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Abstract. Λμ-calculus was introduced as a Böhm-complete extension
of Parigot’s λμ-calculus. Λμ-calculus, contrarily to Parigot’s calculus, is a
calculus of CBN delimited control as evidenced by Herbelin and Ghilezan.
In their seminal paper on (CBV) delimited control, Danvy and Filinski
introduced the CPS Hierarchy of control operators (shifti/reseti)i∈ω.

In a similar way, we introduce in the present paper the Stream Hi-
erarchy, a hierarchy of calculi extending and generalizing Λμ-calculus.
The (Λn)n∈ω-calculi have Church-Rosser and Böhm theorems. We then
present sound and complete CPS translations for the hierarchy. Next, we
investigate the operational content of the hierarchy through its abstract
machines, the (Λn)n∈ω-KAM. Finally, we establish that the Stream hi-
erarchy is indeed a CBN analogue to the CPS hierarchy.

Keywords: Λμ-calculus, delimited control, CPS hierarchy, Böhm theo-
rem, CPS translation, Abstract machine, Streams.

1 Introduction

Curry-Howard in Classical Logic, λμ-calculus and Separation. Curry-
Howard correspondence [17] was first designed as a correspondence between intu-
itionistic natural deduction (NJ) and simply typed λ-calculus. The extension of
the correspondence to classical logic resulted in strong connections with control
operators in functional languages as first noticed [15] by Griffin who analysed the
logical interpretation of Felleisen’s C operator [12]. Shortly after Griffin, Parigot
introduced λμ-calculus [27] as an extension of λ-calculus corresponding to min-
imal classical natural deduction [1,26] in which one can encode usual control
operators. λμ-calculus became one of the most widely studied classical λ-calculi,
both in the typed and untyped setting, for several reasons: it naturally extends
λ-calculus while retaining most of λ-calculus standard properties and intuitionis-
tic natural deduction in a straightforward way. However, a fundamental property
of pure λ-calculus, known as separation property (or Böhm theorem [6]), does
not hold for λμ-calculus [29,9]. In a previous work, we introduced Λμ-calculus,
an extension to λμ-calculus, for which we proved that separation holds [31].
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Delimited control and the CPS hierarchy. Delimited control refers to a
class of control operators which are much more expressive than non-delimited
control operators (like call/cc for instance) in that they allow to simulate
various side-effects [13], the monadic side-effects. In their seminal paper on
shift/reset [7], Danvy and Filinski defined shift/reset delimited-control op-
erators by their CPS semantics. They also introduced a hierarchy of such control
operators, (shifti/reseti)i∈ω, which are obtained by iterating CPS transla-
tions and that is known as the CPS hierarchy. Delimited control and the CPS
hierarchy found applications in linguistics, normalization by evaluation, partial
evaluation or concurrency. While the emphasis was traditionally given to the
delimited-control languages in call-by-value, recent works [16,21] have advocated
the reasons for studying CBN delimited control.

In this paper, we develop a CBN analogue to the CPS hierarchy, based on Λμ-
calculus. We develop our work on the strong connections between Λμ-calculus
and calculi with delimited continuations in call-by-name evidenced by Herbelin
and Ghilezan [16].

Structure of the Paper. In Section 2, we first review Parigot’s λμ-calculus
and Λμ-calculus as well as the main properties of those calculi. In Section 3, we
motivate and define the (Λn)n∈ω-calculi which we refer to as the stream hier-
archy. We establish two essential results of its meta-theory: Church-Rosser and
Böhm theorems. Section 4 is concerned with translations of the stream hierar-
chy into λ-calculus which are sound and complete and we develop in Section 5
Krivine’s style abstract machines [23] for the hierarchy. Finally, Section 6 makes
precise the relationships between the Stream hierarchy and the CPS hierarchy.
A long version of this paper can be found on the author’s webpage [30].

2 Background and Notations: From λμ to Λμ.

In this section, we recall some background on Λμ-calculus: starting with Parigot’s
λμ, we introduce Λμ-calculus via the property of Separation.

Parigot’s Original Calculus: λμ. In 1992, Parigot proposed an extension of
λ-calculus providing “an algorithmic interpretation of classical natural deduc-
tion” [27]: λμ-calculus is in Curry-Howard correspondence [17] with classical
natural deduction [26,27]. Although initially motivated by the correspondence
with classical logic, λμ-calculus is now widely studied in its untyped version as
we do in the rest of this paper.

