
Towards Automated Inconsistency Handling in

Design Models

Marcos Aurélio Almeida da Silva1,�, Alix Mougenot1,
Xavier Blanc1, and Reda Bendraou1

LIP6, UPMC Paris Universitas, France

Abstract. The increasing adoption of MDE (Model Driven Engineer-
ing) favored the use of large models of different types. It turns out that
when the modeled system gets larger, simply computing a list of incon-
sistencies (as provided by existing techniques for inconsistency handling)
gets less and less effective when it comes to actually fixing them. In fact,
the inconsistency handling task (i.e. deciding what needs to be done in
order to restore consistency) remains largely manual. This work is a step
towards its automatization. We propose a method for the generation of
repair plans for an inconsistent model. In our approach, the depth of the
explored search space is configurable in order to cope with the underlying
combinatorial characteristic of this problem and to avoid overwhelming
the designer with large plans that can not be fully checked before being
applied.

1 Introduction

As an effect of the increasing adoption of MDE (Model Driven Engineering),
large-scale industrial projects are currently being developed by hundreds of
people and make use of several models instance of different meta-models (e.g.
SysML, UML, Petri nets, architecture, work, business process) [1]. In such a
context, it turns out that inconsistencies that may exist in models have been re-
vealed as one of the main development problems [2] and that is why developing
techniques for inconsistency management becomes so important.

A model is considered to be inconsistent if and only if it contains undesirable
patterns, which are specified by the so called inconsistency rules [3]. Even if there
are several variants of inconsistency rules such as well-formedness rules of [4],
structural rules of [5], detection rules of [6], syntactic rules of [7], and inconsis-
tency detection rules of [8], approaches that deal with detection of inconsisten-
cies irremediably consists in browsing the model in order to detect undesirable
patterns. However, as defined by [4], inconsistency management not only con-
sists in the detection of inconsistencies but also in their handling. Indeed, once
inconsistencies have been detected on models, they have to be resolved.

The work we present in this paper focuses on the handling of inconsistencies,
which consists in automating the modification of a model in order to make
� This work was partly funded by ANR project MOVIDA Convention N◦ 2008 SEGI

011.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 348–362, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Automated Inconsistency Handling in Design Models 349

it consistent again. The first challenge we address, in order to make a model
consistent, is to identify the potential changes that can be applied to fix detected
inconsistencies. Regarding this challenge, Nentwich has clearly shown that, for
any given set of inconsistencies, there exists an infinite number of possible ways
of fixing it [9]. Therefore for efficiency reasons, this challenge is more related to
narrowing the scope of the identification rather than to enumerate all possible
resolutions.

The second challenge we address is to measure the impact of a given identified
change. Indeed, as Mens has shown in [6], a change that fixes one inconsistency
may introduce new ones and therefore will be counter productive. This second
challenge consists then in filtering out non productive changes in order to keep
only productive ones.

The last challenge we address consists in computing the execution order of a
set of productive changes that do solve a set of inconsistencies and that do not
introduce new ones. This last challenge consists in choosing an appropriate order
of execution of the potential productive changes and is therefore a combinatorial
challenge. To sum up, we argue that the handling of inconsistencies aims at
providing what we call repair plans, which are sequences of concrete changes to
be performed over a given model and that fix existing inconsistencies without
introducing new ones.

In this paper we propose an approach for automatic generation of repair plans.
Our main motivation is to assist the developers while they build their models.
We argue that in such context being able to generate partial short plans very
quickly is a desirable feature.

Our proposal is based on Praxis[8], our model inconsistency detection ap-
proach. In Praxis, the model is represented as the sequence of actions executed
by the user in order to build it. The repair plans we propose to generate are
then sequences of Praxis actions. The key contribution of our work is leveraging
a search algorithm that is optimized to find the best plan (the shortest plan that
fixes the bigger number of inconsistencies) by exploring a limited and config-
urable subset of all possible plans. Our approach has been prototyped into the
Praxis environment that runs on top of the Eclipse EMF plataform. It proposes
repair plans to UML developers while they build their UML models.

This paper is organized as follows: in Section 2, we present a motivating
example of the inconsistency handling task. In Section 3, we present the Praxis
formalism. In Section 4, we present our approach for automated inconsistency
handling. In Section 5, we present our prototype implementation of this approach
and the runtime results in applying these techniques in a series of randomly
generated UML2 models. In Section 7, we conclude this paper after the section
6 that presents the related works.

