A Node Indexing Scheme for Web Entity
Retrieval

Renaud Delbru®, Nickolai Toupikov!,
Michele Catasta?*, and Giovanni Tummarello'?
! Digital Enterprise Research Institute
National University of Ireland, Galway
Galway, Ireland
firstname.lastname@deri.org
2 School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
firstname.lastname@epfl.ch
3 Fondazione Bruno Kessler
Trento, Italy
lastname@fbk.eu

Abstract. Now motivated also by the partial support of major search
engines, hundreds of millions of documents are being published on the
web embedding semi-structured data in RDF, RDFa and Microformats.
This scenario calls for novel information search systems which provide
effective means of retrieving relevant semi-structured information. In this
paper, we present an “entity retrieval system” designed to provide entity
search capabilities over datasets as large as the entire Web of Data. Our
system supports full-text search, semi-structural queries and top-k query
results while exhibiting a concise index and efficient incremental updates.
We advocate the use of a node indexing scheme and show that it offers
a good compromise between query expressiveness, query processing time
and update complexity in comparison to three other indexing techniques.
We then demonstrate how such system can effectively answer queries over
10 billion triples on a single commodity machine.

1 Introduction

On the Web, more and more structured and semi-structured data sources are
becoming available encouraged by initiatives such as Linked Open Data, but
now even more with the support of major search engines. Hundreds of millions
of documents already embed semi-structured data in the form of RDF, RDFa
and Microformats and it is easy to predict that more will join soon. Whatever
the current size of the Web of Data is today, the trend is clear and so is the
requirement for handling semi-structured data with a scalability in the same
class of traditional search engines.

* The author contributed to this work while he was a master student in DERI.

L. Aroyo et al. (Eds.): ESWC 2010, Part 11, LNCS 6089, pp. 240-1256,|2010.
© Springer-Verlag Berlin Heidelberg 2010

A Node Indexing Scheme for Web Entity Retrieval 241

However, the mass publishing of data on the Web is unexploitable by se-
mantic clients and applications if supporting tools are not made available for
data discovery. Taking the e-commerce example, how can a client find products
matching a certain description pattern over thousands of e-commerce semantic
data sources 7 By entering keyword queries into a standard web search system,
the results are likely to be irrelevant since the system will return pages men-
tioning the keywords and not the matching products themselves. Current search
systems are inadequate for this task since they have been developed for a totally
different model, i.e., a Web of Documents. The shift from documents to data
entities poses new challenges for web search systems.

In this paper, we present the Semantic Information Retrieval Engine, SIREn,
a system based on Information Retrieval (IR) techniques and designed to search
“entities” specifically according to the requirements of the Web of Data. We
advocate the use of a node indexing scheme for indexing semi-structured data,
a technique coming from the XML Information Retrieval world. We analyse and
compare the theoretical performances and other criteria of SIREn against three
other indexing techniques for entity retrieval. We show that the node indexing
scheme offers a good compromise between query expressiveness, query process-
ing time and update complexity and scales well with very large datasets. The
resulting system inherits from many characteristics of IR systems such as web
like scalability, incremental updates and top-k queries among others.

1.1 Web of Data: Requirements for SIREn

Developed within the Sindice project [I], SIREn is designed to be comparable in
term of scalability to current web search engines so to be able to encompass, given
sufficient hardware, the entire “Web of Data”. The requirements are therefore:

1. Support for the multiple formats which are used on the Web of Data;

2. Support for searching an entity description given its characteristics (entity
centric search);

3. Support for context (provenance) of information: entity descriptions are
given in the context of a website or a dataset;

4. Support for semi-structural queries with full-text search, top-k query results,
scalability over shard clusters of commodity machines, efficient caching strat-
egy and incremental index maintenance.

With respect to point 1, the two formats which enable the annotation of enti-
ties on web pages are Microformats and RDF (RDFa is treated equally to RDF).
At knowledge representation level, the main difference between Microformats
and RDF is that the former can be seen as a frame model while the latter has a
graph based data model. While these are major conceptual differences, it is easy
to see that the RDF model can be used effectively to map Microformatdl. Under
these conditions, we have developed SIREn to cover the RDF model knowing
that this would cover Microformats and likely other forms of web metadata.

! Any23: http://code.google.com/p/any23/

http://code.google.com/p/any23/

242 R. Delbru et al.

o O

i : member OR
[renauc delbru ziae.-n.org] employ

base : deri.org OR
i :) deri.je

(a) Visual representation of an RDF graph. (b) Star-shaped query matching
The RDF graph is divided (dashed lines) the entity renaud where ¢ is the
into three entities identified by the nodes bound variable and * a wildcard
renaud, giovanni and DERI

Fig. 1. In these graphs, oval nodes represent resources and rectangular ones represent
literals. For space consideration, URIs have been replaced by their local names.

With respect to point 2 and 3, the main use case for which SIREn is developed
is entity search: given a description of an entity, i.e. a star-shaped query such as
the one in Fig. locate the most relevant entities and datasets. The Fig.
shows an RDF graph and how it can be split into three entities renaud, giovanni
and DERI. Each entity description forms a sub-graph containing the incoming
and outgoing relations of the entity node which is indexed by the system.

