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Abstract. We study the semantic meaning of block structure using game se-
mantics and introduce the notion of block-innocent strategies, which turns out
to characterise call-by-value computation with block-allocated storage through
soundness, finitary definability and universality results. This puts us in a good
position to conduct a comparative study of purely functional computation, com-
putation with block storage and dynamic memory allocation respectively. For
example, we show that dynamic variable allocation can be replaced with block-
allocated variables exactly when the term involved (open or closed) is of base type
and that block-allocated storage can be replaced with purely functional compu-
tation when types of order two are involved. To illustrate the restrictive nature
of block structure further, we prove a decidability result for a finitary fragment
of call-by-value Idealized Algol for which it is known that allowing for dynamic
memory allocation leads to undecidability.

1 Introduction

Most programming languages manage memory by employing a stack for local vari-
ables and heap storage for dynamically allocated data that may live beyond their initial
context. A prototypical example of the former mechanism is Reynolds’s Idealized Al-
gol [16], in which local variables can only be introduced inside blocks of ground type.
Memory is then allocated on entry to the block and deallocated on exit. In contrast,
languages such as ML permit variables to escape from their current context under the
guise of pointers or references. In this case, after memory is allocated at the point of
reference creation, the variable is allowed to persist indefinitely (in practice, garbage
collection or explicit deallocation is used to put an end to its life).

In this paper we would like to compare the expressivity of the two paradigms. As a
simple example of heap-based memory allocation we consider the language RML, intro-
duced by Abramsky and McCusker in [2], which is a fragment of ML featuring integer-
valued references. They also constructed a fully abstract game model of RML based on
strategies (also referred to as knowing strategies) that allow the player to base his deci-
sions on the full history of play. On the other hand, at around the same time Honda and
Yoshida [6] showed that the purely functional core of RML, better known as call-by-
value PCF [14], corresponds to innocent strategies [7], i.e. those that can only rely on a
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restricted view of the play when deciding on the next move. Since block-structured stor-
age of Idealized Algol seems less expressive than dynamic memory allocation of ML
and more expressive than PCF, it is natural to ask about its exact position in the range
of strategies between innocence and omniscience. Our first result is an answer to this
question. We introduce the family of block-innocent strategies, situated strictly between
innocent and knowing strategies. As a vehicle for our study we use a call-by-value vari-
ant IAcbv of Idealized Algol and prove that each IAcbv-term can be interpreted by a
block-innocent strategy (soundness), each finitary block-innocent strategy corresponds
to an IAcbv-term (finitary definability) and each recursively presentable block-innocent
strategy corresponds to an IAcbv-term (universality). Block-innocence captures the par-
ticular kind of uniformity exhibited by strategies originating from block-structured pro-
grams, akin to innocence yet strictly weaker. In fact, we define block-innocence through
innocence in a setting enriched with explicit store annotations added to standard moves.
For instance, in the play shown below1, if P follows a block-innocent strategy, he is free
to use different moves as the fourth and sixth moves, but the tenth one and the twelfth
one have to be the same.

q q q 0 q 1 a a q 0 q 0

Additionally, our framework detects “storage violations” resulting from an attempt to
access a variable from outside of its block. For instance, no IAcbv-term will ever produce
the following play (the last move is the offending one).

q q q 0 q 1 a a q q

The notion of block-innocence provides us with a systematic methodology to address
expressivity questions related to block structure such as “Does a given strategy originate
from a stack-based memory discipline?” or “Can a given program using dynamic mem-
ory allocation be replaced with an equivalent program featuring stack-based storage?”.
To illustrate the approach we conduct a complete study of the relationship between the
three classes of strategies according to type-thereotic order. We find that knowingness
implies block-innocence when terms of base types (open or closed) are involved, that
block-innocence implies innocence exactly for types of at most second order, and that
knowingness implies innocence if the term is of base type and its free identifiers are
of order 1.

As a further confirmation of the restrictive nature of the stack discipline of IAcbv,
we prove that program equivalence is decidable for a finitary variant of IAcbv which
properly contains all second-order types as well as some third-order types (interestingly,
our type discipline covers the available higher-order types in PASCAL). In contrast, the
corresponding restriction of RML is known to be undecidable [10].

Related work. The stack discipline has always been regarded as part of the essence
of Algol [16]. Accordingly, finding models embodying stack-oriented storage manage-
ment has become an important goal of research into Algol-like languages. In this spirit,
in the early 1980s, Reynolds [16] and Oles [11] devised a semantic model of Algol-like

1 For the sake of clarity, we only include pointers pointing more than one move behind.
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languages using a category of functors from a category of store shapes to the category
of predomains. Perhaps surprisingly, in the 1990s Pitts and Stark [13,17] managed to
adapt the techniques to languages with dynamic allocation. This would appear to create
a common platform suitable for a comparative study such as ours. However, despite the
valuable structural insights, the relative imprecision of the functor category semantics
(failure of definability and full abstraction) makes it unlikely that the results obtained by
us can be proved via this route. The semantics of local effects has also been investigated
from the category-theoretic point of view in [15].