2 Motivating Example

This section illustrates the problem of inconsistency handling in an example. All
models in this paper are instances of the subset of the UML2 meta-model[10]
displayed in Figure 1.

350 M.A. Almeida da Silva et al.

Fig. 1. A simplified fragment of the UML2 meta-model

The root concept of UML21 is the one of model element that is represented by
the meta-class Element. Everything in a UML2 model is an instance of Element.
An Element may contain a set of other elements. The NamedElement meta-
class represents the elements that have a name (stored in the string attribute
name). A Namespace is a named model element that serves as a space of names
for the named elements it contains. Three classes inherit from Namespace:
Package, Class and Operation. A Package is a container for other elements.
A Class represents the object-oriented concept of a class of objects and serves
as a namespace for its operations. An Operation represents an operation that is
provided by the instances of a class and represents a namespace for its param-
eters. Every Parameter has a direction of one of four kinds: in, out, inout and
return.

Figure 2 presents a UML model used as an example in this paper. This model
contains a package called Azureus that owns two classes: Client and Server.
The Server class defines an operation called send(). Figure 3 presents this model
after some changes have been done on it in order to make it inconsistent. Those
changes break the following well-formedness rule defined in the UML2 specifica-
tion: “All the members of a Namespace are distinguishable within it”.

In the changed model, a new class named Client has been added. This creates
an inconsistency since there is now two classes with the same name. In the rest of
this paper, this first inconsistency is named namespace-1. In the changed model,
a new operation named send() has been added in the class Server. This creates
another inconsistency since there is now two operations with the same name. In
the rest of this paper, this second inconsistency is named namespace-2.

Towards Automated Inconsistency Handling in Design Models 351

Fig. 2. Sample UML2 model Fig. 3. Sample modified UML2 model

The first step in handling these inconsistencies is enumerating the repair
changes that could solve the detected inconsistencies (i.e. deciding how to solve
them). In this example, at least four sample repair changes1 can be enumerated:

1. Rename one of the Client classes to class1.
2. Rename one of the Client classes to Server.
3. Rename one of the send() operations to operation1().
4. Rename one of the send() operations to operation2().

Each of the four repair changes fix some particular inconsistency by renaming
one of the offending elements: repair changes 1 and 2 fix namespace-1 and repair
changes 3 and 4 fix namespace-2. The next step is thus to analyze what are the
impacts of each repair change. Notice that the repair change 2 introduces a new
inconsistency of the same kind by making the old class Client indistinguishable
with the the old class Server (let us name this inconsistency namespace-3).

Finally, a analyze has to be done in order to decide when each of the repair
change has to be executed, i.e. which change will be executed to fix each in-
consistency and in which order. For example, if the repair changes 2 and 4 are
executed in this order, this will solve both original inconsistencies, but will lead
to a new one: namespace-3. This analyze will result that, for this sample, four
possible repair plans can be executed: 1 − 3, 1 − 4, 3 − 1, and 4 − 1.

3 The Praxis Formalism

As described in [8], in the Praxis formalism, models are represented as sequences
of elementary actions needed to construct each model element. Each action is

1 Notice that these are just four among the infinite number of repair changes that
actually solve one of the inconsistencies in the model. For instance, for every string
s different from Client the plan “Rename one of the Client classes to s.” is a valid
one.

352 M.A. Almeida da Silva et al.

create(p1,package,1)
addProperty(p1,name, ‘Azureus’,2)
create(c1,class,3)
addProperty(c1,name, ‘Client’,4))
create(c2,class,5)
addProperty(c2,name,‘Server’,6)
addReference(p1,ownedMember,c1,7)
addReference(p1,ownedMember,c2,8)
addReference(p1,ownedElement,c1,9)
addReference(p1,ownedElement,c2,10)
create(o1,operation,11)
addProperty(o1,name, ‘send’, 12)
addReference(c2, ownedProperty, o1, 13)
addReference(c2, ownedElement, o1, 14)

Fig. 4. Model construction operation sequence

annotated with a timestamp which indicates the moment when it was executed
by the user. The actions are inspired by the MOF reflective API [11].

The create(me, mc, t) and delete(me, t) actions respectively create and delete
a model element me, that is an instance of the meta-class mc at the times-
tamp t. The addProperty(me, p, value, t) and remProperty(me, p, value, t) add
or remove the value value to or from the property p of the model element
me at timestamp t. Similarly, the actions addReference(me, r, target, t) and
remReference(me, r, target, t) add or remove the model element target to or
from the reference r of the model element me at timestamp t.