Finally, we will see in Sect.] that SIREn leverages well known IR techniques
to address the point 4.

1.2 Approaches for Entity Retrieval

Two main approaches have been taken for entity retrieval, based either on Data-
base techniques or on Information Retrieval techniques.

Database and Retrieval of RDF Data. Typically, entities described in RDF
are handled using systems referred to as “triplestores” or “quadstores” which
usually employ techniques coming from the Database world. Some of these are
built on top of existing Relational Database such as Virtuosd? or on top of
column stores [2] while others are purposely built to handle RDF [3/41/5].

These triplestores are built to manage large amounts of RDF triple&ﬁ or quadaﬁ
and they do so by employing multiples indices (generally B+-Trees) for covering
all kind of access patterns of the form (s,p,o0,c). As for Database Manage-
ment Systems, the main goal of these systems is answering complex queries,
e.g. those posed using the SPARQL query languageﬁ. The task is a superset of

2 Virtuoso: http://virtuoso.openlinksw.com/

3 Specifically a triple is a statement s, p, o consisting of a subject, a predicate, and an
object and asserts that a subject has a property with some value.

4 Specifically a quad is a statement with a fourth element c called “context” for naming
the RDF graph, generally to keep the provenance of the RDF data.

® SPARQL: http://www.w3.org/TR/rdf-sparql-query/

http://virtuoso.openlinksw.com/
http://www.w3.org/TR/rdf-sparql-query/

A Node Indexing Scheme for Web Entity Retrieval 243

entity retrieval as we defined it, and comes at the cost of maintaining complex
data structures. Also they usually do not support natively top-k and full-text
queries.

Information Retrieval for Semi-Structured Data. In the past decades,
many models [6] for textual database have been designed to support queries
integrating content (words, phrases, etc.) and structure (for example, the table
of contents). With the increasing number of XML documents published on the
Web, new structured retrieval models and query languages such as XPath/X-
Query [7] have been designed. Various indexing techniques [§] have been devel-
oped to optimise the processing of the XPath query language. Amongst them,
the node indexing scheme [III0] relies on node labelling schemes [11] to encode
and query the tree structure of an XML document using either a database or an
inverted index.

Other communities [T2/T3T4] have investigated IR techniques for searching
semi-structured data. [I4] investigates the use of an inverted index over string
sequences to support search over loosely structured datasets. Semplore [12] ex-
tends inverted index to encode RDF graph approximation and supports tree-
shaped queries over RDF graphs. The first system relies on a field-based indezing
scheme to encode attribute-value relations into the index dictionary. The second
uses multiple inverted indexes to encode various structural aspects of RDF. An
analysis of their limitations and advantages are discussed in Sect[5l

In the context of the Semantic Web, we are aware of one work [I5] that
explores the use of node labelling schemes for indexing and querying voluminous
subsumption hierarchies. In comparison to SIREn, this work has focused on label
querying using standard relational DBMS for subsumption check in large RDF
taxonomies and can not be directly applied for the entity retrieval problem.

1.3 Owur Contribution

Our goal is to develop an entity retrieval system that supports the previously de-
fined requirements. In this paper, we provide the following contributions towards
this goal:

— We introduce a system based on a node indexing scheme and Information
Retrieval techniques for searching semi-structured representation of entities;

— We describe how a node indexing scheme can capture a semi-structured
representation of an entity as well as its provenance and how it can be
implemented in a inverted index;

— We compare the node indexing scheme to three other schemes. We analyse
their theoretical performances, present experimental results and show that
the node indexing scheme scales well with a large number of triples.

The paper is organized as follows: we first present the node-labelled data
model in Sect. 2 and the associated query model in Sect. Bl We describe in
Sect. [how to extend inverted lists as well as update and query processing
algorithms to support the node index model. An analysis of the differences and

244 R. Delbru et al.

theoretical performance between SIREn and other entity retrieval systems is
given in Sect. B In Sect. [d], experimental results are shown using large real world
data collections and against other well known RDF management systems.

2 Node-Labelled Tree Model for RDF

A node-labelled tree model enables to efficiently establish relationships be-
tween nodes. The two main types of relations are Parent-Child and Ancestor-
Descendant which are also core operations in XML query languages such as
XPath. To support these relations, the requirement is to assign unique identi-
fiers (node labels) that encode relationships between the nodes. Several node
labelling schemes have been developed [I1] but in the rest of the paper we will
use a simple prefix scheme, the Dewey Order encoding [16]. With Dewey Order,
each node is assigned a vector that represents the path from the tree’s root to the
node and each component of the path represents the local order of an ancestor
node.

Using this labelling scheme, structural relationships between elements can be
determined efficiently. An element u is an ancestor of an element v if label(u) is
a prefix of label(v). Fig. presents a data tree where nodes have been labelled
using Dewey’s encoding. Given the label (1.2.1.1) for the term Organisation,
we can find that its parent is the predicate rdf:type, labelled with (1.2.1).

SIREn adopts a node-labelled tree model to capture datasets, entities and
their RDF descriptions. The tree model is pictured in Fig. The model has
four different kind of nodes: context (dataset), subject (entity), predicate and
object. Each node can refer to one or more terms. In our case, a term is not
necessarily a word (from a RDF Literal), but can be an URI or a local blank
node identifier.