As for the game semantics literature, Ong’s work [12] based on strategies-with-state
is the work closest to ours. His paper defines a compositional framework that is proved
sound for the third-order fragment of call-by-name Idealized Algol. Adapting the results
to call-by-value and all types is far from immediate. For a start, to handle higher-order
types, we note that the state of O-moves is no longer determined by its justifier and
the preceding move. Instead, the right state has to be computed “globally” using the
whole history of play. However, the obvious adaptation of so modified framework to
call-by-value does not capture the block-structure of IAcbv. Quite the opposite: it seems
to be more compatible with RML than IAcbv! Consequently, further changes are needed
to characterize IAcbv. Firstly, to restore definability, the explicit stores have to become
lists instead of sets. Secondly, conditions controlling state changes must be tightened.
In particular, P must be forbidden from introducing fresh variables at any step and,
in a similar vein, must be forced to drop some variables from his moves in certain
circumstances.

The paper cited above is part of a series that has eventually led to a complete classi-
fication of the decidable cases of call-by-name (finitary) Idealized Algol. Much less is
known about the call-by-value case, we are only aware of two papers: one by Ghica [5]
and the other by the first-named author [10]. Both rely on regular languages to capture
the game semantics of fragments of IAcbv and RML respectively. Their other common
feature is that the types considered are selected in such a way that no pointers need to
be represented in the induced plays. Our results represent further progress with regard
to IAcbv. The type system of our language, named IA2+

� , is designed in such a way that
only pointers from O-moves need not be represented, but we must include an explicit
representation of pointers from certain P-moves. In particular, in contrast to [5], we can
account for all second-order types, as we allow all first-order types to occur in contexts.
“Curried” types of the form A → B → C are especially tricky to handle here, because
they can only be dealt with correctly if pointers from P-moves are encoded explicitly
(recall that in the call-by-value setting A → B → C and A × B → C are not iso-
morphic). Any further extension of the type system of IA2+

� leads either to context-free
languages or to plays in which pointers from O-moves of unbounded length would have
to be handled, which seemingly requires an infinite alphabet.

2 Syntax

To set a common ground for our investigations, we introduce a higher-order program-
ming language L that features syntactic constructs for both block and dynamic
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Γ, x : var � M : β
Γ � new x in M : β Γ � ref : var Γ � () : unit

i ∈ Z

Γ � i : int
(x : θ) ∈ Γ
Γ � x : θ

Γ � M1 : int Γ � M2 : int
Γ � M1 ⊕ M2 : int

Γ � M : int Γ � N0 : θ Γ � N1 : θ
Γ � if M thenN1 else N0 : θ

Γ � M : var
Γ � !M : int

Γ � M : var Γ � N : int
Γ � M :=N : unit

Γ � M : unit → int Γ � N : int → unit
Γ � mkvar(M, N) : var

Γ � M : θ → θ′ Γ � N : θ
Γ � MN : θ′

Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′
Γ � M : (θ → θ′) → (θ → θ′)

Γ � Y(M) : θ → θ′

memory allocation. Its types are generated by the grammar below, where β ranges over
the ground types unit and int.

θ ::= β | var | θ → θ

The syntax of L is given in the Figure above. Note in particular the first two rules con-
cerning variables. The order of a type is defined as follows: ord(β) = 0, ord(var) = 1,
ord(θ1 → θ2) = max(ord(θ1) + 1, ord(θ2)). For any i ≥ 0, terms that are typable us-
ing exclusively judgments of the form x1 : θ1, · · · , xn : θn � M : θ, where ord(θj) < i
(1 ≤ j ≤ n) and ord(θ) ≤ i, are said to form the ith-order fragment. To spell out the
operational semantics of L, we need to assume a countable set Loc of locations, which
are added to the syntax as auxiliary constants of type var. We shall write α to range
over them. The semantics then takes the form of judgments s, M ⇓ s′, V , where s, s′

are finite partial functions from Loc to integers, M is a term and V is a value. Terms of
the following shapes are values: (), integer constants, elements of Loc, λ-abstractions
or terms of the form mkvar(λxunit.M, λyint.N). Here we only reproduce the two eval-
uation rules related to variable creation.

s ∪ (α �→ 0), M [α/x] ⇓ s′, V
s, new x in M ⇓ s′ \ α, V

α/∈dom s
s, ref ⇓ s ∪ (α �→ 0), α

α/∈dom s

s′ \ α is the restriction of s′ to dom s′ \ {α}. The former rule encapsulates the state
within the newly created block, while the latter creates a reference to a new memory
cell that can be passed around without restrictions on its scope.

Given a closed term � M : unit, we write M ⇓ if there exists s such that ∅, M ⇓
s, (). We shall call two programs equivalent if they behave identically in every context.
This is captured by the following definition, parameterized by the kind of contexts that
are considered, to allow for testing of terms with contexts originating from a designated
subset of the language.

Definition 1. Suppose L′ is a subset of L. We say that the terms-in-context
Γ � M1, M2 : θ are L′-equivalent (written Γ � M1

∼=L′ M2) if, for any L′-context
C[−] such that � C[M1], C[M2] : unit, C[M1] ⇓ if and only if C[M2] ⇓.

