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Abstract. Every algebraic theory gives rise to a monad, and monads
allow a meta-language which is a basic programming language with side-
effects. Equations in the algebraic theory give rise to equations between
programs in the meta-language. An interesting question is this: to what
extent can we put equational reasoning for programs into the algebraic
theory for the monad?

In this paper I focus on local state, where programs can allocate, up-
date and read the store. Plotkin and Power (FoSSaCS’02) have proposed
an algebraic theory of local state, and they conjectured that the theory
is complete, in the sense that every consistent equation is already deriv-
able. The central contribution of this paper is to confirm this conjecture.
To establish the completeness theorem, it is necessary to reformulate the
informal theory of Plotkin and Power as an enriched algebraic theory in
the sense of Kelly and Power (JPAA, 89:163–179). The new presentation
can be read as 14 program assertions about three effects.

The completeness theorem for local state is dependent on certain
conditions on the type of storable values. When the set of storable values
is finite, there is a subtle additional axiom regarding quotient types.

1 Introduction

In this paper we are interested in reasoning about local state, about programs
such as

let val a = ref(3) in a:=4; !a end; (1)

As Moggi suggested [16], one way to give a denotational semantics to a side-
effecting program of type τ1 → τ2 is to give a morphism �τ1� → T (�τ2�), in a
category equipped with a monad T .

Many monads arise as free models of algebraic theories. Formally, we may say
that an equation for a monad T is a pair of morphisms B → T (A). Thus an
equation can be thought of as a pair of denotations of programs, i.e. an assertion
that two programs are the same. A system of equations for a monad typically
gives rise to a quotient monad in which the equations are satisfied. In summary:
by specifying equations between denotations of programs, we can construct a
new denotational semantics which is sound for these equations.

In assessing the power of this technique, it is important to ask whether a
monad is complete in the following sense: every equation (e1, e2) : B → T (A) is
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either already true (i.e. e1 = e2), or it is inconsistent (i.e. only satisfied in trivial
models). This property is sometimes called Hilbert-Post completeness. It means
that our monad is ‘as good as possible’, given the base category. There are no
further equations between programs that can be accommodated in our model.

For local state, the category of sets is insufficient, and so we move to the
category of nominal sets (first considered by Gabbay and Pitts [9] as a model
of variable binding). This category has an object A of ‘atoms’, which we will
think of as locations. This object captures many of the important properties of
locations. It is infinite, although there is no injection N � A from the natural
numbers; informally, the locations are local and cannot be globally enumerated.

The theory of local state is enriched in the category of nominal sets. Let V

be some (nominal) set of values. The operations of the theory induce generic
effects, which include upd : A × V → T (1) (update a location with a value),
lk : A → T (V) (lookup the value in a location and return it), ref : V → T (A) (re-
turn a new cell containing a given value). With the let construction of Moggi’s
meta-language (and some infix notation), we can write programs such as (1).

The central contribution of this paper is Theorem 5, where we show that the
enriched algebraic theory of local state is complete. This solves a conjecture of
Plotkin and Power [20].

For Theorem 5 to hold, the set of storable values must be infinite. When it
is finite, the theory of local state is not complete. If there are only two values,
then there is an interesting additional equation involving quotient types.

Aside: limitations of a naive semantics. The denotational semantics in nominal
sets works well at first order, but it is well known that such a naive semantics is
limited at higher-order. At higher order, a more careful treatment of functions
is needed. Consider the following programs, of type 1 → T (A → {tt, ff}) (see
e.g. [19]).

let a ⇐ ref(v) in (λb. ff) let a ⇐ ref(v) in (λb. [a ?= b]) (2)

(Here, [(−) ?= (−)] : A → {tt, ff} is the equality test function.) There is a com-
pelling operational argument for considering these expressions to be equivalent:
they both allocate a new location (a), but they never reveal it, so it should never
be received as an argument. However, in the category of nominal sets, there is
an isomorphism i : [A → {tt, ff}] ∼= P (A) between the nominal set of functions
[A → {tt, ff}] and the nominal set P (A) of finite and cofinite sets of atoms, such
that i(λb. [a = b]) = {a} and i(λb. ff) = ∅. There is also a cardinality function
card : P (A) → N�{ω}. The following argument is typical for showing that equa-
tions between programs cannot be made into equations in the algebraic theory.
If we equate the programs (2) in our theory of local state, we will be able to
conclude that

0 = let f ⇐ (
let a ⇐ ref(v) in (λb. ff)

)
in card(i(f))

= let f ⇐ (
let a ⇐ ref(v) in (λb. [a ?= b])

)
in card(i(f))

= 1
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The problem here is that the composite (card · i) : [A → {tt, ff}] → (N � {ω})
will not be definable in any reasonable programming language. Authors have
used logical relations [3,4,15,18,22,26], game semantics [1,14,17], and bisimula-
tion [12,24] to make denotational semantics that can support some higher-order
properties.