Figure 4 presents the sequence of basic actions that construct the model pre-
sented in Figure 2. The action at timestamp 1 creates the package p1. The second
action sets its name to Azureus. The actions with the timestamps 3 and 4 and
those withe the timestamps 5 and 6 create the classes c1 and c2 and set their
names to Client and Server respectively. The actions with the timestamps 7
and 10 state that both classes are owned by the package p1. The actions with
the timestamps 10 and 11 create the operation o1 whose name is send and the
actions with timestamp 13 and 14 add it to the class c2.

Notice that this sequence is not unique, in the sense that there are usually
many sequences that construct the same model. For example, changing the places
of the actions with timestamps 7 and 10 and the actions with the timestamps
11 and 14 would result in the same model.

3.1 Inconsistency Detection in Praxis

In Praxis, inconsistencies are detected by the means of logic rules over the se-
quence of model construction actions that identify undesired patterns in it. The
actions in the sequence are referenced by the means of logical predicates (ex-
pressed in Prolog in our prototype) that match them. For example, the Prolog

Towards Automated Inconsistency Handling in Design Models 353

namespaceOCL1(ME1, ME2) :-

lastAddReference(NS,ownedmember,ME1),

lastAddReference(NS,ownedmember,ME2),

ME1 \== ME2,

not(distinguishable(ME2,ME1)).

Fig. 5. Inconsistency detection rule in Praxis

query create(X, package, 1) would result in the answer X=p1 in the model
represented in Figure 4.

As syntactic shortcuts, the ‘last’ prefix denotes actions that are not followed
by other actions canceling their effects. Moreover, for each predicate referring
to a Praxis operation, there is a similar one without the timespamp parameter.
For instance, a lastCreate(me, class) operation is defined as a create(me,
class,t) operation that is not followed by a delete(me,t) operation; and a
lastAddProperty(me, name, val) operation is defined as a addProperty(me,
name, val,t) operation for which the value of the name property of me in the
model corresponds to val.

Figure 5 displays an example of inconsistency detection rule. This rule defines
the predicate namespaceOCL1(ME1, ME2) that detects pairs of model elements
ME1 and ME2 that are owned by the same namespace NS but are not distin-
guishable. The rules defining the predicate distinguishable(ME1, ME2) were
omitted for the sake of brevity. Let us just consider that it holds if and only if
ME1 and ME2 are instances of different meta-classes or if they are instances the
same meta-classes but have different names.

4 An Approach for Inconsistency Handling in Praxis

In Praxis, it is worth to assume that model inconsistencies are introduced by
user’s actions that violate some of its constraints or by not executing actions
required by these constraints.

In order to generate a repair plan to fix these inconsistencies (either by un-
doing undesired actions or by adding omitted ones), our approach answers the
three following questions (i) how to detect the actions that caused inconsisten-
cies? (ii) how to enumerate the possible ways of changing a given inconsistent
action? and (iii) how to generate a repair plan for the model sequence from the
list of possible ways of changing the model?

4.1 How to Detect the Actions That Caused Inconsistencies?

Our approach to this problem is to adapt the inconsistency rules presented in
Section 3.1 so that, instead of pointing out the problematic elements in the
model they are going to identify the problematic actions which have (probably)
caused the problem.This is done by the means of the cause detection rules.

354 M.A. Almeida da Silva et al.

namespaceOCL1(Cause) :-

lastAddReference(NS,ownedmember,ME1, TS1),

lastAddReference(NS,ownedmember,ME2, TS2),

lastAddProperty(ME1, name, NM1, TS3),

lastAddProperty(ME2, name, NM2, TS4),

ME1 \== ME2,

not(distinguishable(ME2,ME1)),

Causes = [addReference(NS,ownedmember,ME1, TS1),

addReference(NS,ownedmember,ME2, TS2),

addProperty(ME1, name, NM1, TS3),

addProperty(ME2, name, NM2, TS4)],

member(Cause, Causes).

