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Abstract. We study the problem of integer factoring given implicit information
of a special kind. The problem is as follows: let N = p1q; and N, = ppg; be two
RSA moduli of same bit-size, where g1,g; are ot-bit primes. We are given the im-
plicit information that p; and p, share ¢ most significant bits. We present a novel
and rigorous lattice-based method that leads to the factorization of Ny and N, in
polynomial time as soon as r > 2¢ + 3. Subsequently, we heuristically generalize
the method to kK RSA moduli N; = p;q; where the p;’s all share r most significant
bits (MSBs) and obtain an improved bound on ¢ that converges tot > o +3.55...
as k tends to infinity. We study also the case where the k factors p;’s share ¢ con-
tiguous bits in the middle and find a bound that converges to 2 + 3 when k tends
to infinity. This paper extends the work of May and Ritzenhofen in [9], where
similar results were obtained when the p;’s share least significant bits (LSBs). In
[15)], Sarkar and Maitra describe an alternative but heuristic method for only two
RSA moduli, when the p;’s share LSBs and/or MSBs, or bits in the middle. In
the case of shared MSBs or bits in the middle and two RSA moduli, they get bet-
ter experimental results in some cases, but we use much lower (at least 23 times
lower) lattice dimensions and so we obtain a great speedup (at least 10° faster).
Our results rely on the following surprisingly simple algebraic relation in which
the shared MSBs of p; and p; cancel out: N, — gaN1 = q1g2(p2 — p1). This
relation allows us to build a lattice whose shortest vector yields the factorization
of the N;’s.
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1 Introduction

Efficient factorization of large integers is one of the most fundamental problem of Al-
gorithmic Number Theory, and has fascinated mathematicians for centuries. It has been
particularly intensively studied over the past 35 years, all the more that efficient fac-
torization leads immediately to an attack of the RSA Cryptosystem. In the 1970’s, the
first general-purpose sub-exponential algorithm for factoring was developed by Morri-
son and Brillhart in [11]] (improving a method described for the first time in [[7]), using
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continued fraction techniques. Several faster general-purpose algorithms have been pro-
posed over the past years, the most recent and efficient being the general number field
sieve (GNFS) [8]], proposed in 1993. It is not known whether factoring integers can be
done in polynomial time on a classical Turing machine. On quantum machines, Shor’s
algorithm [[16] allows polynomial-time factoring of integers. However, it is still an open
question whether a capable-enough quantum computer can be built.

At the same time, the problem of factoring integers given additional information
about their factors has been studied since 1985. In [14]], Rivest and Shamir showed
that N = pq of bit-size n and with balanced factors (log,(p) ~ log,(¢q) ~ %) can be
factored in polynomial time as soon as we have access to an oracle that returns the
5 most significant bits (MSBs) of p. Beyond its theoretical interest, the motivation
behind this is mostly of cryptographic nature. In fact, during an attack of an RSA-
encrypted exchange, the cryptanalyst may have access to additional information beyond
the RSA public parameters (e, N), that may be gained for instance through side-channel
attacks revealing some of the bits of the secret factors. Besides, some variations of the
RSA Cryptosystem purposely leak some of the secret bits (for instance, [[17]). In 1996,
Rivest and Shamir’s results were improved in [2]] by Coppersmith applying lattice-based
methods to the problem of finding small integer roots of bivariate integer polynomials
(the now so-called Coppersmith’s method). It requires only half of the most significant
bits of p to be known to the cryptanalyst (that is ).

In PKC 2009, May and Ritzenhofen [9] significantly reduced the power of the oracle.
Given an RSA modulus N; = pq1, they allow the oracle to output a new and different
RSA modulus N, = p¢g; such that p; and p, share at least ¢ least significant bits (LSBs).
Note that the additional information here is only implicit: the attacker does not know
the actual value of the ¢ least significant bits of the p;’s, he only knows that p; and p;
share them. In the rest of the paper, we will refer to this problem as the problem of
implicit factoring. When ¢ and g, are ¢-bit primes, May and Ritzenhofen’s lattice-
based method rigorously finds in quadratic time the factorization of Ny and N, when
t > 20 + 3. Besides, their technique heuristically generalizes to k — 1 oracle queries
that give access to k different RSA moduli N; = p;q; with all the p;’s sharing ¢ least
significant bits. With k — 1 queries the bound on ¢ improves to: ¢ > kf , & Note that
these results are of interest for unbalanced RSA moduli: for instance, if Ny = piq,
N> = pags are 1000-bit RSA moduli and the g;’s are 200-bit primes, knowing that p;
and p, share at least 403 least significant bits out of 800 is enough to factorize Ny and N,
in polynomial time. Note also that the method absolutely requires that the shared bits be
the least significant ones. They finally apply their method to factorize k n-bit balanced
RSAn moduli N; = p;q; under some conditions and with an additional exhaustive search
of 24.

Very recently, in [15]], Sarkar and Maitra applied Coppersmith and Grébner-basis
techniques on the problem of implicit factoring, and improved heuristically the bounds
in some of the cases. Contrary to [9], their method applies when either (or both) LSBs or
MSBs of py, p, are shared (or when bits in the middle are shared). Namely, in the case of
shared LSBs they obtain better theoretical bounds on ¢ than [9] as soon as o0 > 0.266n.
Besides, their experiments often perform better than their theoretical bounds, and they
improve in practice the bound on ¢ of [9] when o > 0.21xa. Note finally that their bounds
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are very similar in the two cases of shared MSBs and shared LSBs. Readers interested
in getting their precise bounds may refer to their paper [[15]].