We shall study three sublanguages of L called PCF+, IAcbv and RML. The latter two
have appeared in the literature as paradigmatic examples of programming languages
with stack discipline and dynamic memory allocation respectively.
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MA⇒B = IA⇒B � IA � IA � MB

IA⇒B = {∗}
λA⇒B = [(∗, PA), (iA, OQ), λ̄A � IA, λB]

�A⇒B = {(∗, iA), (iA, iB)} ∪ �A ∪ �B

MA⊗B =IA⊗B � IA � IB , IA⊗B = IA × IB

λA⊗B = [((iA, iB), PA), λA � IA, λB � IB ]

�A⊗B ={((iA, iB), m) | iA �A m ∨ iB �B m}
∪ (�A� IA

2
) ∪ (�B� IB

2
)

– PCF+ is a purely functional language obtained from L by removing new x in M
and ref. It extends the language PCF [14] with primitives for variable access, but
not for memory allocation.

– IAcbv is L without the ref constant. It can be viewed as a call-by-value variant of
Idealized Algol [16]. Only block-allocated storage is available in IAcbv.

– RML is L save the construct new x inM . It is exactly the language introduced in [2]
as a prototypical language for ML-like integer references.

We shall often write let x = M inN instead of (λx.N)M . Note that, since new x in M
is equivalent to let x = ref inM , RML and L merely differ on a syntactic level in that
L contains “syntactic sugar” for blocks. In the opposite direction, our results will show
that ref cannot in general be replaced with an equivalent term that uses new x in M . In-
deed, our paper provides a general methodology for identifying and studying scenarios
in which this expressivity gap occurs.

3 Game Semantics

Here we introduce the game models used throughout the paper, which are based on the
Honda-Yoshida approach to modelling call-by-value computation [6].

Definition 2. An arena A = (MA, IA,�A, λA) is given by
– a set MA of moves, and a subset IA ⊆ MA of initial moves,
– a justification relation �A⊆ MA × (MA \ IA), and
– a labelling function λA : MA → {O, P} × {Q, A}

such that λA(IA)={PA} and, whenever m �A m′, we have (π1λA)(m) �=(π2λA)(m′)
and (π2λA)(m′) = A =⇒ (π2λA)(m) = Q.

The role of λA is to label moves as Opponent or Proponent moves and as Questions
or Answers. We typically write them as m, n, . . . , or o, p, q, a, qP , qO, . . . when we
want to be specific about their kind. The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat”
arenas are 1 and Z, defined by M1 = I1 = {∗}, MZ = IZ = Z. The two standard
constructions on arenas are presented in the figure above, where ĪA stands for MA \ IA,
the OP -complement of λA is written as λ̄A, and iA, iB range over initial moves in the
respective arenas. Types of L can now be interpreted with arenas in the following way:
�unit� = 1, �int� = Z, �var� = (1 ⇒ Z) ⊗ (Z ⇒ 1) and �θ1 → θ2� = �θ1� ⇒ �θ2�.
Although arenas model types, the actual games will be played in prearenas, which
are defined in the same way as arenas with the exception that initial moves must be
O-questions. Given arenas A and B, we can construct the prearena A → B by setting:

MA→B = MA � MB λA→B = [(iA, OQ) ∪ (λ̄A � IA) , λB]

IA→B = IA �A→B = {(iA, iB)}∪ �A ∪ �B .
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For Γ = {x1 : θ1, · · · , xn : θn}, typing judgments Γ � θ will eventually be interpreted
by strategies for the prearena �θ1� ⊗ · · · ⊗ �θn� → �θ� (if n = 0 we take the left-hand
side to be 1), which we shall denote by �Γ � θ� or �θ1, · · · , θn � θ�.

A justified sequence in a prearena A is a finite sequence s of moves of A satisfying
the following condition: the first move must be initial, but all other moves m must be
equipped with a pointer2 to an earlier occurrence of a move m′ such that m′ �A m.
A play in A is a justified sequence s satisfying the standard conditions of Alternation,
Well-Bracketing and Visibility [7]. Visibility is based on the notions of O-view �s� and
P-view �s� of a justified sequence s, given by: �ε� = ε , �s o� = �s� o , �s o · · · p� =
�s� o p ; �ε� = ε , �s p� = �s� p , �s p · · · o� = �s� p o . We write PA to denote the set
of plays in A.

Definition 3. A (knowing) strategy σ on a prearena A, written σ : A, is a prefix-closed
set of plays from A satisfying the first two conditions below. A strategy is innocent if,
in addition, the third condition holds.

O-CLOSURE If even-length s ∈ σ and sm ∈ PA then sm ∈ σ.
DETERMINACY If even-length sm1, sm2 ∈ σ then m1 = m2.
INNOCENCE If s1m, s2 ∈ σ with odd-length s1, s2 and �s1� = �s2� then s2m ∈ σ.

Now we shall extend the framework to allow moves to be decorated with stores that
contain name-integer pairs. The names should be viewed as semantic analogues of lo-
cations. When employing such moves-with-store, we are not interested in what exactly
the names are, but we would like to know how they relate to names that have already
been in play. Hence, the objects of study are rather the induced equivalence classes
with respect to name-invariance, and all ensuing constructions and reasoning need to
be compatible with it. This overhead can be dealt with robustly using the language of
nominal set theory [4].