Structure. After recalling background material, I give a new presentation of a
theory of local state in Section 4. In Section 5 I prove that the theory of local
state is complete when the set of storable values is infinite, and we discuss the
situation when the set of values is finite. I conclude in Section 6 by outlining the
innovations that were helpful in moving from the theory proposed by Plotkin
and Power [20] to the theory in Sec. 4, so that the completeness result could be
stated and proved.

2 Presentations of Enriched Algebraic Theories and
Strong Monads

We now recall some aspects of the presentation of enriched algebraic theories
from the exposition by Kelly and Power [13], simplified and adapted to the
needs of this work. In particular, we focus on the case of cartesian structure,
rather than arbitrary monoidal structure.

Let C be a cartesian closed category. A signature in C is a set Op, thought
of as a set of operators, and an assignment to each operator op ∈ Op of two
objects of C, called the arity and coarity of op. When op ∈ Op has arity A and
coarity B, we write (op : B → A) ∈ Op.

An algebra for a signature Op is an object X of C together with, for every
(op : B → A) ∈ Op, a morphism opX : B×XA → X . Homomorphism of algebras
is defined in the evident way.

We will only consider signatures Op for which the category of Op-algebras is
monadic over C. A sufficient condition for this is that C is a Grothendieck topos.

Every monad TOp arising from a signature Op on C has a strength. For every
pair of objects X , Y , there is a morphism strX,Y : TOp(X) × Y → TOp(X × Y )
making certain diagrams commute (see e.g. [16, def. 32]).

For any strong monad T on C, every morphism f : B → T (A) induces interpre-
tations in T -algebras. The interpretation of f in a T -algebra (X, x : T (X) → X)
is the following composite:

f(X,x) = B × XA f×id−−−→ T (A) × XA str−−→ T (A × XA)
T (eval)−−−−−→ T (X) x−→ X .

Informally, f(X,x) takes an element of B and a valuation of A in X , and returns
an element of X .

An equation for a monad T is a pair of morphisms λ, ρ : B → T (A) with
common domain and codomain. The object B is to be thought of as the context
of the equation, while A is to be thought of as the type of the variables. A
T -algebra (X, x) is said to satisfy an equation λ, ρ : B → T (A) if we have two
equal morphisms: λ(X,x) = ρ(X,x) : B × XA → X .
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A theory in C is a pair (Op,Eq) of a signature Op and a set of equations
Eq for TOp . An algebra for a theory (Op,Eq) is an Op-algebra that satisfies
all the equations in Eq . We will only consider theories for which the category
of (Op,Eq)-algebras is monadic over C (e.g. C is a Grothendieck topos). The
resulting monad T(Op,Eq) is again strong.

2.1 Simple Meta-language for a Strong Monad

We will use a variant of Moggi’s simple meta-language [16] for reasoning about
generalized elements of a strong monad. Let T be a strong monad on a category C
with products.

The types of the meta-language are the objects of C. The terms of the meta-
language are built from variables (roman type) and the following grammar:

t ::= let y : Y ⇐ t in t | f(x1, . . . , xn) (for f : X1 × · · · × Xn → T (Y )).

When f = η · g, we will elide η, the unit of T .
A typing context is an assignment of variables to types. The typing rules

include structural rules such as

x : X � x : X
and

Γ � t : Z

Γ, y : Y � t : Z

For every morphism f : X1 × · · · × Xn → T (Y ) in C, we have a well-typed
term x1 : X1, . . . , xn : Xn � f(x1, . . . , xn) : Y . The let construction is typed by
the following rule:

Γ � t : Y Γ, y : Y � u : Z

Γ � let y : Y ⇐ t in u : Z

We use the common syntactic sugar, pattern matching in let, writing (t; u) for
let : Y ⇐ t in u, etc.

For a typing context Γ = (x1 : X1, . . . , xn : Xn), we let �Γ � = X1 × · · · × Xn.
Every typed term-in-context (Γ � t : X) has a semantics in the category C,
�Γ � t : X� : �Γ � → T (X), given by induction on the structure of typing deriva-
tions. The interesting case is the let construction: Γ � let y : Y ⇐ t in u : Z is
interpreted as the following composite:

�Γ �
(id,�t�)−−−−→ �Γ � × T (Y ) str−−→ T (�Γ � × Y )

T (�u�)−−−−→ T (T (Z))
μ−→ T (Z) .

For a monad TOp arising from a signature Op, every operation (op : B → A) ∈ Op
induces a morphism B → TOp(A). These morphisms can be thought of as
“generic effects” in our meta-language.