Fig. 6. Cause detection rule in Praxis

Figure 6 presents the cause detection rule written from the inconsistency de-
tection rule initially displayed in Figure 5. This new rule identifies four possible
causes for the detected inconsistencies: the actions that added the model ele-
ments ME1 or ME2 to the same namespace NS or the actions that defined their
names. Notice that, for this rule, the version of the Praxis predicates with explicit
timestamps has been used because there is a need to identify unambiguously the
action that caused the inconsistency.

In most cases a trivial cause detection rule can be generated from an incon-
sistency detection rule: just point all actions used to prove an inconsistency as
possible causes of it. This is a possible strategy, although suboptimal, since not
all involved actions are necessarily responsible for an incoherence. For example,
let us take the following well-formedness rule from the UML2 metamodel: “The
visibility of all features owned by an interface must be public.”

This rule is specified as the following cause detection rule:

interfaceOCL1(Cause) :-

lastCreate(X,interface),

lastAddReference(X,feature, F),

lastAddProperty(F,visibility,V,TS),

not(V=’public’),

Cause = addProperty(F,visibility,V, TS).

This rule states that if X is an interface and F is one of its features and its
visibility is not public then the cause of this inconsistency is the action that
defines its visibility. For each inconsistency of such kind that is proved, three
actions need to be inspected: a create, an addReference and an addProperty;
although only one of them is actually responsible for the inconsistency. Therefore,
our manually written rule would prune two thirds of the search space, by avoiding
looking for repair plans that fix actions that did not caused the problem.

Towards Automated Inconsistency Handling in Design Models 355

4.2 How to Enumerate the Possible Ways of Changing a Given
Inconsistent Action?

We propose to use generator functions that determine a set of lists of actions
that cancel the effects of a given inconsistency causing action in the model. These
manually written rules are mostly independent of the cause detection rules, since
they do not have to consider impact of the changes they propose, neither to other
inconsistencies that might exist in the model nor to the set of cause detection
rules.

Let us analyze the following partial definition of the generator function:

generate(addProperty(E, name, OldName, TS),

[remProperty(E,name, OldName),

addProperty(E, name, NewName)]) :-

lastCreate(E, C),

randomNameGenerator(C, NewName).

generate(addProperty(E, visibility, ’public’, TS),

[remProperty(E, visibility, ’public’),

addProperty(E, visibility, ’private’)]).

generate(addProperty(E, visibility, OldVisibility, TS),

[remProperty(E, visibility, OldVisibility),

addProperty(E, visibility, ’public’)])

:- not(OldVisibility=’public’).

The first rule cancels inconsistencies in a addProperty action to
the name field of a model element E. It says that every time a
addProperty(E, name, OldName, TS) action is a source of inconsistency there
is a simple plan that may fix it: removing the old value of the property by execut-
ing the action remProperty(E,name, OldName) and setting its name to another
value NewName by the means of the action addProperty(E, name, NewName).

Observe that this new name is generated using a random name generator
accessible by the predicate randomNameGenerator(C, Name) such that it gen-
erates a name Name taking the meta-class C as a reference (e.g. generating a
metaclassX name for a metaclass named metaclass).

The second and third rules fix inconsistencies in the visibility property
of a model element E: if it was public the second rule suggests changing it to
private, otherwise the third rule changes it to public.

As it is shown in [12], brute force generation of choices is not scalable, there-
fore, a well-written generator function needs to be custom-tailored in order to
reduce the number of proposed choices while not introducing obvious inconsis-
tencies (i.e. removing all values of a non-optional property).

4.3 How to Generate a Repair Plan for the Model Sequence?

The Iterative Deepening Depth-first Search Strategy (IDDFSS) [13] is a depth-
first tree search algorithm that allows exploring the tree of possible repair plans

356 M.A. Almeida da Silva et al.

by taking into consideration the first suggested change for the first cause of
inconsistency and going thus deeper and deeper in the search three until ei-
ther a consistent model is found or until there is no possible action and thus
backtracking.

The case when no action is possible happens when the algorithm reaches the
maximum allowed depth in the search tree (i.e. when a previously defined maxi-
mum number n of execution steps has been reached, this is called a depth-limited
search). This strategy is therefore capable of finding any repair plans that can
be constructed after executing at most n steps. Indeed, if no complete repair
plan exists in this limited search space, partial plans may also be constructed
by recording the best (e.g. the one that generates a final model with less incon-
sistencies) plan found during the search.

In IDFSS, the maximum number of steps n is iteratively incremented, e.g.
if the max number of steps is defined to be m, then a depth-limited search
will be executed for every n between 1 and m until a repair plan that fixes all
inconsistencies is found. This makes sure that the final plan was obtained with
the least number of steps as possible.