Let us fix a countably infinite set A, the set of names, the elements of which we shall
denote by α, β and variants. Consider the group PERM(A) of finite permutations of A,
denoted by π and variants. A strong nominal set [18] is a set equipped with a group
action of PERM(A) such that each of its elements has finite strong support. That is to
say, for any x ∈ X , there exists a finite set ν(x) ⊆ A, called the support of x, such
that, for all permutations π, (∀α ∈ ν(x). π(α) = α) ⇐⇒ π · x = x. Intuitively, ν(x)
is the set of names “involved” in x. For example, the set A

# of finite lists of distinct
names with permutations acting elementwise is a strong nominal set. Name-variance
in a strong nominal set X is represented by the relation: x ∼ x′ if there exists π such
that x = π · x′.

We define a strong nominal set of stores, the elements of which are finite sequences
of name-integer pairs. Formally,

Σ, T ::= ε | (α, i) :: Σ

where i ∈ Z and α ∈ A \ ν(Σ). We view stores as finite functions from names
to integers, though their domains are lists rather than sets. Thus, we define the do-
main of a store to be the list of names obtained by applying the first projection to

2 We then say that m′ justifies m. If m is an answer, we might also say that m answers m′. If a
question remains unanswered in s, it is open.
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all of its elements. In particular, ν(dom (Σ)) = ν(Σ). If α ∈ ν(Σ) then we write
Σ(α) for the unique i such that (α, i) is an element of Σ. For stores Σ, T we write:
Σ ≤ T for dom (Σ) � dom (T ) ; Σ ≤p T for dom (Σ) �p dom (T ) ; Σ ≤s T for
dom (Σ) �s dom (T ), where �,�p,�s denote the subsequence, prefix and suffix re-
lations respectively. Note that Σ ≤(p/s) T ≤(p/s) Σ implies dom (Σ) = dom (T ) but
not Σ = T . Finally, let us write Σ \ T for Σ restricted to ν(Σ) \ ν(T ).

An S-move (or move-with-store) in a prearena A is a pair consisting of a move and
a store. We typically write S-moves as mΣ , nT , oΣ , pT , qΣ , aT . The first-projection
function is viewed as store erasure and denoted by erase( ). Note that moves contain
no names and therefore, for any mΣ , ν(mΣ) = ν(Σ) = ν(dom (Σ)) . A justified
S-sequence in A is a sequence of S-moves equipped with justifiers, so that its erasure is
a justified sequence. The notions of O-view and P-view are extended to S-sequences in
the obvious manner. We say that a name α is closed in s if there are no open questions
in s containing α.

Definition 4. A justified S-sequence s in a prearena A is called an S-play, also written
s ∈ SPA, if it satisfies the following conditions, for all α ∈ A.

INIT If s = mΣ · · · then Σ = ε.
JUST-P If s = · · · oΣ · · · pT · · · then Σ ≤p T . If λA(p) = PA then dom (Σ) =

dom (T ).
JUST-O If s = · · · pΣ · · · oT · · · then dom (Σ) = dom (T ).
PREV-PQ If s = · · · oΣqT

P · · · then Σ \ T ≤s Σ and Σ \ (Σ \ T ) ≤p T and
(a). if α ∈ ν(T \ Σ) then α /∈ ν(s<qT

P
),

(b). if α ∈ ν(Σ \ T ) then α is closed in s<qT
P

.

VAL-O If s = · · · pΣs′oT · · · and α ∈ (ν(T ) ∩ ν(Σ)) \ ν(s′) then T (α) = Σ(α).

For example, PREV-PQ stipulates that P-questions may drop some names from the store
and append some others, but these changes may only take place in blocks at the tail of
the store. Moreover, appended names must be fresh in the whole play, and a name can
be dropped only if it has been closed.

Let us remark that, as stores have strong support, the set of S-plays SPA is a strong
nominal set. Further properties of S-plays include:

– If s = · · ·mΣaT
P · · · then Σ \ T ≤s Σ and Σ \ (Σ \ T ) ≤p T and

(a) if α ∈ ν(T ) then α ∈ ν(Σ),
(b) if α ∈ ν(Σ \ T ) then α is closed in s<aT

P
.

– If s = s1o
ΣpT s2 with α ∈ ν(Σ) \ ν(T ) then α /∈ ν(s2).

Definition 5. An S-strategy σ on an arena A, written σ : A, is a prefix-closed set of
S-plays from A satisfying the first three of the following conditions. An S-strategy is
innocent if it also satisfies the last condition.

NOMINAL CLOSURE If s′ ∼ s ∈ σ then s′ ∈ σ.
O-CLOSURE If even-length s ∈ σ and smΣ ∈ SPA then smΣ ∈ σ.
DETERMINACY If even-length smΣ1

1 , smΣ2
2 ∈ σ then smΣ1

1 ∼ smΣ2
2 .