Unfortunately, Sarkar and Maitra’s method is heuristic even in the case of two RSA
moduli, and does not generalize to k > 3 RSA moduli. In fact, when the p;’s share
MSBs and/or LSBs, their method consists in building a polynomial f; in three vari-
ables, whose roots are (g2 + 1,41, "',,/), where 7 is the number of shared LSBs be-
tween p; and p,. Thatis, ” 12_},” 2 represents the part of p; — p, where the shared bits do
not cancel out. To find the integer roots of fi, they use the Coppersmith-like technique
of [5] which consists in computing two (or more) new polynomials f7, f3,... sharing
the same roots as f. If the variety defined by fi, f2, f3,... is O-dimensional, then the
roots can be easily recovered computing resultants or Grobner basis. However, with
an input polynomial with more than two variables, the method is heuristic: there is no
guarantee for the polynomials fi, f2, f3, ... to define a O-dimensional variety. We repro-
duced the results of Sarkar and Maitra and we observed that f1, f>, f3, ... almost never
defined a O-dimensional variety. They observed however that it was possible to recover
the roots of the polynomials directly by looking at the coefficients of the polynomi-
als in the Grobner basis of the ideal generated by the f;’s, even when the ideal was of
positive dimension. The assumption on which their work relies is that it will always be
possible. For instance, in the case of shared MSBs between p; and p,, they found in
their experiments that the Grobner basis contained a polynomial multiple of x — Z? y—1
whose coefficients lead immediately to the factorization of N; and N,. They support
their assumption by experimental data: in most cases their experiments perform better
than their theoretical bounds. It seems nevertheless that their assumption is not fully
understood.

Our contribution consists of a novel and rigorous lattice-based method that address
the implicit factoring problem when p; and p, share most significant bits. That is, we
obtained an analog of May and Ritzenhofen’s results for shared MSBs, and our method
is rigorous contrary to the work of Sarkar and Maitra in [15]. Namely, let Ny = p1q;
and N, = pyg» be two RSA moduli of same bit-size n. If g1,q, are a-bit primes and
p1, p2 share t most significant bits, our method provably factorizes Ny and N, as soon
ast > 2+ 3 (which is the same as the bound on ¢ for least significant bits in [9]). This
is the first rigorous bound on ¢t when p; and p, share most significant bits. From this
method, we deduce a new heuristic lattice-based for the case when p; and p; share ¢
bits in the middle. Moreover, contrary to [[15], these methods heuristically generalize to
an arbitrary number k of RSA moduli and do not depend on the position of the shared
bits in the middle, allowing us to factorize kK RSA moduli as soon as ¢ > X f o+ 6 (resp.
t> sz‘l o +7) most significant bits (resp. bits in the middle) are shared between the p;’s
(more precise bounds are stated later in this paper). A summary of the comparison of
our method with the methods in [9] and [[13] can be found in table[I]

Let’s give the main idea of our method with 2 RSA moduli in the case of shared
MSB’s. Consider the lattice L spanned by the row vectors vy and v, of the following
matrix:

KO0 N _ jon—t+}
(0 K—Nl) where K = |2"7""2 |
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Table 1. Comparison of our results against the results of [9]] and [[15] with K RSA moduli

May, Ritzenhofen’s Sarkar, Maitra’s Results [15]  Our results
Results [9]
When py,py share either ¢
LSBs or MSBs: heuristic
bound better than + > 200 +3 When py, pp share r MSBs: rig-
When pi,p s.hare when o > 0.266n, and ex- orous bound of r > 2c+ 3 using
t LSBs: rigor- . . . . 3
ous  bound  of perimentally  better ~when 2-dimensional lattices of Z°. In
k=2 ¢t > 2043 usin a > 0.21n. In the case of the case of ¢ bits shared in the
). aimensional smng t shared bits in the middle, middle: heuristic bound of r >
. 5 better bound than t > 40t +7 4+ 7 using 3-dimensional lat-
lattices of Z-. . - . 3
but depending on the position tices of Z°.
of the shared bits. Using
46-dimensional lattices of Z*°

When the p;’s all share ¢

When  the  p;i’s MSBs (resp. bits in the mid-
all s.ha.lre t LSBs: dle): heuristic bound of t >
k>3 he“m“f bound. of Cannot be directly applied. kfl o+ & (resp. 1 > k2—kl o+
t > Sya using &), with & < 6 (resp. < 7) and
k-dimensional using k-dimensional (k<k+1)-
lattices of ZK. k(%} 0

dimensional) lattices of Z 2

Consider also the following vector in L:

Vo = q1V1i+q2v2 = (1K, 92K, q192(p2 — p1))

The key observation is that the # shared significant bits of p; and p, cancel out in the
algebraic relation g N, — ¢a2N1 = q192(pa> — p1). Furthermore, we choose K in order to
force the coefficients of a shortest vector of L on the basis (vq,v3) to be of the order
of 2% =~ ¢| =~ ¢». We prove in the next section that vy is indeed a shortest vector of L
(thus N; and N, can be factored in polynomial time) as soon as t > 2o + 3. Besides,
we generalized this construction to an arbitrary number of kK RSA moduli such that a
small vector of the lattice harnesses the same algebraic relation, and to shared middle
bits. However, the generalized constructions in both cases become heuristic: we use the
Gaussian heuristic to find a condition on 7 for this vector to be a shortest of the lattice.

Applications of implicit factoring have not yet been extensively studied, and we be-
lieve that they will develop. The introduction of [9] gives some ideas for possible ap-
plications. They include destructive applications with malicious manipulation of public
key generators, as well as possibly constructive ones. Indeed, our work shows that when
t > 20+ 3, itis as hard to factorize Ny = p1q1, as generating N, = pq» with p; sharing
¢t most significant bits with p;. This problem could form the basis of a cryptographic
primitive.

