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Abstract. Kernel based clustering methods allow to unsupervised par-
tition samples in feature space but have a quadratic computation time
O(n2) where n are the number of samples. Therefore these methods are
generally ineligible for large datasets. In this paper we propose a meta-
algorithm that performs parallelized clusterings of subsets of the samples
and merges them repeatedly. The algorithm is able to use many Kernel
based clustering methods where we mainly emphasize on Kernel Fuzzy
C-Means and Relational Neural Gas. We show that the computation
time of this algorithm is basicly linear, i.e. O(n). Further we statistically
evaluate the performance of this meta-algorithm on a real-life dataset,
namely the Enron Emails.

1 Introduction

Having a large dataset of possibly 100, 000 samples or more imposes several prob-
lems on an unsupervised clustering algorithm. While prototype-based clustering
algorithms acting in input space, especially k-means, have a linear computation
time to cluster the samples they still need to pass multiple times over the sam-
ples - one pass per iteration to adapt the prototypes until they converge. This
even gets more computationally expensive for Kernel based clustering methods.
Kernel based clustering methods allow to unsupervised partition samples in fea-
ture space. Often those samples are nonlinear distributed in input space and are
easier to partition in a certain feature space which makes the Kernel methods
more useful. However Kernel based clustering methods have the main penalties
that they have a quadratic computation time and cannot express the prototypes
directly but with a convex combination of existing samples. Therefore multiple
passes over the dataset gets even more costly for the Kernel based clustering
methods.

To reduce the passes over the data, Fahim et al. [1] have observed that certain
samples near to their cluster centre stay in their cluster for some iterations and
therefore the distance calculation and assignment steps can be ommited for those
samples. However these observations only apply to standard k-means, i.e. needs
convex cluster shapes and hard sample to cluster assignments. A slightly older
but still popular attempt to cluster large datasets is the CLARANS algorithm [2]
which approximates a k-medoid method that minimizes the search in the dataset
by heuristics and two parameters. Other efforts have been made to parallelize
the k-median algorithm (Guha et al. 2000 - 2003) [3] by independently clustering
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data streams (or Patches) to gain lk weighted cluster (which are represented by
samples), where l is the number of parallelized clusterings, and then cluster again
the lk samples to finally gain k cluster. First attempts to parallel cluster samples
in subsets with k-means and exchange their statistics have been done as well [4]
and speeded up the standard k-means algorithm by O(k/2). Later on, Guhas
popular method [3] has been extended for other prototype-based clustering al-
gorithms, namely k-means and batch neural gas [5]. Speed ups for the Kernel
based methods to cluster large datasets have been done in Kernel K-Means [6]
by block-wise calculating and processing the Kernel matrix which represents the
similarities between the samples. In a recent scientific paper, Hasenfuss et al
[7] have extended Guhas method furthermode with the Relational Neural Gas
method (called Patch Relational Neural Gas) but restricted it for the time being
to a sequential clustering procedure.

Our contribution in this paper is a generalization of the Patch Relational
Neural Gas algorithm [7] to integrate multiple Kernel based clustering methods
and call this algorithm simple the Kernel Patch Clustering (KPC) method. We
additionally show the integration of Kernel Fuzzy C-Means and Kernel K-Means
within the KPC method and the new assignment update formulas. This expands
the algorithm generally for soft memberships. Furthermore we describe a meta-
algorithm that performs parallelized clusterings of subsets of the samples using
the Kernel Patch Clustering method and merges them repeatedly. It can be
shown that the computational time is linear regarding the amount of samples.
Lastly we statistically evaluate the performance of this meta-algorithm on a real-
life dataset, namely the Enron Emails and show that Kernel Fuzzy C-Means with
its soft memberships integrated in KPC perform better than Relational Neural
Gas with its hard memberships.

