah et al.
9 9
8 8 / gommmmeo
7r 7]
@
£ 6 £ 6 *
2 g ¢
2 5t L 5
= ¢ = ¥
& 47 % g 4)
E i 2
< 3r e < 3
21f 1 2 :
: gradientv - join only —— newceplstreaming - join only ——
1 gradientv - flash crowd 7] 1 newcoolstreaming - flash crowd
o gradientv - failure - o newcoolstreaming - failure <

0

200

400

600

800

1000

0

200

400

600

800

1000

(a) gradienTv. (b) NewCoolstreaming.

Fig. 5. Average path length in number of hops (Y-axis), against time in seconds (X-axis)

to just over 30 seconds, close to the initial buffering time, set at 30 seconds. For the
join-only scenario, gradienTv exhibits lower average playback latency than NewCool-
streaming. This is because its streaming trees have lower depth, and, therefore, nodes
receive blocks earlier than in NewCoolstreaming. This is also the case for the two other
experiment scenarios, flash crowd and catastrophic failure. Here, we can see an increase
in the average playback latency for both systems. This is due to the increased demand
for parents by new nodes and nodes with failed parents. While the nodes are competing
for parents, they may fail to receive the media blocks in time for playback. Therefore,
they have to pause until a parent is found and the streaming is resumed. This results in
higher playback latency. Nevertheless, when both systems stabilize, nodes will ignore
the missing blocks and fast forward to the play from the block where the streaming from
the new parent is resumed. Hence, the playback latency will improve after the system
has settled down.

There is a significant difference between the behaviour of gradienTv and NewCool-
streaming upon an increase in the playback latency. In gradienTy, if playback latency
exceeds the initial buffering time and enough blocks are available in the buffer, nodes
are given a choice to fast forward the stream and decrease the playback latency. In con-
trast, NewCoolstreaming jumps ahead in playback by switching parent(s) causing it to
miss blocks, thus it negatively affects playback continuity.

120

100

80

60

40

Playback Latency (seconds)

20

0

- rmEC—T————

gradientv - join only —— 7
gradientv - flash crowd

gradientv - failure -

{"\

0

200 400 600 1000

(a) gradienTv.

800

Playback Latency (seconds)

N
S]

15
S

80 -
60 -
40 -

|

20 | newcoolstreaming - join only
|
|

0

newcoolstreaming - flash crowd
newcoolstreaming - failure

o

0

200 400 600
(b) NewCoolstreaming.

800

1000

Fig. 6. Average playback latency in seconds (Y-axis), against time in seconds (X-axis)

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 223

100 F 50
no buffer ——
] 10 seconds buffer e
80 - Dé’ " 20 seconds buffer
= g 40r g 30 seconds buffer
S] ? !
2 3 L.
£ 60f 8 ;
8 5 Or
5 < &
g 40p E eoe
B 2 20¢ °
o S b %
20 no buffer é i %
10 seconds buffer - & 10}
20 seconds buffer o
o 30 seconds buffer = d
0 100 200 300 400 500 600 0 &= t
0 100 200 300 400 500 600

Time (s)

(a) Playback continuity against time. Time (s)

(b) Playback latency against time.

Fig. 7. The behaviour of gradienTv for different playback buffer lengths (in seconds)

Buffering Time

We now evaluate the behaviour of gradienTv for different initial playback buffering
times. We compare four different settings: 0, 10, 20 and 30 seconds of initial buffering
time. Two metrics that are affected by changing the initial buffering time are playback
continuity and playback latency. Figure shows that when there is no initial buffer-
ing, the playback continuity drops to under 20% after 50 seconds of playback, but as
the system stabilizes the playback continuity increases. Buffering 10 seconds of blocks
in advance results in less playback interruptions when nodes change their parents, but
better playback continuity is achieved for 20 and 30 seconds of buffering. Figure [7(b)]
shows how playback latency increases when the buffering time is increased. Thus, the
initial buffering time is a parameter that trades off better playback continuity against
worse playback latency.