Throughout this paper, we heavily use common results on euclidean lattice. A sum-
mary of these results can be found in appendix[Al The paper is organized as follows. In
section 2l we present our rigorous method in the case of shared MSB’s and two RSA
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moduli, we generalize it to kK RSA moduli in section 3l In section ] we present our
method in the case of shared bits in the middle. Finally, in section [3 we present our
experiments that strongly support the assumption we made in the case of k RSA moduli
and of shared middle bits.

2 Implicit Factoring of Two RSA Moduli with Shared MSBs

In this section, we study the problem of factoring two n-bit RSA moduli: N| = pq,
and N, = p»q», where g; and g, are a-bit primes, given only the implicit hint that p,
and p; share r most significant bits (MSBs) that are unknown to us. We will show that
N and N, can be factored in quadratic time as soon as t > 2o + 3. By saying that
the primes pp, p, of maximal bit-size n — ¢t + 1 share + MSBs, we really mean that
|P1 _p2| < 2n—a—t+1.

Let’s consider the lattice L spanned by the row vectors (denoted by vy and v;) of the
following matrix:

_ K0 N _ | pn—t+1}
M_(OK—N1> where K = [2"7'72 ]

We have the following immediate lemma that makes our method work:

Lemma 1. Let vy be the vector of L defined by vy = q1V1 + q2V2. Then vy can be
rewritten as vo = (q1K,q2K,q192(p2 — p1))-

Note that the shared MSBs of p; and p, cancel each other out in the difference p; — py.
Each of the coefficients of vy are thus integers of roughly (n+ ot —¢) bits. Provided that #
is sufficiently large, +-v¢ may be a shortest vector of L that can be found using Lagrange
reduction on L. Moreover, note that as soon as we retrieve vy from L, factoring N; and
N, is easily done by dividing the first two coordinates of vy by K (which can be done in
quadratic time in n). Proving that v is a shortest vector of L under some conditions on
t is therefore sufficient to factorize N; and N,.

We first give an intuition on the bound on ¢ that we can expect, and we give after that
a proof that v is indeed the shortest vector of L under a similar condition.

The volume of L is the square root of the determinant of the Gramian matrix of L
given by MM" = <K2 Ny —NiNy ) That is, vol(L) = K\/N2 + N2 + K2 which can
—N\N> K>+N} ) ’ P
be approximated by 22"~ because K2 ~ 22("~*) is small compared to the Ni2 ~ 22",
The norm of vy is approximately 2"7%~ because each of its coefficients have roughly
n+ o —t bits. If v is a shortest vector of L, it must be smaller than the Minkowski bound
applied to L: 2"~ ~ ||vg|| < v/2Vol(L)!/? ~ 2"~/2, which happens when r > 20
The following lemma affirms that vy is indeed a shortest vector of L under a similar
condition on ¢.

Lemma 2. Let L be the lattice generated by the row vectors vy and vy of M and let
vo=q1V1+q2v2 = (1K, 2K, q192(p2 — p1)) as defined in Lemmalll The vector vy
is the shortest vector of the lattice L as soon ast > 20t + 3.
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Proof. Let (by,b,) be the resulting basis from the Lagrange reduction on L. This re-
duced basis verifies ||by]| = A1(L), ||b2|| = A2(L), and, by Hadamard’s inequality one
have: ||by||||bz2]| > VoI(L). As vg is in the lattice, ||by|| = A;(L) < ||vo||. Hence we
get ||bz] > \ﬁjvliﬁ) Moreover, if vy is strictly shorter that by, vo is a multiple of by;
for otherwise b, would not be the second minimum of the lattice. In this case, vy =
aby = a(bvy + ¢v2),a,b,c € Z, and looking at the first two coefficients of vy, we get
that ab = q; and ac = g,. Since the g;’s are prime, we conclude that a = £1, that is,
vop = *by. Using the previous inequality, a condition for vy to be strictly shorter than
b, is:

[Ivol[* < Vol(L) )

Let’s upper-bound the norm of vy and lower-bound Vol(L). We first provide simple
bounds that proves the lemma when r > 2 44 and derive secondly tighter bounds that
require only t > 200 4 3.

The p;’s have at most n — o + 1 bits, and they share their #+ most significant bits
s0 |pa — p1| < 2"7%*17!. We thus have the inequality ||v||> < 220"=)+1(g? + ¢3) +
4395(p1 — p2)? which implies

HVOH2 S 22(n+oc—t)+2 +22(Oc+n+1—t) S 22(n+a—t)+3 (2)

We can lower-bound the volume of L, using that N, N, > 21—l and K2 > 22(n—1).
Vol(L)? = K*(N} 4 Nj +22(n1)) > g4n=21 3)

Using inequalities @) and (@), the inequality (@) is true provided that: 22(nte—1)+3 <
1 L . .
221—1=3 which is equivalent to (as t and o are an integers):

1>200+4 )

We have thus proved the lemma under condition (). We now refine the bounds on || vy||
and Vol(L) in order to prove the tight case.