The node-labelled model covers the quad relations CSPO (outgoing relations)
and COPS (incoming relations). Incoming relations are symbolised by a predi-
cate node with a ! tag in Fig. This model is not limited to quad relations,
and could in theory be used to encode longer paths such as 2-hop relations but
this is beyond the scope of this paper.

renaud delbru.ir
L)
employerOf
[1.22]
"Aenaud
Delbru” papor-9 m .
[1.1.1.1] [1.1.2.1] ‘m m

(a) Conceptual representation (b) Node-labelled tree model of the example dataset
of the node-labelled tree model using Dewey’s encoding

Fig. 2. The node-labelled tree model

A Node Indexing Scheme for Web Entity Retrieval 245

3 Query Model

Since RDF is semi-structured, we aim to support three types of queries: 1. full-
text search (keyword based) when the data structure is unknown, 2. semi-
structural queries (complex queries specified in a star-shaped structure) when
the data schema is known, 3. or a combination of the two (where full-text search
can be used on any part of the star-shaped query) when the data structure is
partially known. In this section, we present a set of query operators over the
content and structure of the node-labelled tree which covers the three types of
queries. We will present the operators of SIREn and whenever possible compare
them with their SPARQL equivalents (in Listing [[T]).

Content operators. The content query operators are the only ones that access
the content of a node, and are orthogonal to the structure operators. They
include extended boolean operations such as boolean operators (intersection,
union, difference), proximity operators (phrase, near, etc.) and fuzzy or wildcard
operators.

These operations allow to express complex keyword queries for each node of
the tree. Interestingly, it is possible to apply these operators not only on literals,
but also on URISs if they are normalized (i.e., tokenized). For example one could
just use the local name, e.g. name, to match foaf :name ignoring the namespace.

Structure operators. In the following, we define a set of operations over the node-
labelled tree. Thanks to these operations, we are able to search content to limited
nodes, to query node relationships and to retrieve paths of nodes matching a
given pattern. Combination of nodes are possible using set operators, enabling
the computation of entities and datasets matching a given star-shaped query.

Ancestor-Descendant: A//D A node A is the ancestor of a node D if it
exists a path between A and D. For example, the SPARQL query in Listing
[Tl line 1, can be interpreted as an Ancestor-Descendant operator, line 2,
and will return the path (1.2.2.1).

Parent-Child: P/C A node P is the parent of a node C if P is an ancestor
of C and C is exactly one level above P. For example, the SPARQL query
in Listing [I.T] line 3, can be translated into a Parent-Child operator, line 4,
and will return the path (1.1.1.1).

Set manipulation operators: These operators allow to manipulate nodes
(context, subject, predicate and object) as sets, implementing union (U),
difference (\) and intersection (N). For example in Listing [[1] the SPARQL
query, line 5, can be interpreted as two PC and one intersection operators,
line 6.

Compared to their XML equivalent, The AD and PC operators take in con-
sideration the level of the nodes at query processing time in order to avoid
false-positive results. For example, in Listing [[LT] line 2, the keywords deri and
renaud are restricted to match subject nodes and object nodes respectively. Also,
operators can be nested to express longer path as shown in Listing [Tl line 7
and 9. However, the later is possible only if deeper trees have been indexed, i.e.
2-hop relations of an entity.

246 R. Delbru et al.

Listing 1.1. SPARQL queries and their SIREn interpretation

SELECT DISTINCT ?g WHERE { GRAPH ?g { <deri> 7p <renaud> }}

deri // renaud

SELECT DISTINCT ?g ?s WHERE { GRAPH ?g { 7s <name> "Renaud Delbru" }}

name / "Renaud Delbru"

SELECT DISTINCT ?g 7o WHERE {GRAPH 7g { <giovanni> <knows> 7o. <deri> <employer0f> 7o.}}
knows"-1 / giovanni AND employer0f~-1 / deri

SELECT DISTINCT ?s WHERE { GRAPH <renaud.delbru.fr> { ?s <knows> <renaud> }}
renaud.delbru.fr // knows / renaud

SELECT DISTINCT ?g ?s WHERE { GRAPH ?g { 7s <employer0Of> 70 . 7o <name> "renaud" . }}
employer0Of // name / "renaud"

QOO U WN -

=

4 Implementing the Model

In this section, we present the data format of the inverted list and the related
update and query processing algorithms. This inverted list, in addition of being
able to capture quad information, has distinctive features such as efficient incre-
mental updates of entities in an existing context and self-indexing over contexts
and subjects for faster access.

4.1 Inverted Lists

We will now explain how the structural information associated with a term can
be transposed into a postings list. The format of the inverted list is similar to the
path-based model described in [I7]. In this model, the inverted list stores a term
occurrence with a path from the root node (context) to the node that contains
the word. For example, for a term that appears in a predicate the associated
path will be (context, subject, predicate) while the path for a term that appears
in an object will be (context, subject, predicate, object).

The inverted index [is built as a collection of n inverted lists Iy, Iy, , ..., It,
where a list I; contains a posting for each occurrence of the term ¢ in the data col-
lection. A posting list holds a sequence of term occurrences in the format shown
below. The path and positional information are stored in a term-interleaved [18]
manner where various parts of the posting list are stored separately. In addition
to provide effective compression, it enables incremental updates of an existing
context as explained in the next section.