Definition 1. λμ-terms (t, u, v, · · · ∈ Σλμ) are defined by the following syntax:

Σλμ t, u ::= x | λx.t | (t)u | μα.(t)β

with x ∈ V and α, β ∈ Vc, V and Vc being two disjoint infinite sets of variables.
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In μα.(t)β, variable β is in the scope of μα. For t ∈ Σλμ, (t)α is not in Σλμ,
but we refer to such it as a named term and generically write n (and thus we
write μα.n). The set of closed λμ-terms is denoted by Σc

λμ.

Remark 1. The reader may have noticed that we use an alternative notation for
λμ-terms that we introduced and justified in previous works [31,33], writing (t)α
instead of the more common [α]t (this shall later be extended to the (Λi)i∈ω).

In this paper, we shall use Krivine’s notation [22] for terms of λ-calculus
and its various extensions considered here: we write (t)u for λ-application (in-
stead of (MN)). As usual we consider λ-application to be left-associative, that
is (t)u1 . . . uk−1uk shall be read as (. . . ((t)u1) . . . uk−1)uk. This notation is ex-
tended to variables of Vc (and later on to the variables of the hierarchy). For
instance, we shall write μα.(t)uβ instead of μα.((t)u)β.

Definition 2. λμ-reduction, written −→λμ, is induced by the following rules:

(λx.t)u −→β t {u/x} (μα.n)β −→ρ n {β/α}
(μα.n)u −→μ μα.n {(v)uα/(v)α} μα.(t)α −→θ t if α �∈ FV (t)

n {(v)uα/(v)α} substitutes (without variable-capture) every named term (v)α
in n by (v)uα. This substitution is called structural substitution [27].

A λμ-calculus Satisfying Böhm Theorem: Λμ-calculus. λμ satisfies stan-
dard properties of λ-calculus such as confluence [27,29], subject reduction [27]
and SN [28]. However, Böhm theorem fails in λμ-calculus (more precisely in its
extensional version, λμη-calculus [29,9]). This led us [31] to define an extension
to λμη, Λμ-calculus, for which we proved Böhm theorem: the more liberal syntax
of Λμ makes new contexts available and thus achieves a Böhm Out.

Definition 3. Λμ-terms (t, u, v · · · ∈ ΣΛμ) are defined by the following syntax:

ΣΛμ t, u ::= x | λx.t | (t)u | μα.t | (t)α

where x (resp. α) ranges over an infinite set Vt (resp. Vs) of term (resp. stream)
variables. Vt and Vs are disjoint. The set of closed Λμ-terms is denoted by Σc

Λμ.

Remark 2. Since α �∈ ΣΛμ, it is clear that notations (t)α and (t)u are not
ambiguous. Notice that Σλμ � ΣΛμ and that named terms of definition 1 are now
elements of ΣΛμ. Moreover, terms such as μα.μβ.t or λx.(t)αy are in ΣΛμ\Σλμ.

Definition 4. Λμ-reduction, written −→Λμ, is induced by the following rules:

(λx.t)u −→βT t {u/x} λx.(t)x −→ηT t if x �∈ FV (t)
(μα.t)β −→βS t {β/α} μα.(t)α −→ηS t if α �∈ FV (t)

μα.t −→fst λx.μα.t {(v)xα/(v)α} if x �∈ FV (t)

Remark 3. Notice that μ is not part of Λμ-calculus reduction system. It can
indeed be simulated by a sequence of fst and βT -reduction; see [31,33] for details.
Names for reductions in Λμ come from the stream interpretation of Λμ: VS-
variables are place-holders for streams of Λμ-terms; see next section for details.
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The Böhm theorem for Λμ is stated with respect to a set of canonical normal
forms (corresponding to βη-normal forms in λ-calculus), which are terms in
βT ηT βSηS-normal form such that no fst -reduction step creates a non-fst redex:

Definition 5. A Λμ-term t is in canonical normal form (CNF) if it is
βT ηT βSηS-normal and if it contains no subterm of the form (λx.u)α nor (μα.u)v.

Theorem 4 (Böhm theorem [31]). Let t, t′ ∈ Σc
Λμ in CNF. If t �=Λμ t′, then

there exists a context1 C[] st. C[t] −→�

Λμ λx.λy.x and C[t′] −→�

Λμ λx.λy.y.