The integers ¢; and g are o-bit primes, therefore g; < 2% — 1, (i = 1,2). Define g
by 2% — 1 =298, We get g7 <2272 (i = 1,2). Moreover, since K = L2"”+5J, we
have K2 < 22("=0)+1_ From these inequalities, we can upper-bound qu%

K2q12 S 22(}’[7[+a)+1728|, (l — 1’2) (5)

The p;’s have at most 7 — o+ 1 bits and they share ¢ bits, so (py — p1)? < 22(—a+1-1),
Thus, using the upper-bound on the qiz, we have

q%q% (p2 —pi )2 S 22<n—t+06+1—2£1) (6)

We can finally bound ||vo||> = K*(¢? + ¢3) + ¢2¢5(p2 — p1)? using (@) and (€):

HV0H2 < 22(n+0£71)+27281 _~_22(n71+06+17281) < 22(n+067t)+3781 (7
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Let’s now define & by the equality 2" /*1/2 — 1 = 27~+1/2-& We have that K =
LZ”’”%J > 2n1*1/2=8 and N? > 2272, we can therefore lower-bound Vol(L)?:

VOI(L)2 = K2(N12 +N22 +22<n—t)) > K2(N12 +N22) > 24n—21‘—2£2 (8)

Using the inequalities (@) and (8)), the condition (1) is true under the new condition
22(n+o—1)+3-8 < P21—1-8 which is equivalent to 1 > 20+ 3+ & — €.
Since €1 = log, ( 1_1 L), &2 =log,( . 1 . )and oo <n—t,we have & < g and the
20 2n71‘+%
result follows.

From the preceding Lemmas[Iland 2l one can deduce the following result.

Theorem 1. Let Ny = p1q1,N2 = paga be two n-bit RSA moduli, where the q;’s are Q-
bit primes and the p;’s are primes that share t most significant bits. Ift > 2o+ 3, then
N1 and N, can be factored in quadratic time in n.

Proof. Let L be the lattice generated by vy and v, as above. Since the norms of vy and
v, are bounded by 2"*!, computing the reduced basis (by,b;) takes a quadratic time in
n. By Lemmal[2 we know that by = £V as soon as ¢ > 20 + 3. The factorization of N,
of N, follows from the description of v¢ given by the lemmal[ll

Remark 1. For our analysis, the value K = 2"+ 2 | is indeed the best possible value. If
we use K = [2"7"*Y |, we obtain the bound t > 2a + f(y) with f(y) = ; —y+log,(2+
2%7). The minimum of f is 3 and is attained in y = ).

3 Implicit Factoring of kK RSA Moduli with Shared MSBs

The construction of the lattice for 2 RSA moduli naturally generalizes to an arbitrary
number k of moduli. Similarly, we show that a short vector vg of the lattice allows
us to recover the factorization of the N;’s. This vector takes advantage of the relations
qiN; — qiNi = qiqj(pj — pi) for all i, j € {1,...,k}. However, we were unable to prove
that vy is a shortest vector of the lattice. Therefore, our method relies on the Gaussian
heuristic to estimate the conditions under which vg should be a shortest vector of the
lattice. Experimental data in section [3l confirms that this heuristic is valid in nearly all
the cases.

In this section, we are given k RSA moduli of n bits N| = p1q1,...,Ny = prqr where
the g;’s are o-bit primes and the p;’s are primes that all share ¢ most significant bits.

Let us construct a matrix M whose row vectors will form a basis of a lattice L; this
matrix will have k rows and k+ (]5) = k<k; 1 columns. Denote by si, .. ., Sy With m = (g)
all the subsets of cardinality 2 of {1,2,...,k}. To each of the s;’s, associate a column
vector ¢; of size k the following way. Let a,b be the two elements of s;, with a < b. We
set the a-th element of ¢; to N, the b-th element of ¢; to —N,, and all other elements to
zero. Finally, one forms M by concatenating column-wise the matrix K1y, where I«
is the identity matrix of size k, along with the matrix C,, composed by the m column

. ] .
vectors ¢q, .. .,¢m. K is chosen to be |2""*2 |. We will call vy, ..., vk the row vectors
of M.
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To make things more concrete, consider the example of k = 4. Up to a reordering of
the columns (that changes nothing to the upcoming analysis),

KOOO N, N3y N4 O 0O O
0KOO-N, 0 0 Ny Ns O
00KO O —N;, 0 —N, 0 N,
000K O 0 —N;, 0 —N»—Ns

where K = [2"T2 | (9)

Notice that the columns k + 1 to k + m correspond to all the 2-subsets of {1,2,3,4}.
Similarly to the case of 2 RSA moduli (lemma [I)), L contains a short vector that
allows us to factorize all the N;’s:

Lemma 3. Let v be the vector of L defined by vy = 2;‘:1 qivi. Then vg can be rewritten
as follows:

vo=(1K,....qiK, . ..,q4q95(Pb — Pa),---)
N~ ~ =4
V{ab}c{l,...k}

Proof. For 1 <i<m,leta,b be such that s; = {a,b} and a < b. By the construction
of the ¢;’s, we get that the (k + i)-th coordinate of vq is equal to g,Ny, — ¢sNa = qaqp
(Pb— Pa)- O
Remark that vy is short because its m last coordinates harness the cancellation of the ¢

most significant bits between the p;’s. Retrieving £v¢ from L leads immediately to the
factorization of all the N;’s, dividing its first k coordinates by K.

4 Vol(L)a

Assumption 1. If £v is shorter than the Gaussian heuristic (L) ~ \/ e

applied to the d-dimensional lattice L then it is a shortest vector of L.

This assumption is supported by experimental data in the section 3} We found it to be
almost always true in practice. This condition can be seen as an analog of condition[I]
of sectionPlin the case of two RSA moduli.

Let’s derive a bound on ¢ so that vy is smaller than the Gaussian heuristic applied to
L. The norm of vg can be computed and upper-bounded easily: ||vo||*> = K> (Zi‘{:1 q?)