Number of Nodes

In this experiment, we evaluate the performance of the system for different system
sizes. We simulate systems with 128, 256, 512, 1024, 2048, and 4096 nodes, where
nodes join the system following a Poisson distribution with an average inter-arrival
time of 100 milliseconds. In figure we show the bandwidth utilization after all
the nodes have joined (for the different system sizes). We define d as the time when
all nodes have joined for a particular size. This means that for the system with 128
nodes, d is 13 seconds, while for the system with 4096 nodes d is 410 seconds. This
experiment shows that, regardless of system size, nodes successfully utilize the upload
slots at other nodes. This implies that convergence in terms of matching upload slots
to download slots, appears to be independent of the number of nodes in the system. A
necessary condition, of course, is that there is enough available upload and download
bandwidth to deliver the stream to all nodes.

In the second experiment, we measure the tree depth while varying system sizes.
We can see in figure [8(b)] that the depth of the trees are very close to the theoretical
minimum depth in each scenario. For example, the average depth of the trees with 1024
nodes is 4.34, which is very close to logs(1024) = 4.30.

224 A.H. Payberah et al.

100 T 9
sjaskbred o 256
o 512 -
- 80 ; 7+ 1024
s ; 2048
§ . ‘g) 6 | 4096
3 g
g 25)
E p .
g § 4|
2 40 > Ko
2 128 —— [z 3 &
2 2 2| f
5 = &
20 1024 I
2048 1
4096 o
d+20 d+40 d+60 d+80d+100+120a+140i+16ai+180 0 100 200 300 400 500 600
Time (s) Time (s)
(a) Bandwidth utilization against time. (b) Path length against time.

Fig. 8. Bandwidth utilization and path length for varying numbers of nodes

6 Conclusions

In this paper, we presented gradienTv, a P2P live streaming system that uses both the
Gradient overlay and a market-based approach to build multiple streaming trees. The
constructed streaming trees had the property that the higher a node’s upload capacity,
the closer that node is to the root of the tree. We showed how the Gradient overlay
helped nodes efficiently find good neighbours for building these streaming trees. Our
simulations showed that, compared to NewCoolstreaming, gradienTv has higher play-
back continuity, builds lower-depth streaming trees, has better bandwidth utilization
performance, and lower playback latency.

References

1. Arad, C., Dowling, J., Haridi, S.: Developing, simulating, and deploying peer-to-peer sys-
tems using the kompics component model. In: COMSWARE 2009: Proceedings of the Fourth
International ICST Conference on COMmunication System softWAre and middlewaRE, pp.
1-9. ACM, New York (2009)

2. Asaduzzaman, S., Qiao, Y., Bochmann, G.: CliqueStream: an efficient and fault-resilient live
streaming network on a clustered peer-to-peer overlay. In: Proceedings of the 2008 Eighth
International Conference on Peer-to-Peer Computing, pp. 269—-278. IEEE Computer Society,
Los Alamitos (2008)

3. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:
SIGCOMM 2002: Proceedings of the 2002 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pp. 205-217. ACM, New York (2002)

4. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.: Splitstream:
high-bandwidth multicast in cooperative environments. In: SOSP 2003: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pp. 298-313. ACM Press,
New York (2003)

5. Gummadi, K.P.,, Saroiu, S., Gribble, S.D.: King: Estimating latency between arbitrary inter-
net end hosts. In: SIGCOMM Internet Measurement Workshop (2002)

6. Jiang, X., Dong, Y., Xu, D., Bhargava, B.: Gnustream: a p2p media streaming system proto-
type. In: ICME 2003: Proceedings of the 2003 International Conference on Multimedia and
Expo, Washington, DC, USA, pp. 325-328. IEEE Computer Society, Los Alamitos (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

gradienTv: Market-Based P2P Live Media Streaming on the Gradient Overlay 225

. Li, B.,, Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang, X.: Inside the new coolstreaming:

Principles, measurements and performance implications. In: IEEE INFOCOM 2008. The
27th Conference on Computer Communications, pp. 1031-1039 (2008)

. Locher, T., Meier, R., Schmid, S., Wattenhofer, R.: Push-to-Pull Peer-to-Peer Live Streaming.