2 Kernel Based Methods for Clustering

Typically most divisive clustering methods aim to minimize a common quan-
tization error. Assume that we want to partition x1, x2, . . . , xN samples in K
disjoint sets or cluster and each cluster has a representing prototype ck then the
actual quantization error or intra-cluster variance (ICV) can be written as:

E =
K∑

k=1

N∑

i=1

fk(i)d(ck, xi) (1)

where fk(i) is a hard or bounded soft assignment of sample i to cluster k and
d(ck, xi) is the distance between sample xi and cluster prototype ck. If d(ck, xi) is
measured by the euclidean distance and fk(i) is a hard assignment then E is the
exact quantization error that k-means minimizes. This happens by repeatedly 1.
updating fk(i): assign samples to clusters based on their distance to their nearest
prototypes and 2. updating ck: move prototypes to their cluster centres until the
prototypes converges locally. For the euclidean distance the general function to
calculate the current prototypes is as follows:
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ck =
∑N

i=1 fk(i)xi∑N
i=1 fk(i)

Now suppose that we would transform all samples xi ∈ X and prototypes ck ∈ X
to a (higher dimensional) feature space using the mapping function φ : X → F

that maps X from input space to a possible high-dimensional feature space F.
This would allow us to calculate the prototypes in feature space. Unfortunately
such mapping functions are costly and often unknown. Still we can calculate
the distance between such (theoretically) transformed samples using a positive-
definite and symmetric kernel κ(xi, xj) and applying the kernel trick, i.e. define
the prototypes as linear combinations of existing transformed samples. Now fur-
ther assume that we want to weight each sample i with a weight w(i). We can
then set up the new weighted distance function dweighted(φ(ck), φ(xi)) in feature
space. The distance function dweighted(φ(ck), φ(xi)) can be written as:

dweighted(φ(ck), φ(xi)) = ||φ(xi) −
∑N

j=1 fφ
k (j)w(j)φ(xj)

∑N
j=1 fφ

k (j)w(j)
||2 (2)

= 〈φ(xi), φ(xi)〉 − 2

〈
φ(xi),

∑N
j=1 fφ

k (j)w(j)φ(xj )
∑N

j=1 fφ
k (j)w(j)

〉
+

〈∑N
j=1 fφ

k (j)w(j)φ(xj )
∑N

j=1 fφ
k (j)w(j)

,

∑N
j=1 fφ

k (j)w(j)φ(xj )
∑N

j=1 fφ
k (j)w(j)

〉

= κ(xi, xi) −
2

∑N
j=1 fφ

k (j)w(j)κ(xi, xj)
∑N

j=1 fφ
k (j)w(j)

+

∑N
j=1

∑N
l=1 fφ

k (j)fφ
k (l)w(j)w(l)κ(xj , xl)

[
∑N

j=1 fφ
k (j)w(j)]2

Note that there are many repeatings in the above formula that have to be cal-
culated in the right order to avoid wasting computational time. Contrary to
standard k-means where we iteratively update the prototypes we can here only
repeatedly update the assignments by calculating and comparing the distances.
For Weighted Kernel K-Means the assignment update step is:

fφ
k (i) =

⎧
⎪⎨

⎪⎩

1, if dweighted(φ(ck), φ(xi)) < dweighted(φ(cl), φ(xi)),
l = 1, . . . , K, l �= k

0, else
(3)

For Weighted Kernel Batch Neural Gas or Weighted Relational Neural Gas [9]
the assignment update step is:

fφ
k (i) = exp

(−rank(φ(ck), φ(xi))
λ

)
(4)

where rank(φ(ck), φ(xi)) = |{φ(cl) | dweighted(φ(cl), φ(xi)) < dweighted(φ(ck),
φ(xi)), l = 1, . . . , K, l �= k}| ∈ {0, . . . , K − 1}. Lastly the assignment update
steps for Weighted Kernel Fuzzy C-Means [8] gets:
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fφ
k (i) =

1
∑K

l=1[
dweighted(φ(ck),φ(xi))
dweighted(φ(cl),φ(xi))

2
m−1 ]

(5)

The output of such a Kernel based clustering method is then the assignments f
that determines the hard (Relational Neural Gas, Kernel K-Means) or soft (Ker-
nel Fuzzy C-Means) assignments of the given samples to K cluster. Comparing
the three algorithms, Kernel Fuzzy C-Means and Relational Neural Gas are more
insensitive to initializations as both algorithms update their indirectly defined
prototypes not only by their greedy winner samples but also by other samples
determined through neighborhood size λ (Relational Neural Gas) or fuzzifier m
(Kernel Fuzzy C-Means). The Kernel Fuzzy C-Means algorithm however has the
plus that it uses soft assignments, i.e. gives possibly more information on the
data. On the other hand if fuzzifier m → 1 then this algorithms behaves exactly
like Kernel K-Means. All three Kernel methods have the same drawback that
they have a quadratic computation time O(N2) which renders them unusable
for vast datasets.