+ i jr {1, k) q,-zqf(pi — pj)? < kP22mte=n+1 Computing the volume of L is a bit
k—1
more involved, we refer to Lemma [3] of appendix Bt Vol(L) = K (K> + 3% | N?) 2

k-1
and thus Vol(L) > 2" (\/kzn—l) .
We now seek the condition on ¢ for the norm of vg to be smaller than the Gaussian

heuristic. Using the two previous inequalities on ||vy|| and Vol(L), we get the stricter
condition:

2
k222(}’l+067l)+1 S 2:2 <2nt (\/k2n1>k_1> k
e

Expanding everything and extracting ¢, we get the following condition:

k k log, (k)
> 1 10
t*k—1a+l+2(k—1) (2+ X +log,(me) (10)

When k > 3, we can derive a simpler and stricter bound on ¢: t > X f o+ 6
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Finally, as vy is now the shortest vector of L under Assumption[T] it can be found

in time % (k, k<k; 1>,n) where @ (k,s,B) is the time to find a shortest vector of a k-
dimensional lattice of Z° given by B-bit basis vectors. We just proved the following

theorem:

Theorem 2. Let Ny = p1q1,...,Ny = piqr be k n-bit RSA moduli, with the q;’s being
a-bit primes, and the p;’s being primes that all share t most significant bits. Under
Assumption [I] the N;’s can be factored in time € (k, k(k; D ,1), as soon as t verifies
equation (10Q).

Remark 2. Note that we can find a shortest vector of the lattice of Theorem 2] using
Kannan’s algorithm (Theorem [6in appendix [A) in time &' (2 (n, k) k2ke+"(k)) where &
is a polynomial. It implies that we can factorize all Ny,..., Ny in time polynomial in
n as soon as k is constant or k* is a polynomial in n. Unfortunately, to the best of our
knowledge, this algorithm is not implemented in the computer algebra system Magma
[L] on which we implemented the methods. In our experiments, to compute a short-
est vector of the lattice, we used instead the Schnorr-Euchner’s enumeration algorithm
which is well known (see [413]) to perform well beyond small dimension (< 50) and
this step in Magma took less than 1 minute for k£ < 40. One may also reduce the lattice
using LLL algorithm instead of Schnorr-Euchner’s enumeraion. If # is not too close to
the bound of Theorem 2] the Gaussian heuristic suggests that the gap (see Definition
[ in the appendix) of the lattice is large, and thus LLL may be able to find a shortest
vector of L even in medium dimension (50-200).

Similarly to the case of 2 RSA moduli, K = LZ"’H;J is optimal for our analysis.
Indeed, if we redo the analysis with K = [2""*7|, we find that the optimal value for
v is the one that minimizes the function f; = y — }klog, (k— 1 +227~1) — v, which is
Y= é regardless of k.

Finally, note that a slightly tighter bound (differing to equation[IQby a small additive
constant) may be attained by bounding ||vy|| and Vol(L) more precisely.

4 Implicit Factoring with Shared Bits in the Middle

In this section, we are given kK RSA moduli of n bits Ny = p1qi,...,Ny = prqx Where
the g;’s are o-bit primes and the p;’s are primes that all share ¢ bits from position #; to
t) = t; +t. More precisely, these RSA moduli all verify:

N; = pigi = (pi,2" + p2"' + piy)qi

where p is the integer part shared by all the moduli. Contrary to the LSB case presented
in [9] and the MSB one developed in the previous sections, the method we present
here is heuristic even when k = 2. We sketch now our method when k = 2 and present
the details on the general result later. When k& = 2, we have a system of two equations
in four variables p1,q1,p2,92: Ni = p1g1 = (1,22 + p2" + p1y)q1 and Na = prgr =
(P2, 20 4 p2h pzo)qz. Similarly to the LSB’s case (see [9]), this system can be reduced
modulo 22. One obtains a system of two equations with 5 variables p, pi,, p2,, g1, ¢2:

{(PZ" +p1,)g1 =N;  mod 2

(P2 + p2y)g2 = N> mod 27 (i



Implicit Factoring with Shared Most Significant and Middle Bits 79

The problem can now be seen as a modular implicit factorization of Ny and N, with
shared MSBs. Thus, we adapt the method we proposed in section[2]to the modular case.
More precisely, we consider the lattice L defined by the rows of the matrix

KO0 N
M=10K-N (12)
00 22

Let vg be the vector (¢1K,¢2K,r) with r being the unique remainder of ¢} N, — goN;
modulo 2”2 in | —222=1 2271], Clearly, v is in L. As in the section[3] we search for a
condition on the integer # under which +vj is the shortest vector in L under Assumption
(Il (here, the dimension of the lattice L is 3). The integer K will be set at the end of the
analysis.

We have ||vo||> = K*(¢7 +¢3) +* and | — 22712271 5 r = ¢; N, — goN; mod 22
= q192(p2y — P1,) mod 21" with | pyy — pi,| < 2" and g; < 2%. Thanks to the upper-
triangular shape of M, the volume of L is easily computed: VolL = K22, Thus, we
can respectively upper-bound and lower-bound ||v||? and Vol L by 220+1 g2 4 p2h+4c
and K2272; a condition on ¢ so that vg is smaller than the Gaussian heuristic follows:
p2etlg2 4 p2htde < 3 (K20h) 3. This condition is equivalent to

¢ Z ; 10g2(2206+17%t| K% + 2§l1 +4O¢K7§) + logz(zge)

and the integer value of K which minimizes the right-hand of this inequality is K =
2%+ Hence, under Assumption[l] one can factorize Ny, N, in polynomial-time as soon
as

t24a+;(1+10g2(7re)) (13)

A stricter and simpler condition on ¢ is: t > 4o+ 7.