Listing 1.2. Posting list format

Term -> <cid, tef, EntityInfox>"tcf
EntityInfo -> <sid, freq, NodeInfox>“tef
NodeInfo -> <pid, pos> | <pid, oid, pos> | ...

In Listing[T2] each Term is associated to a first information block, an ordered
list of context identifiers cid of size tcf (“term context frequency”, the number of
contexts mentioning the term). Each context identifier is immediately followed by
tef and EntityInfo which correspond respectively to the “term entity frequency”
(the number of entity in the context mentioning the term) and the pointer to

A Node Indexing Scheme for Web Entity Retrieval 247

the entity information block. The EntityInfo block is an ordered list of subject
identifiers sid of length tef. Each subject identifier is immediately followed by the
term frequency freq in this entity and a pointer Nodelnfo to the information block
containing remaining path and positional information for each term occurrence.
The remaining path information of a term is defined by the predicate identifier
pid and optionally by the object identifier oid if and only if the term belongs
to an object. The position offset pos of the term within a node is also stored
in order to enable phrase and proximity queries. Information is ordered first by
predicate identifier then by object identifier and finally by position.

To produce compact posting lists, integers are stored as a difference, or delta
representation [I7], using variable-length byte encoding. The key idea of the
delta compression is to store the difference between consecutive values instead
of the values themselves. However, more advanced compression techniques [19]
could be implemented instead.

4.2 Incremental Update of the Inverted Lists

The proposed model supports incremental updates of datasets and entities as
it is performed for documents in traditional inverted indexes [20]. Adding a
dataset or entity corresponds to adding a set of statements to the inverted index.
The insertion of one quad (s,p,0,c) is performed by 1. accessing the postings
list of the term p and o, and 2. appending to each postings list a new entry
that contains the context identifier, the subject identifier as well as the related
structural and positional information of the term. The interleaved structure of
the posting list enables to add a new entity to an existing context. In that
case, the information block containing the list of contexts is accessed in order to
increment tef and retrieve the pointer of the related EntityInfo block. Then, a
new entry is appended to the EntityInfo and Nodelnfo blocks.

The complexity of insertion of one quad is O(log(n) 4+ 1), where O(log(n)) is
the cost of searching a term in a dictionary of n terms and O(1) is the cost of
appending a posting to the list. When updates are performed by batches, the
update time is linear with the number of postings to append.

Compared to triple stores, we do not support the deletion on a statement
granularity, but we support the deletion of a context or subject, i.e. a set of
statements. When a context or subject is removed, their identifier is inserted into
a deletion table. During query processing, each posting entries is checked against
the deletion table in O(1) to ensure that it has not been deleted. The deletion
table is integrated back to the inverted index only when a certain amount of
deletion is sufficient to amortize the cost of such maintenance operation.

4.3 Query Processing

The evaluation of a query works in a bottom-up fashion. We first perform match-
ing on the content (terms) of a node, then structural information is used during
postings list intersection for filtering the result candidates that do not belong to
the same node. The methodology for intersecting two postings lists is described
by the following merge algorithm:

248 R. Delbru et al.

1. The postings list of each term is retrieved.

2. We then walk through the postings lists simultaneously.

3. At each step, we first compare the context and subject identifiers, then the
predicate identifier and finally the object identifier. If they are the same, we
put the pair cid, sid in the result list and advance the pointers to their
next position in each postings list.

The worst-case complexity of a query evaluation is in time linear to the total
number of posting entries [21]. In the average case, the complexity of an inter-
section is reduced to sub-linear time with an internal index (or skip lists [22])
over the context and subject identifiers to skip over unnecessary records.

Each query operator delivers output in sorted order. Multiple operators can
be nested without losing the sorted order of the output, therefore enjoying the
concept of interesting orderings [23] enabling the use of the effective merge-join
without intermediate result sorting.

In addition, it is possible to apply existing scoring schemes such as TF-IDF
or BM25F to compute top-k results at query time based on the keywords and
structure of the matching sub-graphs. During the concurrent postings traversal
we compute the score of one dataset-entity at a time, similarly to the document-
at-a-time scoring in text database. However, more advanced top-k processing
algorithms [20] could be employed instead.

5 Comparison among Entity Retrieval Systems

In this section, we evaluate four entity retrieval systems: SIREn based on a node-
labelled index, field-based indexes [14], RDF databases [5] based on quad tables
and Semplore [I2]. These techniques are representative of the current approaches
for entity retrieval.

Field-based indexing schemes are generally used in standard document re-
trieval systems (such as Apache Lucene) to support basic semi-structured in-
formation like document’s field (e.g., the title). A field index constructs index
terms by concatenating the field name (i.e., predicate URI) with the terms from
the content of this field. For example, in the graph depicted in Fig. the
index terms for the entity “giovanni” and its predicate name will be represented
as name:giovanni and name:tummarello.