When two terms are typed in the same context, e.g. Γ � t : X and Γ � u : X ,
then we will write Γ � t = u : X to indicate that the corresponding mor-
phisms �t�, �u� : �Γ � → T (X) are equal. There are various sound rules for this
notion of equality. For instance,

Γ � t1 : X1 Γ � t2 : X2 Γ, x1 : X1, x2 : X2 � t3 : X3

Γ � (
let x2 ⇐ (let x1 ⇐ in t1t2) in t3

)
=

(
let x1 ⇐ in t1(let x2 ⇐ t2 in t3)

)
: X3
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Another important rule is the following substitution law:

Γ, x : X � t1 = t2 : Y Γ � u : X

Γ � [u/x]t1 = [u/x]t2 : Y

3 Rudiments of Nominal Sets

We now recall the category of nominal sets. As a category of continuous group
actions, it was considered as a base category for local state by Stark [22]. The
present formulation is due to Gabbay and Pitts [9].

We begin by fixing an infinite set A of atoms. In this paper, we think of these
atoms as locations in the store. Let Sym(A) be the group of permutations on A,
ranged over by π. Recall that a Sym(A)-set is a set X together with a function
Sym(A) × X → X , such that (π′ · π) • x = π′ • (π • x) and id • x = x.

A finite set of atoms, A ⊆f A, is said to support x ∈ X if whenever π|A = id,
π • x = x. A Sym(A)-set is a nominal set if every element has a finite support.
In this case, every element x ∈ X has a smallest supporting set, supp(x).

Nominal sets form a category, Nom. A morphism f : X → Y is an equivariant
function, i.e. for all π ∈ Sym(A) and x ∈ X , we have f(π • x) = π • (f(x)). The
category of nominal sets has lots of structure.

– The set A of atoms is a nominal set, with action π • a = π(a).
– Any set X can be made into a nominal set with discrete action: for all x ∈ X ,

let π • x = x. For example, the terminal nominal set has one element.
– The product of two nominal sets can be made into a nominal set.
– The set of all (not necessarily equivariant) functions X → Y between two

nominal sets has a Sym(A)-set structure given by (π•f)(x) = π•(f(π−1•x)).
With this structure, not all functions have finite support. We write [X →fs Y ]
or Y X for the set of finitely supported functions X → Y . This is the cartesian
closed structure of the category of nominal sets.

– If X is a nominal set and R is an equivalence relation on X that is equivariant
(i.e. x R x′ =⇒ (π • x) R (π • x′)) then the quotient X/R has a natural
nominal set structure.

– Given two nominal sets X , Y , we can form the disjoint product:

X ⊗ Y = {(x, y) |x ∈ X, y ∈ Y, supp(x) ∩ supp(y) = ∅} .

In particular A ⊗ A is the set of pairs of distinct atoms. We will write A
⊗n

for the n-fold disjoint product of A. The nominal sets {A
⊗n | n ∈ N} form

a generator of Nom: if two equivariant functions f, g : X → Y are different
then there is n ∈ N and h : A

⊗n → X such that f · h = g · h.

4 A Theory of Local State

A new presentation of the theory of local state is given in Figure 1. It is an
algebraic theory enriched in the category of nominal sets. We build it from a
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theory of global state, a theory of block, and four additional equations specifying
how these theories interact. I have specified the equations for the theory using
the syntax for the meta-language for TOp . For example, the notation

GS2. a : A � let v ⇐ !a in let w ⇐ !a in (v, w) ≈ let v ⇐ !a in (v, v) : V × V

describes two morphisms A → TOp(V × V).
The theory is parametrized in a set V of values. We consider V as a discrete

nominal set.
Note that, by equation B31, and basic properties of nominal sets, we have

v, w : V � let a ⇐ ref(v) in let b ⇐ ref(w) in [a ?= b] = ff : {tt, ff} .

The theory of global state has two operations, lk : A → V and upd : A×V → 1. We
use infix notation, respectively !a (“look-up location a”) and a := v (“update location
a to v”). There are 7 equations:

GS1. a : A � let v ⇐ !a in a := v ≈ () : 1

GS2. a : A � let v ⇐ !a in let w ⇐ !a in (v, w) ≈ let v ⇐ !a in (v,v) : V × V

GS3. a : A, v, w : V � a := v; a := w ≈ a := w : 1

GS4. a : A, v : V � a := v; let w ⇐ !a in w ≈ a := v; v : V

GS5. a, b : A � let v ⇐ !a in let w ⇐ !b in (v, w)

≈ let w ⇐ !b in let v ⇐ !a in (v,w) : V × V

GS6. (a, b) : A ⊗ A, v,w : V � a := v; b := w ≈ b := w; a := v : 1

GS7. (a, b) : A ⊗ A, v : V � a := v; !b ≈ let w ⇐ !b in a := v; w : V

The theory of block has an operation, refn : A
⊗n × V → A

⊗(n+1), for every natural
number n ∈ N. Infix, we write, refn(�a; v); the intuition is “allocate a new location,
different from �a, initialized with v”. We use a shorthand: ref(v) = ref0(�a; v).