We now inspect when Assumption [I] is not verified, that is we study the possible
existence of exceptional short vectors in L that are smaller than vy. These vectors may
appear when there exists small coefficients c1, ¢2 (< 2%) such that ¢;N; — 2N, mod 22
is small (say = 2277). In particular, to make easier the analysis, we examine the case
when the simple vector vy defined with ¢y = ¢, = 1 is smaller than vy. The inequality
[v1]|? < ||vo||? is equivalent to f — y < 2¢x. So this inequality is possible only for small
t and large v which can be considered as an exception. In our experiments, these excep-
tional shorts vectors (and, in particular, simple vectors v) almost never appear in the
k = 2 case with ¢ verifying the bound [I3

The method for k > 3 is a straightforward generalization of the k = 2 case by using
the results of section[3l Let’s consider the lattice L defined by the rows of the matrix M

given by
u Kljexk Cn
L0 2L,
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where C,, is the matrix defined in section[3land formed by the concatenation of m = (é)
column vectors of k rows and I (resp. Ixnm) is the identity matrix of size k X k (resp.
m x m). Thus, M is a square upper triangular matrix of size (m + k) x (m+ k) and the
volume of the m + k-dimensional lattice L is easily computed: Vol L = K*2"2
The vector
Vo = (qlK,...,qu, ...,r(aﬁb),...)
~ ~ -
V{a.b}C{1,...k}
with r(, ) defined as the unique remainder of g.q1(Py — Pa) = gaNa — q»N modulo 27
in ] — 22712271 /is clearly a vector of L. As we do above, we search for a condition
on the integer 7 under which +v is the shortest vector in L under Assumption [Il The
integer K will be set at the end of the analysis to be optimal.
We have ||vo|> = K* (g7 + - +4q7) + Sabyc {1, k) r(zaA’b), that we can bound by

|[vol|? < k22%K? +m2%1+4% A condition on ¢, under Assumption[I] follows:

m—+k

2Tce (Kkzmtz) mik .

k22OCK2 +m240€+2t1 S

This condition is equivalent to

m+k 2o 2m 2m dos 2% 2% 21me
t> m |:10g2 <k2 O k' K itk +m?2 a+m+k11K m+k) +10g2 (m Lk (14)
The value of K which minimizes the right-hand of this inequality is given by the zero

2m 2m 2k 2k
of the derivative of the function K +— k22%~ mtk" Kmtk 4 m2** T wikt K~ mik | Actually,
K is given by the solution of the equation

2mk 2 —k 2km 2% m+3k
220{7 mi’kt' K:Z+k = 24a+m+kt1 K m+k

m-+k m—+k

and thus, after simplification, K = 2**1 which is an integer value. A general condition
on ¢t becomes

m+k 20 2mtk 2me
t> o [logz ((m+k)2 Ok ) +log, <m+k)]

and the general result immediately follows.

Theorem 3. Let Ny = p1q1,-..,Nr = piqi be k n-bit RSA moduli, where the q;’s are o.-
bit primes and the p;’s are primes that all share t bits from the positiont) to t) =t +1.

Under Assumptionll] the N;’s can be factored in time %(k(k;n, k(k;q) ,1), as soon as
2 k+1
t>20+ o+ * log, (2me)

k=17 " 2(k—1)

As in the case of k = 2, we inspect the general case k > 3 for the existence of ex-
ceptional vectors v; = (¢1K,...,ciK,...,¢ciN;—cjN; mod?272,...) which will disprove
Assumption[I] that is, with ¢;’s (< 2%) and ¢;N; — ¢jN; mod 2”2 small (say ~ 2277).
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The condition under which the simple vector vi with ¢c; =¢; = --- = ¢ = 1 verify
[va[[* < [[vo|* is given by

(k+1)220=1 1

1
log( (k—1)

~20
5 )

1
tr—y<ao
Y + ) +
Thus, as in the case of k = 2, for r and & small and 7y large enough, this type of simple
vectors may appear. Moreover, the degree of liberty for choosing the ¢; increases with
k, thus, exceptional vectors may appear more frequently when k grows. This fact was
observed during our experiments.

Remark 3. During our first experiments, in few cases, our method fails to factor the
N;’s. After analysis of the random generation functions used in our code, it turns out
that the ¢g; where randomly generated in the interval ]20‘_1 , 20‘]. Thus, the probability
that a lot of g;’s have exactly size « is high. If, moreover, ¢ is small enough compared
to 1 (o0 <t =t+1y), the corresponding N; — N; mod 2”2 may be very small. This could
be explained by the following fact: some of the most significant bits (and at least the
highest bit) of N; mod 22 and N; mod 22 will be a part of the shared bits between
the p;’s and thus they cancel themselves in (N; — N j) mod 22. Hence, in this case, we
have an exceptional short vector in L and our method fails; on the other hand, if one use
these moduli then an attacker may use this extra information to easily factor them with
another method.

5 Experimental Results

In order to check the validity of Assumption[dland the quality of our bounds on ¢, we
implemented the methods on Magma 2.15 [1]].

5.1 Shared MSBs

We generated many random 1024-bit RSA moduli, for various values of o and . We
observed that the results were similar for other values of n. In the case where k = 2,
we used the Lagrange reduction to find with certainty a shortest vector of the lattice,
and for 3 < k < 40 we compared Schnorr-Euchner’s algorithm (that provably outputs
a shortest vector of the lattice) with LLL (that gives an exponential approximation of a
shortest vector). We used only LLL for £ = 80.