Semplore is an Information Retrieval engine for querying Semantic Web data
which supports hybrid queries, i.e. a subset of SPARQL mixed with full text
search. Semplore is also built on inverted lists and relies on three inverted in-
dexes: 1. an ontology index that stores the ontology graph (concepts and proper-
ties), 2. an individual path index that contains information for evaluating path
queries, and 3. an individual content index that contains the content of the
textual properties.

In the following, we assume that term dictionaries as well as quad tables are
implemented with a b4+-tree. The comparison is performed according to the fol-
lowing criteria: Precision, Processing Complexity, Update Complexity and Query
Ezxpressiveness. Precision evaluates if the system returns any false answers in the
query result set. Processing Complezity evaluates the theoretical complexity for

A Node Indexing Scheme for Web Entity Retrieval 249

Table 1. Summary of comparison among the four entity retrieval systems

Criteria Node Index Field Index Quad Table Semplore
Precision (false positive) No Yes No Yes
Dictionary Lookup O(log(n)) O(log(n *m)) O(log(n)) O(log(n))
Quad Lookup O(log(n)) O(log(nxm)) O(log(n) + log(k)) O(log(n))
Join in Quad Lookup Yes No No No
Star Query Evaluation Sub-Linear Sub-Linear O(n) O(n *log(n))
Update Cost O(log(n)) O(log(n+*m)) O(log(n) + log(k)) O(log(n) + log(l))
Multiple Indices No No Yes Yes
Query Expressiveness Star Star Graph Tree
Full-Text Yes Yes (on literals) No Yes (on literals)
Multi-Valued Support Yes No Yes No

processing a query (lookups, joins, etc.). Update Complezity evaluates the the-
oretical complexity of maintenance operations. Query Expressiveness indicates
the type of queries supported. Table 1 summarises the comparison.

Precision. The field indexing scheme encodes the relation between predicates and
terms in the index dictionary, but loses an important structural information: the
distinction between literal objects. As a consequence, if the predicate is multi-
valued, the field index may return false-positive results. Semplore suffers from
a similar problem: it aggregates all the literal objects of an entity, disregarding
the predicate, into a single bag of words. On the contrary, the node index and
the quad table are able to distinguish distinct objects and do not produce wrong
answers.

Processing Complexity. Since the field-based index encodes relations between
predicate and terms in the dictionary, its dictionary may quickly become large
when dealing with heterogeneous data. A dictionary lookup has a complexity of
O(log(n *m)) where n is the number of terms and m the number of predicates.
This overhead can have a significant impact on the query processing time. In
contrast, the other systems stay with a term dictionary of size n.

To lookup a quad or triple pattern, the complexity of the node and field index
is equal to the complexity of looking up a term in the dictionary. In contrast,
the RDF databases should perform in addition a lookup on the quad table.
The complexity is O(log(n) + log(k)) with log(n) the complexity to lookup a
term in the dictionary and log(k), k being the number of quads in the database,
the complexity to lookup a quad in a quad table. In general, it is expected to
have considerably more quads than terms, which can have a substantial impact
on the query processing time for very large data collection. However, for quad
patterns containing two or more terms, for example (?¢,?s,p,0), the node index
has to perform a merge-join between the posting lists of the two terms in order
to check their relationships, but such joins can be performed on average in sub-
linear time. On the contrary, the other indexes do not have to perform such
joins. But, in the context of Semplore, access patterns where the predicate is not
specified cause a full index scan.

For evaluating a star-shaped query (joining multiples quad patterns), each
index has to perform a merge-join between the records of each quad patterns.
Such join is linear with the number of records in the case of the quad table,

250 R. Delbru et al.

and sub-linear in the case of the node and field index if they use skip-lists.
In contrast, Semplore has often to resort to expensive sort before merge-join
operations.

Update Complexity. In terms of complexity of maintenance, in a b-+-tree sys-
tem the cost of insertion of one quad represents the cost of search of the leaf
node (i.e., O(log(n) + log(k))), the cost of adding a leaf node if there is no
available leaf node and the cost of rebalancing (overhead to keep the tree bal-
anced). These operations become problematic with large indices and requires
advanced optimizations [24] that in return cause degradations in query perfor-
mance. In contrast, the cost of insertion for a node and field index is equal to
the cost of a dictionary lookup as discussed in Sect. L2 which is O(log(n)) and
O(log(n *m)) for the node index and the field index respectively. Furthermore,
quad tables are specific to access patterns, hence multiple b+-tree indexes have
to be updated. Concerning the size of the indexes, all of them are linear with
the data.

Concerning Semplore, the original system could not perform updates or dele-
tions of triples without a full re-indexing. The authors have recently [12] proposed
an extension for incremental maintenance operations based on the landmark [25]
technique but the update complexity remains substantial. The update cost is
O(log(n) + log(l)) with [the number of landmarks in the posting list. The fact
that Semplore uses multiple indexes and landmarks considerably increase the
update complexity. For example, index size and creation time reported in [12]
are higher than for RDF-3X [5].

Query Ezrpressiveness. In term of query expressiveness, RDF databases have
been designed to answer complex graph-shaped queries which are a superset
of the queries supported by the other systems. On the other hand, the other
systems are especially designed to support natively full-text search which is not
the case for quad table indexes. Node indexes provide more flexibility in term
of full-text search since it enables keyword search on every parts of a quad. In
addition, node indexes support set operations on nodes that give the ability to
express set-valued queries on both URI and literal multi-valued properties.