There are two equations and one equation schema. For each n ∈ N, we write pn for
the injection A

⊗(n+1) � A
⊗n × A.

B1. v : V � let a ⇐ ref(v) in () ≈ () : 1

B2. v, w : V � let a ⇐ ref(v) in let b ⇐ ref(w) in (a, b)
≈ let b ⇐ ref(w) in let a ⇐ ref(v) in (a, b) : A × A

B3n. v : V,�a: A
⊗n � let �b ⇐ refn(�a; v) in pn(�b) ≈ let b ⇐ ref(v) in (�a, b) : A

⊗n × A

The theory of local state combines the theory of global state with the theory of
block, with 4 additional equations:

LS1. v, w : V � let a ⇐ ref(v) in a := w; a ≈ let a ⇐ ref(w) in a : A

LS2. v : V � let a ⇐ ref(v) in let w ⇐ !a in (w, a)
≈ let a ⇐ ref(v) in (v, a) : V × A

LS3. a : A, v, w : V � let b ⇐ ref(v) in a := w; b ≈ a := w; let b ⇐ ref(v) in b : A

LS4. a : A, v : V � let b ⇐ ref(v) in let w ⇐ !a in (w, b)
≈ let w ⇐ !a in let b ⇐ ref(v) in (w, b) : A

Fig. 1. The theory of local state, enriched in the category of nominal sets. The theory
is parametrized on a set V of values.
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(We could alternatively reason about the theory of local state in a ‘nominal
equational logic’ (e.g. [5,6,8]) but we would then have to restrict to a finite set of
values and we would have no guarantee of the strength of the resulting monad.)

4.1 Algebras for Local State

We now construct algebras for the theory of local state. We begin with algebras
for global state; we then consider algebras for block; and finally we combine these
ideas to arrive at algebras for local state.

To begin, we consider the nominal set S = [A →fs V]. These functions are to
be thought of as stores. Notice that a function S : A → V has support A ⊆f A if
and only if there is v ∈ V such that for all a ∈ (A \ A) we have s(a) = v . We
can think of a store as being initialized to some value, and then subjected to a
finite modification.

For any nominal set X , a computation in X is a finitely supported function
χ : S →fs (S × X). We write χ1 and χ2 for the left and right projections, respec-
tively. The computations form a model of the theory of global state:

– We define an equivariant function updX : A × V × (S × X)S → (S × X)S as
follows: let (updX(a, v , χ))(S) = ((χ1(S))[v/a ], χ2(S)), where (χ1(S))[v/a ] is
the store which behaves like χ1(S), except that location a maps to v .

– We define an equivariant function lkX : A × (
(S × X)S

)V → (S × X)S as
follows: let (lkX(a, χ̄))(S) = (χ̄(S(a)))(S). Here, χ̄ is a finitely supported
function V →fs (S × X)S.

We are primarily interested in the free model of global state. The structure
(S×X)S is not the free model of global state on X because it typically contains
too much. For instance, there is a computation in (S × N)S that counts the
number of different values in memory. Assuming that the values are numbers,
there is a computation in (S × 1)S that adds 7 to every memory cell.

To cut down our model, we say a finite set A ⊆f A storage-supports χ if
whenever two stores S, S′ ∈ S agree on A (i.e. S|A = S′|A) then we have

1. (χ1(S))|A = (χ1(S′))|A; and
2. χ2(S) = χ2(S′); and
3. (χ1(S))|A\A = S|A\A and (χ1(S′))|A\A = S′|A\A.

Storage-supporting is an equivariant property, and so we can define a nominal
set TGS(X) as follows:

TGS(X) = {χ : S →fs (S × X) | supp(χ) storage-supports χ} . (3)

It is straightforward to check that the above model of global state in (S × X)S

restricts to a model in TGS(X).

Proposition 1. For every nominal set X, the nominal set TGS(X) is the free
algebra of the theory of global state over X.
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Next, we consider the free block algebra TBK(X) on a nominal set:

TBK(X) = {(s, x) | x ∈ X, s : supp(x) ⇀ V}/� . (4)

Here, we are writing s : supp(x) ⇀ V to indicate that s might be partially
defined, and � is the equivalence relation generated as follows: if π ∈ Sym(A) is
permutation such that π|supp(x)\dom(s) = id, then (s, x) � (s · π−1, π • x). The
Sym(A)-set structure is given by π • [s, x]� = [s · π−1, π • x]�.