INNOCENCE If s1m
Σ1 , s2 ∈ σ with s1, s2 odd-length and �s1� = �s2� then there

exists s2m
Σ2 ∈ σ with �s1m

Σ1� ∼ �s2m
Σ2�.
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Example 6. For any base type β, let us define the S-strategy cellβ : �var → β� → �β�
as the least innocent S-strategy containing the plays below. We use read and write(i)
(i ∈ Z) to refer to the question-moves of �var�, and i (i ∈ Z) and ok for the non-initial
answers.

q0 q1
(α,0) a1

(α,i) a0 q0 q1
(α,0) read(α,i) i(α,i) q0 q1

(α,0) write(j)(α,i)
ok(α,j)

Example 7. Had we used sets instead of lists for representing stores, the following “S-
strategy”, which represents incorrect overlap of scopes (α and β are in scope of one
another, but at the same time have different scopes), would be innocent.

q0 q1
(α,0),(β,0) 01

(α,0),(β,0) q1
(α,0) q0 q1

(α,0),(β,0) 11
(α,0),(β,0) q1

(β,0)

Arenas and S-strategies form a category, which we call S, and so do innocent S-
strategies. S turns out to exhibit the same kind of categorical structure as that discussed
in [6], which can be employed to model call-by-value higher-order computation with
recursion. Thus, the functional part of IAcbv can be interpreted in S according to the
standard recipe. Assignment, dereferencing and mkvar can in turn be modelled using
the innocent strategies without stores from [2]. Finally, the denotation of new x in M is
obtained by composing the denotation of λxvar.M with the innocent S-strategy cellβ .
Let us write �· · ·�S for the resultant semantic map.

Proposition 8 (Soundness). For any IAcbv-term Γ � M : θ, �Γ � M : θ�S is an inno-
cent S-strategy.

Innocent S-strategies can be decomposed in a similar way to the innocent strategies
of [6]. There is one important exception, though, which occurs when the second-move
introduces a non-empty store (our rules of play imply that the move must be a ques-
tion). Let α be the first variable from the non-empty store. In order to decompose the
strategy, consider a P-view s in which α occurs in the second move qα. It turns out that
s = qqαsαs′, where (the store of) a move mΣ from s contains α if, and only if, it is qα

or in sα. In addition, no justification pointers connect s′ to qαsα. This separation can be
applied to decompose the view-function of an innocent S-strategy. The sα parts, put to-
gether as a single S-strategy, can subsequently be dealt with in the style of factorization
arguments, which remove α from moves at the cost of an additional var-component.
Finally, to relate sα’s to the suitable s′ one can use numerical codes for qαsα. These
ideas lie at the heart of the following result. By a finitary innocent S-strategy we mean
an innocent strategy whose view-function quotiented by name-variance is finite.

Proposition 9 (Finitary Definability and Universality).
– Any finitary innocent S-strategy is IAcbv-definable.
– Any recursively presentable innocent S-strategy is IAcbv-definable.

It is worth noting that the universality result for innocent S-strategies implies an anal-
ogous result for innocent strategies and PCF. Thanks to call-by-value, the result is
actually sharper than the universality results of [1,7], which had to be proved “up to
observational equivalence”. This was due to the fact that partial recursive functions
could not always be represented in the canonical way (i.e. by terms for which the cor-
responding strategy contained plays of the form q q n f(n)). This is no longer the case
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under the call-by-value regime, where each partially recursive function f can be coded
by a term whose denotation will be the strategy based on plays of the shape n f(n).

With the soundness and definability results in place, we could now proceed in the fa-
miliar way to define a fully abstract model of IAcbv via the intrinsic quotient. However,
this would be somewhat counterproductive. It turns out that RML is a conservative ex-
tension of IAcbv (Corollary 14), so the (simpler) fully abstract model of RML from [2],
based on knowing strategies, is already fully abstract for IAcbv. In fact, our model can
be related to knowing strategies more precisely. Observe that by erasing storage annota-
tions in an innocent S-strategy σ we obtain a knowing strategy, which we call erase(σ)
(determinism follows from the fact that stores in O-moves are uniquely determined
and from block-innocence). Let us write �· · ·� for the knowing strategy semantics (cast
in [6]).

Lemma 10. For any IAcbv-term Γ � M : θ, �Γ � M : θ� = erase(�Γ � M : θ�S).

This means the intrinsic quotient we would construct in the setting with stores can
be represented more explicitly via the induced complete plays (without stores)3. Even
though innocent S-strategies have not led us to a direct account of full abstraction for
IAcbv, we have obtained important insights into the structure of knowing strategies rep-
resenting IAcbv-terms: they are erasures of innocent S-strategies. Knowing strategies
with this property will be referred to as block-innocent. The knowledge that strategies
determined by IAcbv are block-innocent will be crucial in establishing a series of results
in the following sections.

Example 11. Let us revisit the two plays from the Introduction. The first one indeed
comes from an innocent S-strategy (we reveal the stores below). For the second one to
become innocent (in the setting with stores), a store with variable α, say, would need
to be introduced in the second move. Then α must also occur in the seventh move by
JUST-O, but it must not occur in the eighth move by JUST-P (the PA clause). Hence, it
will not be present in the ninth move by JUST-O. Consequently, the last move (justified
by the seventh move) is bound to break either PREV-PQ(a) (if it contains α) or JUST-P
(if it does not).

q q(α,0) q(α,0) 0(α,1) q(α,1) 1(α,1) a(α,0) a q 0 q 0

4 From Omniscience to Innocence

In Section 2 we introduced the three languages: PCF+, IAcbv and RML. By the sound-
ness and universality results of the previous section (as well as the soundness results
from [6,2]) the languages correspond respectively to innocent, block-innocent and know-
ing strategies. Let A be an arena. We write IA, BA and KA for the corresponding classes
of (store-free) strategies in A. Obviously, IA ⊆ BA ⊆ KA. Next we shall study type-
theoretic conditions under which one kind of strategy collapses to another. Thanks to

3 A play is complete if it does not contain unanswered questions. That such plays capture pro-
gram equivalence in RML follows from the argument in [3], readily adaptable to RML. By
Corollary 14, the same characterization will apply to IAcbv.
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the universality results, this corresponds to the existence of an equivalent program in a
weaker language.