Semplore supports relational tree-shaped queries but loses structural infor-
mation since the relation between a resource and a literal is not indexed. Hence,
it is not possible to restrict full-text search of a literal using a predicate, e.g.
asking (?s, <foaf:name>, "renaud").

6 Experimental Results

In this section, we compare the performance of SIREn against RDF databases
(using quad tables over b-+-tree indexes) based on some of the above criteria.
We assess the space requirement, the index creation time and the query pro-
cessing performance. The aim is to show the benefits of using a system like
SIREn for web entity retrieval compared to common approaches based on RDF
databases. While RDF databases are very efficient to answer complex queries,

A Node Indexing Scheme for Web Entity Retrieval 251

we show that for the simpler task of entity retrieval, carefully designed systems
can provide substantial benefits in term of scalability while sustaining fast query
time.

The experimental setup is as follows. SIREn is implemented on top of Apache
Lucene 2.4. The first RDF database is Sesame 2.0 with native backend (based
on b+-tree), an open-source system which is commonly used as baseline for
comparing quad store performances (e.g., in [5]). The second system is the
state-of-the-art triple store RDF-3X [5]. We report that it is impossible for us
to compare Semplore because at the time of the writing it is not being made
available for this purpose. We also do not compare field-based index due to
their query expressiveness limitations. In a previous publication [26], we reported
experimental results showing the decrease of performance of field-based index
compared to SIREn when the number of fields increases.

For the experiments, we use two datasets. The first one, called “Real-World”
has been obtained by random sampling the content of the Sindice search engine.
The real world dataset consists of 10M triples (approximately 2GB in size), and
contains a balanced representation of triples coming from the Web of Data, e.g.
RDF and Microformats data published online. The second dataset is the MIT
Barton dataset that consists of 50M triples (approximately 6GB in size).

The machine that served for the experiment was equipped with 8GB ram, 2
quad core Intel processors running at 2.23 GHz, 7200 RPM SATA disk, Linux
2.6.24-19, Java 1.6.0.06 and GCC 4.2.4. All the following benchmarks are per-
formed with cold-cache by flushing the kernel cache and by reloading the appli-
cation after each query.

6.1 Index Size

The first experiment compares the index size of the three systems. The index
size comprises the lexicon and the indices. Sesame is configured to create a single
quad table (p,0,c,s). RDF-3X creates all the possible triple tables plus additional
tables for query optimizations. SIREn creates a single inverted index.

The results are shown in Table 2(a). With respect to SIREn, Sesame exhibits
at least a two-fold increase in index size on the real-world dataset and a four-fold
increase on Barton. RDF-3X exhibits a four-fold increase in index size on the
two datasets. With respect to the original dataset size, we observe that SIREn
exhibits a index size ratio of 13-15%, whereas for Sesame and RDF-3X the ratio
is approximately 50%. While the index size is linear with the size of the data
collection for all the systems as discussed in Sect. B we can observe that the
duplication of indices in RDF databases is causing a significant increase in index
size compared to SIREn.

6.2 Insertion Time

In Table 2(b), we report the index creation time for the two datasets. For SIREn
we report two cases: SIREnl0 is the time to construct the index by batch of
10000 triples while STREn100 is the time by batch of 100000 triples. Concerning

252 R. Delbru et al.

Table 2. Report on index size and indexing time

(a) Index size in MB per dataset (b) Indexing time in minutes per dataset
and system and system
SIREn Sesame RDF-3X SIREn10 SIREn100 Sesame RDF-3X
Barton 789 3400 3076 Barton 3 1.5 266 11
Real-World 296 799 1138 Real-World 1 0.5 47 3.6

RDF-3X, it is important to notice that it does not support context, therefore it
indexes triples and not quads, and that it does not support incremental indexing;
RDF-3X needs the full dataset beforehand in order to construct the indexes in a
single batch process, as opposed to Sesame which supports incremental updates.
We can see from the results in Table 2(b) that SIREn is 50 to 100 times faster
than Sesame and 3 to 6 times faster than RDF-3X.

In the next test, we plot the performance of SIREn and Sesame in an in-
cremental update benchmark. The Fig. shows the commit times for an
incremental 10.000 triples batch on the two systems@. The graph is reported in
logarithmic scale. While the absolute time is significant, the important result
is the constant time exhibited by SIREn for incremental updates, as compared
to Sesame performance which progressively decreases as the number of quads
increases (as explained in Sect. [).

In Fig. the commit time of SIREn is plotted for a synthetic dataset
constructed by replicating Barton 20 times so to reach 1 billion triples. The total
index creation time is 31 minutes. We can notice that SIREn keeps a constant
update time during the entire indexing. Outliers are due to periodic merges of the
index segments. These results show that SIREn scales well with a large number
of triples and provides significant improvement in terms of incremental update
compared to other RDF databases.