3 Kernel Patch Clustering

Assume that we have N samples that we want to separate in K sets but we only
can cluster up to M samples with one of the Kernel based clustering methods
described above due to the high required computational time. Now suppose that
we select instead the first M samples out of N , i.e. set up a Patch, cluster them
into K cluster and choose the best k samples per cluster as approximative cluster
prototypes. This results in exactly k · K samples that represent K cluster. Now
they can be weighted by the number of samples they represent and can be itself
clustered with the next M samples. This can be iterated until every N samples
have been processed in Patches with a maximum size of M and k · K samples
representing the final K prototypes are left. Let us now formulate these thoughts
in the following Kernel Patch Clustering algorithm:

– Input:
• kernel function κ, samples x ∈ XN

• number of patches C, whereas C = N
M , M = maximum samples to cluster

per patch
• number of cluster K
• number of samples per cluster k
• choose one Kernel clustering method (Kernel K-Means, Kernel Fuzzy

C-Means, Relational Neural Gas)
– Initialize:

• I = arbitrary permutation of {1, . . . , N}
• J0 = {∅}
• w0 = {∅}
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– for t = 1 to C
• Construct Patch Pt ∈ R

|St|×|St| with sample indices
St = {J(t−1), I(t−1) N

C
, . . . , It N

C
} using kernel funktion κ and samples x.

This Patch Pt has now the similarities between all current choosen sam-
ples {I(t−1) N

C
, . . . , It N

C
} plus the last k-approximation of the prototypes

J(t−1). Append the vector {1}N
C to the weights wt−1 so that the whole

weight vector wt has a length of k ·K + N
C (or a length of N

C for the first
time)

• Arbitrary initialize cluster assignments fold ∈ R
K×|St| and perform se-

lected Kernel clustering method using weights wt−1 and Patch Pt with
K cluster to get new cluster assignments fnew ∈ R

K×|St|
• Select the k best samples for each cluster K out of St using the k-

approximation (6), the assignments fnew and the distance function for
the selected clustering method. Fill the sample indices in Jt ∈ N

K·k
• Calculate the new weights wnew

tl = {ml

k } ∈ R
k, for l = 1, . . . , K, where

ml is the number of samples belonging to cluster l. Form the weight
vector wt = {wnew

t1 , . . . , wnew
tK }

– Output:
• k-approximation of final prototypes JC

• final cluster assignments fnew

Note that the number of Patches C has to be choosen such that it is still computa-
tionally possible to cluster N

C +k ·K samples per Patch. For the k-approximation
we simply determine the k samples that are nearest to their own cluster centre
(prototype) and do that for each cluster l (as introduced in [7] for Relational
Neural Gas):

argmini|gφ
l (i)=1(d(φ(xi), φ(cl))), l = 1, . . . , K (6)

The above equation has to be repeated k-times to get the k-best approxima-
tions of each cluster prototype l, each time removing the winner sample xi so
that it cannot be selected once more. As this requires hard cluster assignments
gφ

l (i), the soft assignments of Kernel Fuzzy C-Means have to be first converted
by defining that a sample i belongs to the cluster l with the highest fuzzy mem-
bership argmaxl(f

φ
l (i)). For the most settings the algorithm will be done after

having calculated the distances and assignments of the rest of the (N − k · K)
samples using the k-approximation of final prototypes JC and the final cluster
assignments fnew.