Lemma 12. Let A = �θ1, · · · , θn � θ → θ′�. Then BA � KA.

Proof. Observe that there exist moves q0, a0, q1, a1 such that q0 �A a0 �A q1 �A a1

and consider σ = {ε, q0, q0a0, q0a0q1, q0a0q1a1}, i.e. σ has no response at q0a0q1a1q1.
Then σ ∈ KA \ BA. It is worth remarking that a strategy of the above kind denotes the
RML-term � let v = ref in λxunit.if !v thenΩ else v := !v + 1 : unit → unit. ��
Lemma 12 confirms that, in general, block structure restricts expressivity. However, the
next result shows this not to be the case for open terms of base type.

Lemma 13. Let A = �θ1, · · · , θn � β�. Then BA = KA.

Proof. Observe that any knowing strategy for A becomes block-innocent if in the sec-
ond move P introduces a store with one variable that keeps track of the history of play
(this is reminiscent of the factorization arguments in game semantics). The variable
should be removed from the store by P only when he plays an answer to the initial
question, in which case the play becomes complete and cannot be extended further. ��
By universality, we can conclude that each RML-term of base type is equivalent to
an IAcbv-term. Since contexts used for testing equivalence are exactly of this kind, we
obtain the following corollaries. The first one amounts to saying that RML is a conser-
vative extension of IAcbv. The second one states that block-structured contexts suffice
to distinguish terms that might use scope extrusion.

Corollary 14. For any IAcbv-terms Γ � M1, M2 and RML-terms Γ � N1, N2

– Γ � M1
∼=RML M2 if, and only if, Γ � M1

∼=IAcbv
M2.

– Γ � N1
∼=RML N2 if, and only if, Γ � N1

∼=IAcbv
N2.

Now we investigate the boundary between block structure and lack of state.

Lemma 15. Let A be an arena such that each question enables an answer 4. The fol-
lowing conditions are equivalent.

1. BA ⊆ IA.
2. No O-question is enabled by a P-question: m �A qO implies λA(m) = PA.
3. Store content of O-questions is trivial: sqΣ

O ∈ SPA implies dom (Σ) = ε.

We can now determine at which types block-innocence implies innocence.

Lemma 16. �θ1, · · · , θn � θ� satisfies condition 2 of Lemma 15 iff ord(θi) ≤ 1 (i =
1, · · · , n) and ord(θ) ≤ 2.

Consequently, second-order IAcbv-terms always have purely functional equivalents. Fi-
nally, we can pinpoint the types at which strategies are bound to be innocent: it suffices
to combine the previous findings.

4 All denotable arenas enjoy this property.
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Lemma 17. Let A = �θ1, · · · , θn � θ�. Then KA = IA iff ord(θi) ≤ 1 (i = 1, · · · , n)
and ord(θ) = 0.

In the next section we demonstrate that the gap in expressivity between KA and BA also
bears practical consequences. The undecidable equivalence problem for second-order
finitary RML becomes decidable in second-order finitary IAcbv (as well as at some third-
order types).

5 Decidability of a Finitary Fragment of IAcbv

To prove program equivalence decidable we restrict the base datatype of integers to
the finite segment {0, · · · , N} (N > 0) and replace recursive definitions (Y(M)) with
looping (whileM doN ). Let us call the resultant language IA�. Our decidability result
will hold for a subset IA2+

� of IA�, in which type order is restricted. IA2+
� will reside

inside the third-order fragment of IA� and contain its second-order fragment. Note that
the second-order fragment of similarly restricted RML is known be undecidable (even
without loops) [10].

The decidability of program equivalence in IA2+
� will be shown by translating terms

to regular languages representing the corresponding knowing strategies. We stress that
we are not going to work with the induced S-plays. Nevertheless, the translation will
crucially rely on insights gleaned from the semantics with explicit stores. More pre-
cisely, we will be interested in capturing the induced complete (store-free) plays. It is
worth mentioning that, unlike in the (single-threaded) call-by-name setting, complete
plays need not be maximal.