On top of IDFSS we propose to adopt an heuristics that decides the next
action to be fixed by ordering the inconsistency causes from the most recent
to the least recent one. This design decision is based on the assumption that
the user tries to maintain the model as consistent as possible at most of the
time. Taken into account that inconsistencies are introduced in the model by
actions executed later in the design process, it is reasonable to assume that the
actions that were executed more recently are more likely to have introduced new
inconsistencies that were not there before.

Finally, if there exists a repair plan that can be constructed with less than m
execution steps the IDDFSS algorithm is guaranteed to find it. The remaining
problem is thus determining the optimal value of m that is going to find a
complete repair plan.

In fact, this problem is simpler then it seems at first sight since defining a
precise value for m is not necessary. The value of m just needs to be set to be big
enough to allow us to find a solution. Choosing a value that is bigger than needed
has no impact on the actual execution time, since the depth-limited search will
be repeated for all values from 1 to m until a complete solution is found, i.e. if a
complete repair plan is found for some n = k before reaching m the rest of the
possible depths will not be tested.

4.4 Running Example

This section highlights our approach on the sample model displayed in Figure 3.
Let us suppose that its model sequence is composed by the sequence displayed
in Figure 4 appended with the following sequence:

create(c3, class, 15)
addReference(p1, ownedMember, c3, 16)
addReference(p1, ownedElement, c3, 17)
addProperty(c3, name, ‘Client’, 18)

Towards Automated Inconsistency Handling in Design Models 357

create(o2, operation, 19)
addReference(c2, ownedProperty, o2, 20)
addReference(c2, ownedElement, o2, 21)
addProperty(o2, name, ‘send’, 22)

This sequence defines an inconsistent model, because c2 and c3 and o1 and o2
and indistinguishable in their respective namespaces. Let us detail the execution
of one iteration of depth-limited search in the IDFSS algorithm in which the
depth of the search tree is limited to 2.

Step 1
At this point, the cause detection rules are used to compute the list of causes
of inconsistencies in the model. The list is organized in the inverse order of
timestamps:

addProperty(o2, name, send, 22)

addReference(c2, ownedmember, o2, 21)

addProperty(c3, name, ’Client’, 18)

addReference(p1, ownedmember, c3, 17)

addReference(c2, ownedelement, o1, 14)

addProperty(o1, name, send, 12)

addReference(p1, ownedmember, c1, 7)

addProperty(c1, name, ’Client’, 4)

The search tree is going to be explored in a depth-first search, this means that
each step fixes the possible causes of inconsistencies from the most recent to
the older one. If no consistent model was found after exploring one possibility,
the next cause should be tried. At this point, the first cause of inconsistency
(addProperty(o2, name, send, 22)) is taken. The generator function is then
used to obtain a list of possible actions to fix it.

In this case, the generator function returns only one possibility composed of
two actions:

remProperty(o2, name, send, 23)

addProperty(o2, name, operation1, 24)

Those actions are then appended to our model sequence.

Step 2
Like in the step 1, this step starts by computing the new ordered list of incon-
sistencies. The following list is then computed:

addProperty(c3, name, ’Client’, 18)

addReference(p1, ownedmember, c3, 17)

addReference(p1, ownedmember, c1, 7)

addProperty(c1, name, ’Client’, 4)

Then, this process process is repeated by using the generator function in order to
fix the first cause of inconsistency (addProperty(c3, name, ’Client’, 18))
and getting the following list of actions:

358 M.A. Almeida da Silva et al.

remProperty(c3, name, ’Client’, 25)

addProperty(c3, name, class1, 26)

At this point there are no more inconsistencies left on the model sequence so,
the final repair plan is:

remProperty(o2, name, send, 23)

addProperty(o2, name, operation1, 24)

remProperty(c3, name, ’Client’, 25)

addProperty(c3, name, class1, 26)

Two depth levels were explored in the search tree and it was enough to find a
repair plan that fixed all inconsistencies in the model. If at the end of this limited
exploration no solution is found, the execution would restart from scratch, but
would explore a larger search space (e.g. a search limited to depth 3) and so on.

5 Prototype Implementation

In [8], we present the Praxis prototype. It is composed of two components: the
Sequence Builder (which integrates to Eclipse EMF Framework and builds the
model sequence from the actions executed by the user while creating a model)
and the Check Engine (which is responsible for detecting inconsistencies).