– Define an equivariant function refn
X : A

⊗n × V × (TBK(X))A
⊗(n+1)→ TBK(X)

as follows: let

refnX(�a, v , f) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[s + (b �→ v), x]� where there is b ∈ A such that [s, x]� =f(�a, b)

and b �∈ supp(f,�a), b ∈ supp(x), b �∈ dom(s).

[s, x]� where there is b ∈ A such that [s, x]� =f(�a, b)

and b �∈ supp(x), b �∈ supp(f(�a, b)).

It is important to note that the definition of refn
X(�a, v , f) is independent of

the particular choice of b.

An intuition for an equivalence class [s, x]� in TBK(X) is that s is a local
store that assigns values to some of the locations involved in x. Notice that
supp([s, x]�) = supp(x) \ dom(s): those locations that are assigned values are
local, so that it doesn’t matter if they are renamed.

Now, we can consider free algebras for the full theory of local state:

Proposition 2. The free algebra over X for the theory of local state has carrier
TGS(TBK(X)).

Recall that the composition of two monads is not a monad unless one can give
a distributive law (e.g. [2]). Equations LS1–4 can be understood as defining a
distributive law δ : TBK · TGS → TGS · TBK (see also [11, §4], [21]): let

(
δX [s, χ]�

)
(S) =

(
S′|(A\dom(s)) ∪ S|dom(s) ,

[
S′|(dom(s)∩supp(x)) , x

]
�

)

where (S′, x) = χ(S|(A\dom(s)) ∪ s).

5 Completeness

We now show that the theory of local state is complete, in the following sense.
To make some preliminary definitions, we return to the situation of Section 2.

Definition 3. A theory (Op,Eq) in a cartesian closed category is complete if
every additional equation B ⇒ T(Op,Eq)(A) is either satisfied in all algebras, or
satisfied only in subterminal algebras.

(Recall that a subterminal object is a subobject of the terminal object. In the
category of nominal sets, the only proper subterminal object is the empty set.)
Some authors call this property “Hilbert-Post completeness”, after Hilbert and
Post proved this property of the propositional calculus.

A useful technique for showing that an equation is only satisfied in subterminal
algebras is to derive the equation � tt = ff : {tt, ff} from it.
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Lemma 4. Let T be a strong monad on a distributive category. The two injec-
tions 1 → T (1 + 1) are equal if and only if all T -algebras are subterminal.

5.1 Completeness when the Storable Values Are Infinite

Theorem 5. If the set V of values is infinite then the theory of local state is
complete.

This subsection is devoted to the proof of this theorem.
Consider an equation Γ � λ ≈ ρ : X . Suppose that it is not satisfied in the

free algebra, TLS(X), so that λ = ρ : �Γ � → TLS(X). We proceed roughly as
follows: by considering the ways that λ and ρ could be different, we construct
a context E so that tt = E [λ] and ff = E [ρ]. We then use Lemma 4 to conclude
that the extra equation (λ ≈ ρ) is only satisfied in the subterminal models.

It is helpful to make use of Proposition 2 and to prove the theorem in the
following two steps.

Step 1. We will first prove the following result. Let (Op,Eq) and (Op′,Eq ′) be
theories in Nom, such that T(Op,Eq) = TGS · T(Op′,Eq′). We will assume that
the theory (Op′,Eq ′) is complete with respect to (Op,Eq)-algebras, that is,
that every equation of the form Γ ⇒ T(Op′,Eq′)(X) is either satisfied in all
(Op′,Eq ′)-algebras, or satisfied only in subterminal (Op,Eq)-algebras. From
this assumption we will conclude that the theory (Op,Eq) is complete.

Step 2. To conclude Theorem 5, we will assume that the nominal set V of values
is infinite, and prove that the theory of block is complete with respect to
local state algebras.

Under the hypothesis of Step 1, we consider an equation Γ � λ ≈ ρ : X with
λ = ρ : �Γ � → TGS(T(Op′,Eq′)(X)). Since the nominal sets {A

⊗n | n ∈ N} form
a generator, we have n ∈ N and an equivariant function γ : A

⊗n → �Γ � such
that λ · γ = ρ · γ. Pick an enumeration of distinct atoms {b1, . . . , bn}. From the
characterization of TGS (see (3)), we know that there must be a store S0 ∈ S

with support {b1, . . . , bn} such that λ(γ(b1, . . . , bn))(S0) = ρ(γ(b1, . . . , bn))(S0).
Either

(π1(λ · γ(b1, . . . , bn)))(S0) = (π1(ρ · γ(b1, . . . , bn)))(S0)
or (π2(λ · γ(b1, . . . , bn)))(S0) = (π2(ρ · γ(b1, . . . , bn)))(S0) .