Table 2. Results for k = 2 and 1024-bit RSA moduli with shared MSBs

o (bit-size of the ¢;’s)  Bound of Theorem[Il > 2t +3 Best experimental ¢

150 303 302
200 403 402
250 503 502

300 603 602
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Table 3. Results for k = 3,10,40 and 1024-bit RSA moduli with shared MSBs

o (bit-size Theoretical Best experimental ¢+ Best experimental ¢ using Failure rate of

of the g;’s) bound ¢ using LLL algo. Schnorr-Euchner’s algo.  Assumption[I]
Results for k = 3 (Theoretical bound of Theorem[2} ¢ > goc +5.2..))
150 231 228 228 0% (t =227)
200 306 303 303 0% (t = 302)
250 381 378 378 0% (t =377)
300 456 453 453 0% (t = 452)
350 531 528 528 0% (t = 527)
400 606 603 603 0% (t = 602)
Results for k = 10 (Theoretical bound of Theorem 2} ¢ > 190 o+4.01...)
150 171 169 169 0% (t = 168)
200 227 225 225 3% (t =224)
250 282 280 280 3% (t =279)
300 338 336 336 1% (t = 335)
350 393 391 391 2% (t = 390)
400 449 447 447 0% (t = 446)
Results for k = 40 (Theoretical bound of Theorem[2} # > ‘3‘8 o+3.68...)
150 158 156 155 2% (t = 154)
200 209 208 207 3% (t =206)
250 261 259 258 1% (t =257)
300 312 310 309 1% (t = 308)
350 363 362 361 0% (t = 360)
400 414 413 412 2% (t = 411)

We conducted experiments for k = 2,3,10,40 and 80, and for several values for c.
For specific values of k, o and ¢, we said that a test was successful when the first vector
of the reduced basis of the lattice was of the form +vy (that is, it satisfies Assumption [I]
in the heuristic case k > 3). For each k and each a, we generated 100 tests and found ex-
perimentally the best (lowest) value of ¢ that had 100% success rate. We compared this
experimental value to the bounds we obtained in Theorems[2] and [Il For the first value
of ¢ that does not have 100% success rate and for k > 3, we analyzed the rate of failures
due to Assumption [I] not being valid. Note that failures can be of two different kinds:
the first possibility is that ||vg|| is greater than the Gaussian heuristic, and the second
one is that ||vg|| is smaller than the Gaussian heuristic yet vq is not a shortest vector of
the lattice (that is, Assumption [ does not hold). We wrote down the percentage of the
cases where Assumption [Tl was not valid among all the cases where ||vy|| was smaller
than the Gaussian heuristic. These results are shown in tables2Jand[3l Let’s take an ex-
ample. For k = 10 and or = 200 (second line of the part corresponding to k = 10 in table
[3), Theorem 2] predicts that vq is a shortest vector of the lattice as soon as t > 227. It
turned out that it was always the case as soon as ¢ > 225, which is better than expected.
For t = 224, Assumption[I] was not valid in 3% of the cases.
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Table 4. Results for k = 5 and 1024-bit RSA moduli with shared bits in the middle (¢ € {99,100},
t1 = 20, theoretical bound t > 254)

Experimental Failure rate of ||vg|| < Failure rate with Schnorr- Failure rate with

t Gaussian heuristic Euchner’s algo. LLL’s algo.
261 0% 0% 0%
260 0% 1% 1%
259 0% 1% 1%
258 0% 1% 0%
257 0% 3% 2%
256 0% 6% 5%
255 0% 17% 10%
254 0% 33% 19%
253 0% 58% 28%
252 2% 90% 58%
251 96% 100% 89%

Let’s analyze the results now. In the rigorous case k = 2, we observe that the attack
consistently goes one bit further with 100% success rate than our bound in Theorem/[Il

In all our experiments concerning the heuristic cases k > 3, we observed that we had
100% success rate (thus, Assumption [Tl was always true) when ¢ was within the bound
(I0) of Theorem 2l That means that Theorem 2] was always true in our experiments.
Moreover, we were often able to go a few bits (up to 3) beyond the theoretical bound
on ¢. When the success rate was not 100% (that is, beyond our experimental bounds on
1), we found that Assumption[I]was not true in a very limited number of the cases (less
than 3%). Finally, up to dimension 80, LLL was always sufficient to find vy when ¢ was
within the bound of Theorem[2] and Schnorr-Euchner’s algorithm allowed us to go one
bit further than LLL in dimension 40.

5.2 Shared Bits in the Middle

Contrary to the case of shared MSBs, Assumption[Ilmay fail when we apply our method
with shared bits in the middle (see section d). When k = 2 the phenomenon of excep-
tional short vectors rarely appeared when ¢ was within the bound of Theorem [3] (less
than 1% of failure and did not depend on the position ¢;, moreover, we were generally
allowed to go 2 or 3 bits further with 90% of success). When k > 3 it was not still
the case. When Schnorr-Euchner’s algorithm did not return vy, we tried to find it in
a reduced basis computed by LLL. If neither of these algorithms was able to find vy
then our method failed. The table [ shows the result of our experiments for k = 5 RSA
moduli of size n = 1024 and g¢;’s of size a € {100,99} (see Remark [B). As one can
see, our method can be successfully applied in this case. During these experiments, the
failure rate of our method was equal to the failure rate of finding vy in a reduced basis
computed by LLL. More generally, our experiments showed that for the same size of
problems the rate of success is approximately 80% when ¢ was within the bound of
Theorem 3 and allowed us to go one or two bits further with success rate ~50%.
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5.3 Efficiency Comparisons

Additionally, we show in table [5] the lowest value of  with 100% success rate and the
running-time of LLL and Schnorr-Euchner’s algorithm for several values of k (k RSA
moduli with p;’s factors sharing + MSBs). For each k, we show the worst running-time
we encountered when running 10 tests on an Intel Xeon E5420 at 2.5Ghz. We see that
all individual tests completed in less than 1 second for 2 < k < 20. We used Schnorr-
Euchner’s algorithm up to & = 60 where it took at most 6200 seconds. LLL completes
under one minute for 20 < k£ < 40 and in less than 30 minutes for 40 < k < 80.