To represent plays as words, one needs to consider carefully how to represent point-
ers, should that be necessary. For example, this can be done by decorating moves with
integers that encode the distance from the target in some way. Only pointers from ques-
tions require attention, since those from answers are uniquely reconstructible through
the well-bracketing condition. Next we analyse two typing scenarios that look hopeless
from the point of view of encoding pointers, since the distance from the pointer can
grow arbitrarily. In the first case, thanks to block-innocence, we will be able to over-
come the difficulties. The other case must remain a challenge for future work (or an
undecidability result). On the basis of our discussion we shall subsequently introduce
the type system of IA2+

� .
Consider the arena �θ � θ1 → . . . → θk → β�. Due to the presence of the k arrows

on the right-hand side we obtain chains of enablers q0 � a0 � · · · � qk � ak, where
q0 is initial and each qi (i = 1, · · · , k) is initial in �θi�. We shall call the moves spinal.
Consider � � λxunit.λyunit.() : unit → unit → unit� (i.e. k = 2), which contains plays
of the form q0a0(q1a1)j for any j ≥ 0. Pointers are still uniquely determined in these
plays, but everything changes once O plays q2 next. Then the target might be any of
the j occurrences of q1. The strategy in question actually offers responses in all such
cases, so it would seem that all of these plays need to be represented (thus necessi-
tating the use of an infinite alphabet). Fortunately, thanks to block-innocence, we can
restrict ourselves to the case j = 1 and make the problem disappear. To see why, ob-
serve that none of the moves qi, ai will ever carry a non-empty store in an S-play, by
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Definition 4. Thus, because the strategy is block-innocent, its behaviour is already rep-
resented faithfully by the single play q0a0q1a1q2a2. In fact, this is one of the cases
when block-innocence implies innocence, but in general this will not be true for deno-
tations of IA2+

� -terms. Hence, we generalize the observation as follows. Since the move
q1 never carries a non-trivial store, it follows that no additional information about the
strategy is hidden in plays containing two occurrences of q1. This is because a block-
innocent strategy has to behave uniformly after each q1 and in general will depend only
on what happened between q0 and a0, and not on what happened after a previous copy
of q1 was played (there can be no communication between the “threads” started with q1

because q1 cannot carry a non-trivial store). Now that it is known that O need only play
one occurrence of q1, we can apply a similar reasoning to q2, and so on. This yields
the following lemma. Note that, due to Visibility, insisting on the presence of a unique
copy of q1, · · · , qk in a play amounts to asking that each qi be preceded by ai−1.

Lemma 18. Call a play spinal if each spinal question qi (0 < i ≤ k) occurring in it is
the immediate successor of ai−1. Let P sp

A be the set of spinal plays of A. Let σ, τ : A
be block-innocent strategies. Then σ ∩ P sp

A = τ ∩ P sp
A implies σ = τ .

Hence, for the purpose of checking program equivalence, it suffices to compare the
induced sets of spinal complete plays.

Now that we have dealt with one challenge, let us introduce another one, which
cannot be overcome so easily. Consider the arena �(θ1 → θ2 → θ3) → θ4 � θ� and
the enabling sequence q0 � q1 � q2 � a2 � q3 it contains. Now consider the plays
q0q1(q2a2)jq3, where j ≥ 0. Again, to represent the pointer from q3 to one of the
j occurrences of a2, one would need an unbounded number of indices. This time it
is not sufficient to restrict j to 1, because the behaviour need not be uniform after
each q2 (this is because in the setting with stores a non-empty store can be intro-
duced as soon as in the second move q1). To see that the concern is real, consider
the term f : (unit → unit → unit) → unit � new x in f(λyunit. · · ·λzunit. · · · ) : unit,
where (· · · ) contain some code inspecting and changing the value of x.

This leads us to introduce IA2+
� via a type system that will not generate the configura-

tion just discussed. Another restriction is to omit third-order types in the context, as they
lead beyond the realm of regular languages (cf. f : ((unit → unit) → unit) → unit �
f(λgunit→unit.g()). Since var leads to identical problems as unit → unit, we restrict its
use accordingly.

Definition 19. IA2+
� consists of IA�-terms whose typing derivations rely solely on typ-

ing judgments of the shape x1 : ctype1, · · · , xn : ctypen � M : ttype, where ctype and
ttype are defined by the grammar below.

ctype ::= β | var | β → ctype | var → ctype | (β → β) → ctype
ttype ::= β | var | ctype → ttype

A lot of pointers from questions become uniquely determined in strategies represent-
ing IA2+

� terms, namely, all pointers from any O-questions and all pointers from P -
questions to O-questions.

Lemma 20. Let A = �ctype1, · · · , ctypen � ttype� and s1, s2 be spinal plays of A
that are equal after all pointers from O-questions and all pointers from P-questions to
O-questions have been erased. Then s1 = s2.
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Thus, the only pointers that need to be accounted for are those from P-questions to O-
answers. Here is the simplest scenario illustrating that they can be ambiguous. Consider
the terms

f : unit → unit → unit � let g1 = f() in (let g2 = f() in gi()) : unit

where i = 1, 2. They lead to the following plays, respectively for i = 1 and i = 2,
which are equal up to pointers from P-questions to O-answers.

q0 q1 a1 q1 a1 q2 q0 q1 a1 q1 a1 q2

We are going to represent such pointers with numerical indices encoding the target of
the pointer inside the current P-view. More precisely, let us enumerate (starting from 0)
all question-enabling O-answers in the P-view. Then pointers from P-questions to O-
answers can be encoded by decorating the P-question with the index of the O-answer.
The plays above will be encoded as q0q1a1q1a1q

0
2 and q0q1a1q1a1q

1
2 respectively (other

pointers are uniquely recoverable by Lemma 20 and will not be represented explicitly).
So that we need not study the behaviour of the representation scheme for pointers under
general composition (after which the indices might need to be recalculated), we restrict
our translation to terms in a canonical shape, to be defined next. Any IA�-term can be
converted effectively to such a form and the conversion preserves denotation.