(5)

In the first case, we have two different stores, both supported by {b1, . . . , bn}.
There must therefore be i ≤ n such that we have two different values:

((π1(λ · γ(b1, . . . , bn)))(S0))(bi) = ((π1(ρ · γ(b1, . . . , bn)))(S0))(bi) in V.

We now rewrite this observation in the monadic metalanguage. We define a
term �a : A

⊗n � S0(�a) : 1 by �a : A
⊗n � a1 := S0(b1); . . . an := S0(bn). We have

the following equations.

�a : A
⊗n � S0(�a); (λ · γ)(�a); !ai ≈ S0(�a); (λ · γ)(�a); (π1(λ(γ(�b))(S0))(bi))

�a : A
⊗n � S0(�a); (ρ · γ)(�a); !ai ≈ S0(�a); (ρ · γ)(�a); (π1(ρ(γ(�b))(S0))(bi))
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We will use the context Snap�a[−]:

Snap�a[−] =
let v1 ⇐ !a1 in . . . let vn ⇐ !an in let r ⇐ [−] in a1 := v1; . . . an := vn; r.

This simple context has the property that for any nominal set X and for any
term �a: A

⊗n � t(�a): 1,

�a : A
⊗n � Snap�a[t(�a); ff] ≈ ff and �a : A

⊗n � Snap�a[t(�a); tt] ≈ tt : {tt, ff} .

So, in this situation we can conclude the following sequence of equations:

�a: A
⊗n � tt ≈ Snap�a[S0(�a); (λ · γ)(�a); tt]

≈ Snap�a[S0(�a); (λ · γ)(�a); [!ai
?= π1(λ(γ(�b))(S0))(bi)]]

≈ Snap�a[S0(�a); (ρ · γ)(�a); [!ai
?= π1(λ(γ(�b))(S0))(bi)]]

≈ Snap�a[S0(�a); (ρ · γ)(�a); ff]
≈ ff .

At this point, we note that the following rule is valid for the metalanguage in
nominal sets, because the projection function �Γ � × A

⊗n → �Γ � is always epi:

Γ � t : X Γ � u : X Γ,�a : A
⊗n � t = u : X

Γ � t = u : X
(6)

We have derived � tt = ff, and so the subterminal algebras are the only alge-
bras satisfying Γ � λ ≈ ρ. This concludes the case where π1(λ(γ(�b)))(S0) =
π1(ρ(γ(�b)))(S0).

For the other case in (5), where π2(λ(γ(�b)))(S0) = π2(ρ(γ(�b)))(S0), we pro-
ceed as follows. We consider the equation

�a: A
⊗n � Snap�a[S0(�a); (λ · γ)(�a)] ≈ Snap�a[S0(�a); (ρ · γ)(�a)] : X .

The function described by the left hand side of this equation always returns
π2(λ(γ(�b)))(S0), leaving the global store unchanged; and the function described
by the right hand side of this equation returns π2(ρ(γ(�b)))(S0), leaving the global
store unchanged. We thus have two unequal functions A

⊗n → T(Op′,Eq′)(X): an
equation that is not satisfied in the free (Op′,Eq ′)-algebra T(Op′,Eq′)(X). By the
assumption for Step 1, the only (Op,Eq)-algebras that satisfy this equation are
subterminal. This concludes Step 1.

We now tackle Step 2: we will show that the theory of block is complete with
respect to TLS-algebras. We consider a pair of distinct equivariant functions
λ, ρ : Γ → TBK(X) and show that this equation is only satisfied in subterminal
TLS-algebras. As above, we have n ∈ N and γ : A

⊗n → Γ such that λ · γ = ρ · γ.
We begin by setting up some notation. For any nominal set Y , a natural

number m, and a permutation group G < Sym(m), we write Y m/G for the
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nominal set of n-tuples (y1, . . . , ym) up to the equivalence relation generated by
(y1, . . . , ym) ∼G (yπ(1), . . . , yπ(m)) for π ∈ G.

The nominal set X admits the following analysis (as does every nominal set).
There is an ordinary set Orb and for each o ∈ Orb, a natural number mo and a
permutation group Go < Sym(mo), together with an isomorphism

i : X ∼=
∐

o∈Orb

A
⊗mo/Go .

We write orb : X → Orb for the evident projection function. This is a version of
the orbit-stabilizer theorem: Orb is the set of orbits of X ; and the finite groups Go

generate the stabilizers. This characterization forms the correspondence between
nominal sets and named sets with symmetry [7,10].