3.1 Parallelized Kernel Patch Clustering

While the Kernel Patch Clustering approach described above clusters the sam-
ples in a single pass over the dataset, i.e. if we consider the k-approximations
of the prototypes as new samples, it is still a serial process. Easily this can be
parallelized by distributing the clustering of the Patches P1, . . . , PC and the cal-
culating of the k-approximations of the resulting prototypes to multiple systems
connected by a network or multiple threads on one system possibly handled by
multiple processors. This can be formulated in the meta-algorithm to perform
parallelized Kernel Patch Clusterings:
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– Input:
• maximum samples to cluster per patch M
• number of maximum parallelizations μ

– while not all samples are processed
1. Construct up to μ patches P1, . . . , Pμ, each patch Pi having the next M

samples and the last weighted k-approximations of the prototypes Jlast

2. Distribute the μ patches to μ systems or threads and cluster the patches
parallelized

3. Calculate the k-approximations of the resulting prototypes Ji and their
weights wi parallelized

4. Collect all μ k-approximations J1, . . . , Jμ, remove any duplicated samples
and save it in Jlast. Divide their corresponding weights by 1

μ as they will
be distributed later on in μ parallel clusterings

5. (optional): Cluster the μ k-approximations in Jlast ∈ N
μ·k·K to get one

k-approximation Jlast ∈ N
·k·K

– Output:
• μ k-approximations of final prototypes Jlast

Step 2 and 3 can be done completely parallelized, i.e. cluster M · μ samples
parallelized. In step 4, the results of those μ clusterings are collected resulting
in μ · k · K weighted samples, representing k-approximations of K prototypes.
As those samples are reinserted in step 1, it is possible that the result of the
clusterings in step 4 produces duplicated samples that have to be removed. In
step 5 we optionally cluster the final μ · k · K weighted samples once more
to gain exactly k · K k-approximations of K prototypes and to be conform
with the output of the serial Kernel Patch Clustering algorithm. This step is
recommended for high values of parallelizations μ as without the (re-) clustering
of the prototypes this might result in too much samples to cluster in step 1.

Complexity: The complexity of one clustering operation is O((M + k · K)2)
where M is the maximum number of samples per patch, K the number of clus-
ter and k the number of samples per cluster (being the k-approximation of K
prototypes). As the size of M +k ·K however is bounded and generally indepen-
dent of N and we have to perform N

M such clustering operations, the summed
clustering complexity results in O((M +k ·K)2 N

M ) ∼ O(M ·N) ∼ O(N) in terms
of N . Moreover this clustering complexity can even be reduced linear through
parallelizations by a factor of μ. However the tradeoff is that the complexity of
one clustering operation rises to O((M + μ · k ·K)2) which is bearable for small
values of μ, k and K. For higher values of μ, k and K like μ · k · K ≥ M , it
is advisable to perform an additional clustering step (step 5 in the algorithm
above) to get only one k-approximation of the cluster.

4 Experiments and Results

To evaluate the Kernel Patch Clustering method we have conducted experiments
with one synthetic (five two-dimensional gaussian distributed cluster), one widely
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known (Wisconsin Diagnostic Breast Cancer) and one real-life (Enron Emails)
dataset. We have compared the performances of Relational Neural Gas (RNG),
Kernel Fuzzy C-Means (KFCMEANS) and integrations of those two methods
into the Kernel Patch Clustering (KPC). Furthermore we have compared these
methods to the basic approach to arbitrarily choose some samples out of all
samples and cluster them using KFCMEANS. For all experiments we have set
the neighborhood range λ for RNG to be exponentially falling from N

2 to 0.01
which are stable standard values (see [9]). The fuzzifier for KFCMEANS had
been set to 2.0 for the synthetic dataset and 1.25 for both other datasets to
reach more hard than soft memberhips. We have done time measurements of
these algorithms for the Enron Emails dataset.

4.1 Five Two-Dimensional Gaussian Distributed Cluster

This synthetic dataset had been created by five multivariate (two-dimensional)
gaussian distributions with the parameters μ1 = {0, 0}, μ2 = {1, 0}, μ3 = {0, 1},
μ4 = {1, 1}, μ5 = {0.5, 0.5} and a variance of σ2 = 0.01. As it can be seen in
figure 1, the amount of samples drawn from the distributions are unequal which
highly complicates the clustering problem. We have assigned each cluster a class
label and have 50 samples in class 1, 100 in class 2, 100 in class 3, 500 in class 4
and 500 in class 5. We have choosen a linear kernel to calculate the similarities
between the samples:

κ(xi, xj) = (xi · xj)