This prototype has been extended in order to support the generation of repair
plans. In particular, the Model Fixing Agent component has been integrated
within Praxis. This component is an intelligent agent that proposes real time
repair plans in order to fix the inconsistencies found in the model. The core
functionalities of this component is entirely implemented in a set of Prolog rules
that are packaged into an Eclipse Plug-in that interfaces with the existing Praxis
plug-ins.

Figure 7 displays a screenshot of this integration. In (1) we show the class
diagram presented in Figure 3 drawn using the Papyrus UML Tool integrated to
Praxis. While the user is building the model, the Sequence Builder component
in Praxis builds the sequence of actions. The Model Fixing Agent then watches
this sequence and checks for inconsistent actions in it regularly. In (2) we see
that it displays the list of inconsistencies found in the current model.

After detecting and showing the list of inconsistent actions, the Model Fixing
Agent computes a repair plan for them. In (3) the four actions needed to repair
the current model are listed in the order they need to be executed.

5.1 Case Study

Our approach has been stress tested with models that have been automatically
generated by a mathematically grounded random model sampler [14]. These tests
were executed with models of different sizes (varying from 20 to 10,000 model
elements), and using different depths in the explored search space (1, 5, 10 and
15 levels) to show the impact of this parameter on the plan generation time

Towards Automated Inconsistency Handling in Design Models 359

Fig. 7. Screenshot of integration with Praxis

Fig. 8. Timing results in seconds Fig. 9. Fixed inconsistencies results

and in the number of fixed inconsistencies. We manually implemented a subset
of 4 of the UML2 well-formedness rules as cause detection rules and a set of 7
generator functions. Each test was executed 10 times and the average time was
recorded.

Figure 8 shows the timing results of our tests. The graph clearly shows the
exponential characteristic of our problem. Notice that the ID1 line (the results
for exploring just one level in the search tree) is equivalent to current existing
inconsistency detection approaches that are only capable of suggesting fixes for
one inconsistency at a time.

Figure 9 shows the relative number of inconsistencies that is solved by our
approach for each model for each maximum level of exploration. This graph

360 M.A. Almeida da Silva et al.

shows that the deeper is the level of the exploration the bigger is the proportion
of solved inconsistencies. It also shows that for each level of exploration, there
is a number of inconsistencies, such that, beyond that, only partial repair plans
can be found.

6 Related Work

In [12], an approach for fixing inconsistencies in UML models is presented. In
short, this approach uses a model profiler that monitors the parts of the model
that were touched when consistency rules are evaluated. Those parts are then
considered to be natural candidate for fixing actions when the rules are eval-
uated to be inconsistent. For each inconsistency, the approach explores all the
possibilities of changing the monitored model parts in order to make the model
consistent. The identification of possible changes are guided by the choice gen-
eration functions. The choices that turn the model into a consistent state are
then presented to the user. Instead of trying to automatically identify the causes
of the inconsistencies, our approach asks for their definition thanks to Cause
detection rule. This definition may be automatically generated from existing in-
consistency detecting rules, however, from our experience, it seems that is needs
to be manually optimized afterwards. The choice generation functions of Egyed’s
approach inspired our generator functions. However, instead of generating just
options for changing the model graph, our generator functions deliver alternative
fixing plans for given actions in the model sequence.

In [9], Nentwich et al describe a framework for repairing inconsistent docu-
ments in a distributed setting. Their approach consists of defining a mapping
from the logical language used to describe the inconsistency rules into a set of
repair actions that, after being executed, will make the model consistent again.
In [6], Mens et al present an approach for inconsistency management on top of
graph transformation tool AGG. They detect the inconsistencies in the model
by the means of the inconsistency detection rules (that tags model elements as
conflicted) and fix inconsistencies by the means of the resolution rules (for each
possible resolution of every kind of inconsistency there is one rule that describe
how should be the model after fixed). They use then a critical pair analysis algo-
rithm to infer dependencies between rules and aid the user in the task of fixing
the model. Both approaches automate the process of defining how to deal with
the inconsistency by proposing a set of actions that fix each of them, and they
automate the definition of what are the impacts of the suggested repairs: they
detect inconsistencies among different plans and thus discourage their applica-
tion at the same time. However, the decision on the order of the execution of
the proposed repair actions (or plans) is left to the user. In our proposal, we
cope with this problem by exploring the set of generated choices and actually
delivering a plan of execution of the proposed actions.