The canonical forms are defined by the following grammar. We use types as super-
scripts, whenever we want to highlight the type of an identifier (u, v, x, y, z range over
identifier names). Note that the only identifiers in canonical form are those of base type,
represented by xβ below.

C ::= () | i | xβ | xβ ⊕ yβ | if xβ then C else C | xvar := yint | !xvar | λxθ .C |
mkvar(λxunit.C, λyint.C) | new xvar in C | while C do C | let xβ = C inC |
letx = zyβ inC | let x = z mkvar(λuunit.C, λvint.C) in C | letx = z(λxθ.C) in C

Lemma 21. Let Γ � M : θ be an IA�-term. There is an IA�-term Γ � N : θ in canon-
ical form, effectively constructible from M , such that �Γ � M� = �Γ � N�.

Proof. N can be obtained via a series of η-expansions, β-reductions and commuting
conversions involving let and if. ��
A useful feature of the canonical form is that the problems with pointers can be related
to the syntactic shape: they concern references to let-bound identifiers xθ such that θ
is not a base type (i.e. θ = var or θ is a function type). The representation scheme
for pointers corresponds then to enumerating such let bindings along branches of the
syntactic tree of the canonical form (using 0 for topmost bindings). Below we state our
representability theorem for IA2+

� -terms. The definition of AM is actually too generous,
as we shall only need indices to decorate P-questions enabled by O-answers (in concrete
examples the indices will be superscripts).

Proposition 22. Suppose Γ � M : θ is an IA2+
� -term. Let AM = MA + (MA × N),

where A = �Γ � θ�. Let CΓ�M be the set of non-empty spinal complete plays from
�Γ � M : θ�. Then CΓ�M can be represented as a regular language over a finite subset
of AM .
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Proof. For brevity, we shall write CM instead of CΓ�M whenever it is clear what Γ
should be. CM can be decomposed as

∑
i∈IA

(i Ci
M ). Obviously CM is regular if, and

only if, so is any of Ci
M (i ∈ IA). Hence, it suffices to show that Ci

M is regular for
any relevant i. The proof proceeds by induction on the structure of canonical forms.
The most difficult cases are those involving let. Note that whenever a canonical form
of an IA2+

� -term is of the shape let x = z(λxθ.C) in C, z’s type must be of the form
(β1 → β2) → (θ1 → θ2) (and θ is a base type). We handle this case below. Consider
the terms:

Γ, z : (β1 → β2) → (θ1 → θ2), y : β1 � M : β2,
Γ, z : (β1 → β2) → (θ1 → θ2), x : θ1 → θ2 � N : θ′.

Assuming that M and N satisfy the Proposition, we show that so does N ′ ≡ let x =
z(λyβ1 .M) inN . We shall refer to moves contributed by x : θ with mx. If we want to
range solely over O- or P-moves from the component, we use ox and px respectively.
Moreover, we use mz,x, oz,x, pz,x to refer to copies of mx, ox, px in the z : θ′ →
θ component. The most common operation performed using this notation will be the
relabelling of mx to mz,x. If θ is a function type, then there is a unique P-question qx

enabled by the initial move �x. Whenever we have a separate substitution rule for qx,
the rule for mx or px will not apply to qx. In most cases we will want to substitute q0

z,x

(qz,x decorated with index 0 represent a topmost binding) for qx. In addition, i + 1/i is
used to increment all numerical indices by 1. Then we have

C(iΓ ,�z)
N ′ = qz C′ �z,x C(iΓ ,�z,�x)

N [i + 1/i, q0
z,xC′/qx, pz,xC′/px, oz,x/ox]

where C′ = (
∑

i∈I�β1�
iz C(iΓ ,�z,iy)

M [jz/j])∗ and j ranges over I�β2�. ��
Theorem 23. Program equivalence of IA2+

� -terms is decidable.

We remark that adding dynamic memory allocation in the form of ref to IA2+
� , or its

second-order sublanguage, results in undecidability [10]. Hence, at second order, block
structure is “strictly weaker” than scope extrusion.

6 Summary

In this paper we have introduced the notion of block-innocence that has been linked
with call-by-value Idealized Algol in a sequence of results. Thanks to the faithfulness
of block-innocence, we could investigate the interplay between type theory, functional
computation and stateful computation with block structure and dynamic allocation re-
spectively. We have also shown a new decidability result for a carefully designed frag-
ment of IAcbv. Its extension to product types poses no particular difficulty. In fact, it
suffices to follow the way we have tackled the var type, which is itself a product type.
The result thus extends those from [5] and is a step forward towards a full classifi-
cation of decidable fragments of IAcbv: the language IA2+

� we considered features all
second-order types and some third-order types, while finitary IAcbv is known to be un-
decidable at order 5 [9]. Interestingly, IA2+

� features restrictions that are compatible
with the use of higher-order types in PASCAL [8], in which procedure parameters can-
not be procedures with procedure parameters. An interesting topic for future work is a
category-theoretic characterization of block-innocence.
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