Table 5. Running time of LLL and Schnorr-Euchner’s algorithm, and bound on ¢ as k grows.
(Shared MSBs with o = 300 and n = 1024)

650

600

550

450

t (number of MSBs shared among the p;’s)
Il
S
T
lattice reduction time (in seconds)

300 1 LS 1 1 1 1 I 10
0 10 20 30 40 50 60 70 80

k (number of RSA moduli)

6 Conclusion

In this article we have studied the problem of integers factorization with implicit hints.
We have presented new lattice based methods in order to factorize k > 2 RSA moduli
N; = pig; with polynomial complexity in log(N;) when p;’s share unknown MSBs or
contiguous bits in the middle. In the case k = 2 and shared MSBs, our method is the first
one to be completely rigorous. These new results can be seen as an extension of the ones
presented in [9] and [[15] where, respectively, May and Ritzenhofen gave same type of
results in the case where the p;’s share LSBs and Sarkar and Maitra presented heuristic
methods based on the Coppersmith’s algorithm for finding small roots of polynomials
for k = 2 moduli with shared MSBs (and/or LSBs) or bits in the middle . Our method
gives comparable theoretical results as the one of May and Ritzenhofen and it is more
efficient than the Sarkar and Maitra’s method.
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Whether the method can be applied for k > 3 N;’s RSA moduli with p;’s sharing

MSBs and LSBs remains an open issue. In this case, the problem has much more vari-
ables and our method can not be directly applied. One possible way to follow for attack-
ing this problem is to use algebraic techniques, in particular elimination theory, jointly
with lattice based methods. This would be an interesting focus for future research.
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A Common Results on Lattice

An integer lattice L is an additive subgroup of Z". Equivalently, it can be defined as
the set of all integer linear combinations of d independent vectors by, ...,bg of Z". The
integer d is called the dimension of L, and B = (by,...,bq) is one of its bases. All the
bases of L are related by a unimodular transformation. The volume (or determinant) of
L is the d-dimensional volume of the parallelepiped spanned by the vectors of a basis
of L and is equal to the square root of the determinant of the Gramian matrix of B. It
does not depend upon the choice of B. We denote it by Vol(L).

We state (without proofs) common results on lattices that will be used throughout
this paper. Readers interested in getting more details and proofs can refer to [10].

Definition 1. For 1 <r <d, let A,(L) be the least real number such that there exist at
least r linearly independent vectors of L of euclidean norm smaller than or equal to
Ar(L). We call A1(L),...,A4(L) the d minima of L, and we call g(L) = ;?Eg > 1 the gap
of L.

Lemma 4 (Hadamard). Let B = (by,...,bq) be a basis of a d-dimensional integer
lattice of Z". Then the inequality TI2_, ||bi|| > VoI(L) holds.

Theorem 4 (Minkowski). Let L be a d-dimensional lattice of Z". Then there exists a
non zero vector v in L which verifies ||v|| < v/d Vol(L) d. An immediate consequence is
that A (L) < V/dVol(L)d

Theorem 5 (Lagrange reduction). Let L be a 2-dimensional lattice of 7", given by a
basis B = (by,bs). Then one can compute a Lagrange-reduced basis B' = (v1,v2) of L
in time O (nlog®(max(|[by]|,|[b2||))). Besides, it verifies ||v1| = A(L) and ||v2| =
A2(L). More information about the running time of the Lagrange reduction may be
found in [10].

Theorem 6 (Kannan’s algorithm, see [6:13.4]]). Let L be a d-dimensional lattice of
Z" given by a basis (by,...,bq). One can compute a shortest vector of L (with norm

equal to Ai(L)) in time ﬁ’(,@(logB,n)dZde”(d)) where & is a polynomial and B =
max;(||bi||). This is done by computing a HKZ-reduced basis of L.

Theorem 7 (LLL). Let L be a d-dimensional lattice of Z"" given by a basis (by,...,bq).
Then LLL algorithm computes a reduced basis (vy,...,Vq) that approximates a shortest

vector of L within an exponential factor ||v1]| < 2% Vol(L);l. The running time of
Nguyen and Stehlé’s version is O (d°(d +log B) log B) where B = max;(||b;|), see [I2]].
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In practice, LLL algorithm is known to perform much better than expected. It has been
experimentally established in [3] that we can expect the bound ||vy|| < 1.0219¢ Vol (L) a
on ||vq]| on random lattices and that finding a shortest vector of a lattice with gap greater
than 1.0219¢ should be easy using LLL.

B Exact Computation of the Volume of Lattice L of Section

In this section, we compute exactly the volume of the lattice L defined at the beginning
of section[3 As a visual example of the construction of this lattice, the reader may take
alook at the matrix defined in equation () in the case of k = 4. We use the notations of
section

Lemma 5. Let L be the lattice whose construction is described at the beginning of

k—1
section 3l Then its volume is equal to Vol(L) = K (K> + 35 | N?) 2 .

Proof. Let G be the Gramian matrix (of size k x k) of L. Its diagonal terms are (vj, v;) =

K2+ Zﬁzl N,f and its other terms are: (vj,vj) = —N;N;. Observe that we can rewrite G
u#i

as follows G = (K2 + Zé‘:l le) Iy« +J where I is the identity matrix of size k and J
is the k x k matrix with terms —N;N;. If we let y; be the characteristic polynomial of J
and A9 = K? + YX_| N?, we observe that det(G) = y;(—2o)-

All the columns of J are multiples of (Nj,N,...,N;)". The rank of J is thus 1.
The matrix J has therefore the eigenvalue 0 with multiplicity k — 1. The last eigen-
value is computed using its trace: Tr(J) = — YX_, N?. Therefore, up to a sign y;(X) =
X1 (X + 35 | N?). We conclude that det(G) = y; (—K> — X5 N?), hence det(G) =

K? (K2 +Zf=1 ,-2)1{71 and Vol(L) = \/det(G) =K (K2 +Zf=1 ,2) 2
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