It is still noticeable that, as pointed out by [12], the use of choice functions
reduces significantly the programming effort when compared to the resolution
rules approach used in [6]. In that case, the number of “repair rules” is bounded

Towards Automated Inconsistency Handling in Design Models 361

by O(#R ∗ #LT) (where #R is the number of consistency rules and #LT is
the number of location types) where in our approach it reduces to O(#LT).
Notice also that the generator functions are manually custom-tailored to the
syntactical constraints of the particular meta-model. This avoids the problem of
non-scalability of approaches that compute all possible choices (such as [9] and
[15]) as pointed out in [12].

7 Conclusion

In this paper we propose an approach for obtaining automatic generated repair
plans for a given inconsistent model. Our approach is base on three main mech-
anisms, which are the Cause detection rules, the Generator functions and the
search algorithm. Cause detection rules are used to identify actions that make
the model inconsistent. Once those actions are identified, they can be repaired.
It should be noted that Cause detection rules are directly derived from inconsis-
tency detection rules employed in Praxis and can substitute them. Even if, for
the sake of efficiency, they currently have to be manually written, they should
be automatically generated from detection rules. This automatical generation is
however left as as future work. Generator functions are used to dive the genera-
tion of repair actions and are therefore loosely coupled with the Cause detection
rules. The search algorithm is used to efficiently generate repair plans, which
are composed of sequence of repair action. It is fitted to build repair plans that
start by fixing the most recent causes of inconsistencies. This algorithm is also
parameterizable in such a way that the size of the search space to be explored
during its execution can be decided beforehand.

Thanks to these three mechanisms, the modeler can, besides obtaining repair
plans that correct all inconsistencies in his model, get partial plans that start by
proposing fixes to the inconsistencies that were more recently introduced in the
model. We argue that this capacity helps the developer when correcting models
that have too much inconsistency and which would therefore require too much
time to compute a complete repair plan.

Our approach is integrated into the existing Praxis environment on top of
Eclipse EMF and thus is accessible to modelers using any compatible EMF
based Eclipse UML Editor (such as Papyrus, that was used in this study). We
currently elaborating a empirical study in order to measure the effect of our
approach for industrial developers who works on UML models.

References

1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

2. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided development with multiple
domain-specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

3. Balzer, R.: Tolerating inconsistency. In: Proc. Int’ Conf. Software engineering
(ICSE 1991), vol. 1, pp. 158–165 (1991)

362 M.A. Almeida da Silva et al.

4. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In: Handbook of Software Engineering and Knowl-
edge Engineering, pp. 329–380. World Scientific, Singapore

5. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logics to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

6. Mens, T., et al.: Detecting and resolving model inconsistencies using transformation
dependency analysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

7. Elaasar, M., Brian, L.: An overview of UML consistency management. Technical
Report SCE-04-18 (August 2004)

8. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Robby (ed.) Proc. Int’l Conf.
Software engineering (ICSE 2008), vol. 1, pp. 511–520. ACM, New York (2008)

9. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: Proc. Int’l Conf. Software Engineering (ICSE 2003), Washington, DC,
USA, pp. 455–464. IEEE Computer Society, Los Alamitos (2003)

10. OMG: Unified Modeling Language: Super Structure version 2.1 (January 2006)
11. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)
12. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing

inconsistencies in UML design models. In: Proc. ACM/IEEE Int’l Conf. Automated
Software Engineering (ASE 2008), pp. 99–108. ACM, New York (2008)

13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Ed-
ucation, London (2003)

14. Mougenot, A., Darrasse, A., Blanc, X.: Uniform random generation of huge meta-
model instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

15. Dam, K.H., Winikoff, M.: Generation of repair plans for change propagation. In:
Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 132–146. Springer,
Heidelberg (2008)

	Towards Automated Inconsistency Handling in Design Models
	Introduction
	Motivating Example
	The Praxis Formalism
	Inconsistency Detection in Praxis

	An Approach for Inconsistency Handling in Praxis
	How to Detect the Actions That Caused Inconsistencies?
	How to Enumerate the Possible Ways of Changing a Given Inconsistent Action?
	How to Generate a Repair Plan for the Model Sequence?
	Running Example

	Prototype Implementation
	Case Study

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