For all clustering methods the aim was to partition the samples in K = 5 cluster.
We have performed 50 test runs with each algorithm and then have calculated
the intra-cluster variance (ICV), i.e. quantization error with hard assignments
(same conditions for all methods) and the class prediction score by comparing

Fig. 1. Five two-dimensional gaussian distributed cluster, μ1 = {0, 0}, μ2 =
{1, 0}, μ3 = {0, 1}, μ4 = {1, 1}, μ5 = {0.5, 0.5}, variance σ = 0.01, 1250 samples
(50, 100, 100, 500, 500)
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the cluster sets with the class labels. The results can be seen in table 1. For
the last method we arbitrarily choose the same size of samples as in one Patch
(100). We tried to experiment with the Patch size but have observed that any
size between 50 to 500 had not made any statistical difference. Same applies for
different number of parallelizations: 1 ≤ μ ≤ 6. However for Patch sizes below
50, the KPC - RNG algorithm had often problems finding K = 5 cluster while
the KPC - KFCMEANS algorithm still converged. In general the KFCMEANS
method performs way better than the RNG method for this dataset, probably
because of the soft relaxations of the assignments of samples to cluster. Inte-
grated into the KPC algorithm, both methods still perform nearly as well while
being (theoretically) much faster.

Table 1. Cluster validations on five two-dimensional gaussian distributed cluster. All
methods had to partition the sample into K = 5 cluster. For Kernel Patch Clustering
(KPC), 100 samples were processed per Patch, k = 3-approximation, μ = 1, . . . , 6
parallelizations. The values were averaged over 50 runs.

KFCMEANS RNG KPC - KPC - arbitrary choosen
KFCMEANS RNG KFCMEANS

quantization error 23.43 43.29 23.89 43.77 31.85
class prediction 100% 88.82% 100% 88.8% 97.1%

4.2 Wisconsin Diagnostic Breast Cancer

The Wisconsin Diagnostic Breast Cancer database is a widely known dataset
that has been contributed to the UCI machine learning repository [11] in 1995.
It consists of 569 samples describing each characteristics of the cell nuclei taken
from a Breast mass with 30 real valued features. The task is to classify the cell
nuclei either as malignant or benign. We have standardized the samples to zero
mean and unit variance and have calculated the similarities between them by a
RBF-Kernel with parameter σ = 5:

κ(xi, xj) = exp(−||xi − xj ||2
2σ2

)

Same as for the synthetic dataset we have calculated the quantization error and
the class prediction score. The results can be seen in table 2. All algorithms had
about the same performance in terms of those two validation criteria.

4.3 Bag of Words – Enron Emails

The Bag of Words dataset at the UCI machine learning repository [11] do-
nated in 2008 consists of five different text collections that each delivers plenty
word to document assignments. For our experiments we have choosen the En-
ron Emails text collection which consists of 39, 861 documents, 28, 102 different
words and approximately 1, 900, 000 document to word assignments. To calculate
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Table 2. Cluster validations on Wisconsin Diagnostic Breast Cancer database. All
methods had to partition the sample into K = 10 cluster. For Kernel Patch Clustering
(KPC), 50 samples were processed per Patch, k = 3-approximation. The values were
averaged over 50 runs.

KFCMEANS RNG KPC - KPC -
KFCMEANS RNG

quantization error 221 223 224 222
class prediction 90.5% 90.1% 89.8% 90%

the similarities between the documents we have choosen the Bhattacharyya ker-
nel [10] with a multinomial distribution, setting parameter X = 1

8 :

κ(p, p′) = [
M∑

i=1

(pip
′
i)

1
2 ]X

where pi = number of words i in document a∑
j number of words j in document a

and p′i = number of words i in document b∑
j number of words j in document b.

As the complexity of the co-occurence matrix necessary to calculate the kernel
rises with the number of words, we could only handle about 200 samples per
clustering and had parallelized the clusterings on a four core machine (parameter
μ = 4). Furthermore we have performed a serialized clustering on the same
machine (parameter μ = 1). As no class labels are known for these documents
we can therefore solely evaluate the quantization error. The results with 5 and
10 cluster can be seen in table 3. This time the difference between the simple
approach to choose arbitrarily 200 samples and cluster them and the appliance
of the KPC algorithm with either KFCMEANS or RNG is clearly visible. Also
it can be seen that KPC-KFCMEANS produces slightly better cluster results
than KPC-RNG.