In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 388—402. Springer, Heidelberg (2007)

. Lu, Y., Fallica, B., Kuipers, F., Kooij, R., Van Mieghem, P.: Assessing the quality of experi-

ence of sopcast. Journal of Internet Protocol Technology 4(1), 11-23 (2009)

Magharei, N., Rejaie, R.: Prime: Peer-to-peer receiver-driven mesh-based streaming. In: IN-
FOCOM (2007)

Mol, J.J.D., Epema, D.H.J., Sips, H.J.: The orchard algorithm: P2p multicasting without free-
riding. In: P2P 2006: Proceedings of the Sixth IEEE International Conference on Peer-to-
Peer Computing, Washington, DC, USA, pp. 275-282. IEEE Computer Society, Los Alami-
tos (2006)

Padmanabhan, V.N., Wang, H.J., Chou, P.A., Sripanidkulchai, K.: Distributing streaming me-
dia content using cooperative networking. In: NOSSDAV 2002: Proceedings of the 12th in-
ternational workshop on Network and operating systems support for digital audio and video,
pp. 177-186. ACM, New York (2002)

Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.E., Mohr, E.E.: Chainsaw:
Eliminating trees from overlay multicast. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005.
LNCS, vol. 3640, pp. 127-140. Springer, Heidelberg (2005)

Park, K., Pack, S., Kwon, T.: Climber: An incentive-based resilient peer-to-peer system for
live streaming services. In: Workshop on Peer-to-Peer Systems, IPTPS (2008)

Pianese, F., Keller, J., Biersack, E.W.: Pulse, a flexible p2p live streaming system. In: INFO-
COM. IEEE, Los Alamitos (2006)

Sacha, J., Biskupski, B., Dahlem, D., Cunningham, R., Meier, R., Dowling, J., Haahr, M.:
Decentralising a service-oriented architecture. Accepted for publication in Peer-to-Peer Net-
working and Applications

Sacha, J., Dowling, J., Cunningham, R., Meier, R.: Discovery of stable peers in a self-
organising peer-to-peer gradient topology. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006.
LNCS, vol. 4025, pp. 70-83. Springer, Heidelberg (2006)

Tran, D.A., Hua, K.A., Do, T.T.: Zigzag: An efficient peer-to-peer scheme for media stream-
ing. In: INFOCOM (2003)

Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous unstructured tree-
based peer-to-peer multicast. In: ICNP 2006: Proceedings of the Proceedings of the 2006
IEEE International Conference on Network Protocols, Washington, DC, USA, pp. 2-11.
IEEE Computer Society, Los Alamitos (2006)

Vlavianos, A., Iliofotou, M., Faloutsos, M.: Bitos: enhancing bittorrent for supporting
streaming applications. In: IEEE Global Internet, pp. 1-6 (2006)

Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive Membership Management
for Unstructured P2P Overlays. Journal of Network and Systems Management 13(2), 197-
217 (2005)

Wang, F., Xiong, Y., Liu, J.: mtreebone: A hybrid tree/mesh overlay for application-layer
live video multicast. In: ICDCS 2007: Proceedings of the 27th International Conference on
Distributed Computing Systems, p. 49 (2007)

Xie, S., Li, B., Keung, G.Y., Zhang, X.: Coolstreaming: Design, Theory and Practice. IEEE
Transactions on Multimedia 9(8), 1661 (2007)

Ken Yiu, W.P., Jin, X., Gary Chan, S.H.: Challenges and approaches in large-scale p2p media
streaming. IEEE MultiMedia 14(2), 50-59 (2007)

Zhang, X., Liu, J., Li, B, Yum, T.s.P.: Coolstreaming/donet: A data-driven overlay network
for peer-to-peer live media streaming. In: IEEE Infocom (2005)

	$gradienTv$: Market-Based P2P Live Media Streaming on the Gradient Overlay
	Introduction
	Related Work
	Gradient Overlay
	GradienTv System
	Gradient Overlay Construction
	Streaming Tree Overlay Construction

	Experiments and Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