£ B
]]
! - - = + L o per .
Millons riphs ¥ of rples
(a) Plots showing the commit time (b) Plots showing the commit time
every 10.000 triples during the in- every 500.000 triples during the in-
dex creation on Barton dex creation over one billion triples

Fig. 3. Dark dots are Sesame commit time records while gray dots are SIREn commit
time records

6 We omit the commit times for the Real-World dataset since the results were similar
to the Barton dataset.

A Node Indexing Scheme for Web Entity Retrieval 253

Table 3. Querying time in seconds

(a) Barton dataset (b) Real-World dataset

Al A2 Bl C1 C2 D1 D2 E Al A2 Bl B2 C1 C2 D1 E
RDF-3X 16.120.12 1.38 1.16 0.38 0.23 0.14 X RDF-3X0.290.12 0.17 0.18 0.21 0.13 0.28 X
SIREn 2.79 0.02 1.33 1.71 0.95 0.36 0.03 0.96 SIREn 0.23 0.03 0.04 0.05 0.09 0.08 0.16 0.53

(c) 10 Billion Triples dataset

Ql Q2 Q3 Q4 Q5 Q6 Q7
Time (s) 0.75 1.3 14 05 15 16 4
Hits 7552 9344 3.5M 57K 448 8.2M 20.7M

6.3 Query Time Execution

For the query time execution benchmark, we created sets of queries with in-
creasing complexity. The first set of queries (A*) consist of simple term lookups
(URIs or literals). The second set of queries (B*) contains triple pattern lookups.
The other sets consist of a combination of triple patterns using different set op-
erators (intersection: C*, union: D*, exclusion: E). The queries are available
at http://siren.sindice.com. For each query we average 50 query execution
times without considering the final mapping between the result ids and their
string values. The results are shown in Table 3(a) for Barton dataset and in
Table 3(b) for Real-World dataset.

Since RDF-3X does not support native full-text search, we were unable to test
queries involving this aspect. With respect to query E only SIREn was able to
execute it since RDF-3X does not support the bound operator that is necessary
to implement exclusion of triple patterns. With respect to Sesame, we decided
not to include it in this test as during the experimentation phase we found that
the results that we have obtained were consistently outperformed by RDF-3X.

The first observation is that on the Real-World dataset, SIREn performs sig-
nificantly better, approximately 2 to 4 times, in 6 queries out of 7 while per-
forming similarly in one, Al, a query which produces a very large amounts of
results. In these queries and due to skewness of real-world data, SIREn are able
to take advantage of its sub-linear merge-join by skipping unnecessary record
comparisons.

On the Barton dataset, we notice however that for 3 queries out of 7 SIREn
performs approximately 5 to 6 faster than RDF-3X, while resulting slower but
comparable in 3 out of 7. In a particular query, C2, SIREn under-performs
approximately 3 times. The explanation is that this query uses multiple triple
access patterns that requires SIREn to perform more term lookups and merge-
joins compared to RDF-3X and is therefore more expensive in term of disk I/0.

6.4 10 Billion Triples on a Single Machine

We evaluate SIREn scalability by indexing a dataset composed by 1 billion
entities described in approximately 10 billion triples (one Terabyte of data). The
dataset is derived from the billion triple challenge datasetll. To avoid hitting the

" Semantic Web Challenge: http://challenge.semanticweb.org/

http://siren.sindice.com
http://challenge.semanticweb.org/

254 R. Delbru et al.

limit of 2 billion entities due to the current implementation, we remove entities
with only one or two triples and duplicate the remaining triples to reach 10
billion.

Since the dataset is different from the one in previous experiments, we
use a different albeit comparable set of queries which is also provided at
http://siren.sindice.com. The performance is given in the Table 3(c). Q1
to Q4 are property-object lookups using terms that are more or less frequent.
In Q1 and Q2, we request for an infrequent property-object. The first query,
while giving a result set of similar size, performs approximately two times bet-
ter than Q2. The difference is that Q1 uses an infrequent predicate while Q2 a
very frequent one, which in the latter case causes an overhead due to the merge-
join. However, Q3 and Q4 use a very frequent property and, despite of the large
increase of hits, the performance is similar or even better than Q2, which under-
lines that the complexity is linear with the length of the property posting list.
Q5 performs a union between two infrequent property-object using a frequent
property term. Again, we can observe the overhead caused by the merge-join
between a frequent property and a term. However, Q6 and Q7 contain frequent
properties and return a large number of results. The system scales linearly with
the number of hits because the overhead of the join becomes less significant.

This scalability experiment shows that SIREn, even if there is a slight overhead
when frequent properties are used in the query, scales well with a large number
of triples and provides in all the cases reasonable query times, which makes it
suitable for the web entity retrieval scenario.

7 Conclusion and Future Work

We presented SIREn, an entity retrieval system based on a node indexing scheme
for searching the Web of Data. SIREn is designed for indexing and querying
very large semi-structured datasets and offers constant time incremental updates
and efficient entity lookup using semi-structural queries with full-text search
capabilities. With respect to Database and Information Retrieval systems, SIREn
positions itself somewhere in the middle as it allows semi-structural queries while
retaining many desirable Information Retrieval features: single inverted index,
effective caching, top-k queries and efficient index distribution over shards.

We demonstrated that a node indexing scheme provides a good compromise
between query expressiveness, query processing time and update complexity.
While such approach has an overhead during quad lookups due to additional
joins, it provides fast enough answer time and scales well to a very large number
of triples. Future works will concentrate on how to reduce the overhead of merge-
joins in quad lookups, and on how to extend traditional weighting schemes to
take into account RDF structural elements.