Table 3. Cluster validations on the Enron Emails. For Kernel Patch Clustering (KPC),
200 samples were processed per Patch, k = 3-approximation. The values were averaged
over 20 runs.

K μ quant. error time[s]

KPC-RNC 5 1 17226 357
KPC-KFCMEANS 5 1 17141 369
KPC-RNC 5 4 17328 126
KPC-KFCMEANS 5 4 17272 131
arbitrary choosen, KFCMEANS 5 - 17596 3

KPC-RNC 10 1 16211 438
KPC-KFCMEANS 10 1 16234 493
KPC-RNC 10 4 16384 155
KPC-KFCMEANS 10 4 16372 203
arbitrary choosen, KFCMEANS 10 - 16780 5
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5 Conclusion

We have described a meta-algorithm that performs parallelized clusterings with
Kernel based methods and merges the results iteratively. The necessary extensions
to the distance calculations and the assignment steps of Kernel Fuzzy C-Means,
Kernel K-Means and Relational Neural Gas to include sample weightings have
been shown. Experimentally we have observed that the loss of accuracy is rather
low and the parallelized KPC algorithm can be used for vast real-life datasets that
otherwise could not be clustered. As such a real-life dataset we have choosen the
Enron Emails which have approximately 1, 900, 000 total words and have shown
that the parallelized KPC method performs far better than a simple randomized
approach. By the integration of the Kernel Fuzzy C-Means algorithm this par-
allelized method can determine soft memberships of samples to cluster. The real
usefulness of those soft memberships can be better determined by datasets that
are naturally fuzzy which might be done in another contribution.

References

1. Fahim, A.M., Salem, A.M., Torkey, F.A., Ramadan, M.A.: An efficient enhanced
k-means clustering algorithm. Journal of Zhejiang University SCIENCE A, 1626–
1633 (2006) ISSN 1009-3095

2. Ng, R.T., Han, J.: Efficient and Effective Clustering Methods for Spatial Data Min-
ing. In: Proceedings of the 20th VLDB Conference, pp. 286–296. Morgan Kaufmann
Publishers, San Francisco (1994)

3. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering Data
Streams: Theory and Practice. Proceedings of IEEE Transactions on Knowledge
and Data Engineering 15(3), 515–528 (2003)

4. Kantabutra, S., Couch, A.L.: Parallel K-means Clustering Algorithm on NOWs.
NECTEC Technical Journal 1(6) (2000)

5. Alex, N., Hammer, B.: Parallelizing single patch pass clustering. In: ESANN 2008
(2008) ISBN 2-930307-08-0

6. Zhang, R., Rudnicky, A.I.: A Large Scale Clustering Scheme for Kernel K-Means.
In: ICPR 2002, 16th International Conference on Pattern Recognition, vol. 4, p.
40289 (2002)

7. Hasenfuss, A., Hammer, B., Rossi, F.: Patch Relational Neural Gas Clustering
of Huge Dissimilarity Datasets. In: Prevost, L., Marinai, S., Schwenker, F. (eds.)
ANNPR 2008. LNCS (LNAI), vol. 5064, pp. 1–12. Springer, Heidelberg (2008)

8. Zhang, D.Q., Chen, S.C.: Fuzzy clustering using kernel methods. In: International
Conference of Control and Automatation (ICCA 2002), Xiamen, China, pp. 123–
128 (2002)

9. Hammer, B., Hasenfuss, A.: Relational Neural Gas. In: Hertzberg, J., Beetz, M.,
Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 190–204. Springer, Hei-
delberg (2007)

10. Jebara, T., Kondor, R., Howard, A.: Probability Product Kernels. Journal of Ma-
chine Learning Research 5, 819–844 (2004)

11. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2009),
http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Parallelized Kernel Patch Clustering
	Introduction
	Kernel Based Methods for Clustering
	Kernel Patch Clustering
	Parallelized Kernel Patch Clustering

	Experiments and Results
	Five Two-Dimensional Gaussian Distributed Cluster
	Wisconsin Diagnostic Breast Cancer
	Bag of Words – Enron Emails

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