We now pick an enumeration of distinct atoms {b1, . . . , bn}, and we pick rep-
resentatives (s, x) and (s′, x′) of the �-equivalence classes λ(γ(�b))) and ρ(γ(�b)))
respectively. Without loss of generality, by the definition of �, we assume that
dom(s) ∩ supp(x′) = ∅ = dom(s′) ∩ supp(x).

We proceed differently depending on whether x and x′ are in the same or-
bit, whether orb(x) = orb(x′). If orb(x) = orb(x′), then we have the following
sequence of equations in any algebra satisfying (λ ≈ ρ).

�a: A
⊗n � tt ≈ let r ⇐ (λ · γ)(�a) in [orb(r) ?= orb(x)]

≈ let r ⇐ (ρ · γ)(�a) in [orb(r) ?= orb(x)] ≈ ff : {tt, ff} .

If x and x′ are in the same orbit then we proceed as follows. It is at this
point that we make use of the fact that the set V of values is infinite: pick n
distinct values v1, . . . , vn that lie outside the ranges of s and s′. We define a
partial function s′′ : A ⇀ V as follows:

For i ≤ n: s′′(bi) = vi

For b ∈ dom(s): s′′(b) = s(b)
For b′ ∈ dom(s′): s′′(b′) = s′(b′) .

We write ō for orb(x), and let inō[b1 . . . bmō ]Gō = i(x) and inō[b′1 . . . b′mō
]Gō = i(x′).

Notice that dom(s′′) = supp(x)∪supp(x′), and so the function s′′ is defined at bi

and b′i for every i ≤ mō. Crucially, the tuple-quotients

[s′′(b1), . . . , s′′(bmō)]Gō and [s′′(b′1), . . . , s
′′(b′mō

)]Gō in V
mō/Gō (7)

are different, because [s, x]� = [s′, x′]�. In what follows, we abbreviate (7) by
writing [�w ]Gō for the left hand tuple and [�w ′]Gō for the right hand tuple.

We now translate these observations into the monadic metalanguage. We con-
sider a derived effect

lk :
∐

o∈Orb

(Amo/Go) −→ TLS

( ∐

o∈Orb

(Vmo/Go)
)

.
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Informally, lk(ino[a1, . . . , amo ]Go) returns the result of simultaneously looking up
the values in locations a1, . . . , amo . Formally, it is the unique equivariant function
making the following diagram commute:

∐
o∈Orb(∼Go)

����

��
∐

o∈Orb(∼Go)

����∐
o∈Orb(A

mo)
(�) ��

��

TLS

( ∐
o∈Orb V

mo
)

��∐
o∈Orb(A

mo/Go) lk
�� TLS

( ∐
o∈Orb(V

mo/Go)
)

(8)

The arrow labelled (�) corresponds to the Orb-fold coproduct of terms

�a: A
mo � let v1 ⇐ !a1 in . . . let vmo ⇐ !amo in (v1, . . . , vmo) : V

mo

and the upper diagrams commute by axiom GS5. Informally, it does not mat-
ter which order the locations are read, and so the Go-equivalence classes are
respected.

In any TLS-algebra satisfying (λ ≈ ρ), we have

�a : A
⊗n � tt ≈ let r ⇐ (λ · γ)(�a) in a1 := v1; . . . an := vn; [lk(i(r)) ?= inō[�w ]Gō ]

≈ let r ⇐ (ρ · γ)(�a) in a1 := v1; . . . an := vn; [lk(i(r)) ?= inō[�w ]Gō ]
≈ ff : {tt, ff} .

Using (6), we complete Step 2 and finish our proof of Theorem 5.

5.2 An Additional Axiom when the Set of Values Is Finite

The proof of Theorem 5 relies on the hypothesis that the set of values is infinite.
This is the situation considered by Plotkin and Power in [20].

There are many applications where the set of storable values is finite. If there
is only one value, so we have a model of the ν-calculus [19], the theory is com-
plete, and the proof can be adapted: the theory of block remains complete with
respect to the theory of local state. If V is empty, then all algebras are terminal.
If V is finite and has more than one element, then the theorem fails. We will give
a counter-example in the case where V = {tt, ff}. Consider the quotient nominal
set A

3/C3 , with (a, b, c) ∼C3 (b, c, a). Then the following computations are distin-
guished in TLS(A3/C3), but they are equated in some non-trivial TLS-algebras.

c : A � let a ⇐ ref(tt) in let b ⇐ ref(ff) in [a, b, c]C3 : A
3/C3

c : A � let a ⇐ ref(ff) in let b ⇐ ref(tt) in [a, b, c]C3 : A
3/C3

(L5)

Notice that if we add an additional constant � to V, then these terms are distin-
guished in all algebras, using the context E [−] =

(
c := �; let r ⇐ [−] in lkC3(r)

)
.