SIREn has been implemented and is in production at the core of the Sindice
semantic search engine. At the time of the writing, SIREn serves over 60 million
harvested web pages containing RDF or Microformats and answers several tens
of thousands queries per day on a single machine.

http://siren.sindice.com

A Node Indexing Scheme for Web Entity Retrieval 255

Acknowledgments

This material is based upon works supported by the European FP7 project
Okkam - Enabling a Web of Entities (contract no. ICT-215032), and by Science
Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

References

10.

11.

12.

13.

14.

15.

. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:

Sindice.com: A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies 3(1) (2008)

. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data

management using vertical partitioning. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB Endowment, pp. 411-422 (2007)

. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for

Querying Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy,
N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 211-224. Springer, Heidelberg (2007)

. Weiss, C., Karras, P., Bernstein, A.: Hexastore - sextuple indexing for semantic web

data management. Proceedings of the VLDB Endowment 1(1), 1008-1019 (2008)

. Neumann, T., Weikum, G.: RDF-3X - a RISC-style Engine for RDF. Proceedings

of the VLDB Endowment 1(1), 647-659 (2008)

. Baeza-Yates, R., Navarro, G.: Integrating contents and structure in text retrieval.

SIGMOD Rec. 25(1), 67-79 (1996)

. Walsh, N.; Ferndndez, M., Malhotra, A., Nagy, M., Marsh, J.: XQuery 1.0 and

XPath 2.0 data model (XDM). W3C recommendation, W3C (January 2007)

. Gang, G., Chirkova, R.: Efficiently Querying Large XML Data Repositories: A

Survey. IEEE Transactions on Knowledge and Data Engineering 19(10), 1381-1403
(2007)

. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.

In: Proceedings of the 27th International Conference on Very Large Data Bases,
pp. 361-370 (2001)

Haixun, W., Hao, H., Jun, Y., Yu, P., Yu, J.: Dual Labeling: Answering Graph
Reachability Queries in Constant Time. In: Proceedings of the 22nd International
Conference on Data Engineering, p. 75. IEEE, Los Alamitos (2006)

Su-Cheng, H., Chien-Sing, L.: Node Labeling Schemes in XML Query Optimiza-
tion: A Survey and Trends. IETE Technical Review 26(2), 88 (2009)

Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Sem-
plore: A scalable IR approach to search the Web of Data. Web Semantics: Science,
Services and Agents on the World Wide Web 7(3), 177-188 (2009)

Bast, H., Chitea, A., Suchanek, F., Weber, I.: ESTER: efficient search on text,
entities, and relations. In: Proceedings of the 30th Annual International ACM
SIGIR Conference, pp. 671-678. ACM, New York (2007)

Dong, X., Halevy, A.: Indexing dataspaces. In: Proceedings of the 2007 ACM SIG-
MOD International Conference on Management of Data, p. 43 (2007)
Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes
for the semantic web. In: Proceedings of the 12th International Conference on
World Wide Web, p. 544 (2003)

256

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Delbru et al.

Beyer, K., Viglas, S.D., Tatarinov, 1., Shanmugasundaram, J., Shekita, E., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
Proceedings of the 2002 ACM SIGMOD International Conference, pp. 204-215
(2002)

Sacks-davis, R., Dao, T., Thom, J.A., Zobel, J.: Indexing documents for queries
on structure, content and attributes. In: Proceedings of International Symposium
on Digital Media Information Base, November 1997, pp. 236-245. World Scientific,
Singapore (1997)

Anh, V.N., Moffat, A.: Structured index organizations for high-throughput text
querying. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS,
vol. 4209, pp. 304-315. Springer, Heidelberg (2006)

Witten, I.H., Moffat, A., Bell, T.C.: Managing gigabytes: Compressing and in-
dexing documents and images, 2nd edn. Morgan Kaufmann Publishers Inc., San
Francisco (1999)

Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computer Sur-
veys 38(2), 6 (2006)

Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349-379 (1996)

Graefe, G.: Query evaluation techniques for large databases. ACM Computing
Surveys 25(2), 73 (1993)

Graefe, G.: B-tree indexes for high update rates. ACM SIGMOD Record 35(1), 39
(2006)

Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Agarwal, R.: Dynamic mainte-
nance of web indexes using landmarks. In: Proceedings of the 12th International
Conference on World Wide Web, p. 102 (2003)

Delbru, R., Toupikov, N., Catasta, M., Fuller, R., Tummarello, G.: SIREn: Efficient
Search on Semi- Structured Documents. In: Lucene in Action, 2nd edn. Manning
Publications Co. (2009)

	A Node Indexing Scheme for Web Entity Retrieval
	Introduction
	Web of Data: Requirements for SIREn
	Approaches for Entity Retrieval
	Our Contribution

	Node-Labelled Tree Model for RDF
	Query Model
	Implementing the Model
	Inverted Lists
	Incremental Update of the Inverted Lists
	Query Processing

	Comparison among Entity Retrieval Systems
	Experimental Results
	Index Size
	Insertion Time
	Query Time Execution
	10 Billion Triples on a Single Machine

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