Here, the effect lkC3 : A
3/C3 → TLS(V3/C3) is to be defined as in (8), in the pre-

vious subsection.
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The theory of local state is thus not complete, in the sense of Defn. 3, when the
set of values is finite. This notion of completeness is arguably too strong, because
the nominal set (A3/C3) would never arise as the denotation of an intensional
type.

Recall from the work of Tzevelekos [25] that a nominal set X is said to be
strong if, for all x ∈ X and a ∈ supp(x), if π•x = x then π(a) = a. Equivalently,
a nominal set is strong if it is isomorphic to a coproduct of nominal sets of the
form A

⊗n. Arguably, the denotations of first-order intensional types are always
strong nominal sets.

Theorem 6. Let X be a strong nominal set. Every equation that is of the form
Γ ⇒ TLS(X) is either satisfied in all TLS-algebras, or satisfied only in subtermi-
nal TLS-algebras.

This result is proved in much the same way as Theorem 5. The crucial lemma
is a refined form of Step 2 in that proof.

Every equation of the form Γ ⇒ TBK(X), with X a strong nominal set,
is either satisfied in all TBK-algebras, or satisfied only in subterminal
TLS-algebras.

6 Comparison with the Theory of Plotkin and Power

Plotkin and Power [20] propose a theory for local state, which is the starting point
for the present paper. We conclude this paper by making precise the relationship
between their theory and ours. Throughout this section, we suppose that V is a
countably infinite set.

Let I be the category of natural numbers and injections between them, and
consider the category [I,Set] of covariant presheaves I → Set and natural trans-
formations between them. We can define a presheaf A of locations by A(n) = n.
There is an endofunctor δ on [I,Set], given by (δX)(n) = X(n + 1).

Definition 7. A Plotkin-Power algebra for local state is a presheaf X : I → Set
together with three natural transformations

l : XA → XV u : X → XA×V b : δX → XV

subject to 13 commuting diagrams [20, Sec. 4].

Theorem 8. The category of Plotkin-Power algebras for local state is equivalent
to the category of algebras for the monad TLS on Nom (as in Section 4).

The theory of Plotkin-Power algebras appears very similar to the theory in Fig-
ure 1, but there are two subtle points, outlined in the following proof sketch.

Every block-algebra preserves pullbacks. The first discrepancy between Fig. 1
and Defn. 7 is that the carrier of an algebra in Defn. 7 is a presheaf in [I,Set],
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rather than a nominal set. It is well known that the category Nom of nominal
sets is equivalent to the category of pullback-preserving-functors I → Set, but
not every presheaf I → Set preserves pullbacks.

The proof of completeness (Sec. 5) is significantly simplified by working in the
category of nominal sets. Equality is decidable, and we have the principle (6).

Define a block algebra to be a presheaf X together with a natural transforma-
tion δX → XV, such that the relevant diagrams from [20,21, def. 5.1] commute.

Proposition 9. The carrier of every block algebra preserves pullbacks.

One way to prove Prop. 9 is to consider a small category BV whose objects are
natural numbers, and where a morphism f : n → m is a function f : n → (m�V)
that is injective on f−1(m). Composition is in the style of a Kleisli category. The
important observation is that the category of block algebras is equivalent to the
category of functors [BV,Set]. Indeed, the inclusion I → BV induces a monadic
forgetful functor [BV,Set] → [I,Set]. We will say that a morphism f : n → m
in BV is total if im(f) ⊆ m. Pullbacks of total morphisms in BV are absolute,
in the sense that they are preserved by every functor.

An alternative presentation of block . The presentation of Defn. 7 is not an
enriched algebraic theory as in Section 2, because it involves the operation
b : δX → XV. Plotkin and Power are able to give a strength for the result-
ing monad by hand, but they leave open the problem of finding an algebraic
presentation and hence they do not have all the effects in their meta-language.

The following result plays a crucial role in the proof of Theorem 8. The first
datum corresponds to the Plotkin-Power block operator, while the second corre-
sponds to our family {refn} of operators, with equations B3n (Fig. 1). We write
A
⊗n for the representable functor I(n,−) : I → Set.

Proposition 10. Let X, Z be presheaves in [I,Set]. The following data are
equivalent.

1. A natural transformation δX → XZ

2. A family of natural transformations {βn : XA
⊗(n+1) → X(A⊗n×Z)}n∈N making

the following diagrams commute:

X(A⊗n×A)

(β0)A
⊗n ��

Xpn ��
XA

⊗(n+1)

(βn)
��

X(A⊗n×Z)

for every n ∈ N.

I present an alternative solution in [23], but using a more generous enrichment
for which the completeness theorem (Thm. 5) does not hold.
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