Confluence holds in Λμ [32,34] under the same hypothesis as in λμη-calculus:

Theorem 5. ∀t, t′, t′′ ∈ Σc
Λμ, ∃u ∈ ΣΛμ s.t. t −→	

Λμ t′, t′′ ⇒ t′, t′′ −→	
Λμ u.

3 λ, μ and Beyond: The Stream Hierarchy

In the present section, we introduce the (Λn)n∈ω-calculi that we refer to as
the stream hierarchy. This hierarchy of calculi is intended to be a call-by-name
analogous to the CPS hierarchy. We first motivate our approach before defining
the hierarchy and focusing on the metatheory of (Λn)n∈ω-calculi (they satisfy
confluence and separation). In the following sections, we shall then study CPS
translations and abstract machines for the hierarchy and finally, we shall estab-
lish that the Stream Hierarchy is indeed a CBN analogue to the CPS hierarchy
in the final section of the paper.

3.1 Motivating the Stream Hierarchy

Λμ-calculus, a CBN calculus of delimited control. Separation theorem
for Λμ-calculus can be seen as a consequence of the fact that Λμ-calculus ad-
mits more contexts than Parigot’s λμ. As a consequence, it allows for a more
powerful exploration of terms. Typical contexts used in the separation proofs
are []u1 . . . umβuv1 . . . vnβv. This exploits the fact that a context of the form
[]u1 . . . umβu delimits the part of the environment that can be passed through
the left-most μ-abstracted variable (i.e. α) when term μα.μα′.t is placed in the
hole. As a result, one can access to the second μ-abstracted variable α′ thanks
to the second portion of the context, v1 . . . vnβv.

Based on this fact, Herbelin and Ghilezan [16] evidenced strong connections
between Λμ-calculus and calculi with delimited continuations in the spirit of
Danvy and Filinski shift/reset operators [7] using the calculus λμ̂tp. In its call-
by-value version, λμ̂tp is equivalent to Danvy-Filinski’s shift/reset operators
while in its call-by-name version the calculus is equationally correspondent to
Λμ-calculus. This led Herbelin & Ghilezan to assert that Λμ-calculus is a CBN
calculus of delimited control.

1 The context may be asked to be “stream applicative”, ie. of the form:
[]t1,1 . . . t1,n1α1 . . . tk,1 . . . tk,nk

αk.
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CPS Hierarchy. In their seminal paper on shift/reset [7], Danvy and Filin-
ski introduced a hierarchy of control operators, (shifti/reseti)i∈ω , which are
obtained by iterated CPS translations. This is known as the CPS hierarchy.
In the following, we shall refer to it as the CPS hierarchy or λSn and adopt
Kameyama’s terminology [19]:

Definition 6 (λSn)

ΣλSn t, u ::= x | λx.t | (t)u | 〈t〉i | Sik.t 1 ≤ i ≤ n
Ei

v ::= [] | (Ei
v)t | (V )Ei

v | 〈Ei
v〉j 1 ≤ j ≤ i

V ::= x | λx.t

(λx.t)V −→ t {V/x}
〈V 〉i −→ V
〈Ej−1

v [Sjk.t]〉i −→ 〈t {

λx.〈Ej−1
v [x]〉j/k

}〉i

While the emphasis was traditionally given to the delimited-control languages
in call-by-value, recent works have advocated the interest of studying call-by-
name delimited control [16,21], although CBN delimited control behaves quite
differently from call-by-value. In particular, in pursuing the investigation of call-
by-name delimited control, it is quite natural to wonder whether an analogous
to the CPS hierarchy exists in the call-by-name world.

Λμ-calculus, Streams and Infinitary λ-calculi. The fst -rule allows for an
operational interpretation of Λμ-calculus as a stream calculus with the ability
to abstract over streams of Λμ-terms. With this interpretation of VS-variables
as place-holders for streams of Λμ-terms:

– the effect of the fst -rule is to instantiate the first elements of a stream:

μα.t −→	
fst λx1 . . . λxn.μα.t {(v)x1 . . . xnα/(v)α}

– μα is considered as an abstraction over streams of terms
(λxα

1 . . . xα
n . . . .t) while (t)α can be seen as the construction passing a

stream as an argument to t ((t)xα
1 . . . xα

n . . . );
– βS and ηS are respectively the corresponding of β-reduction and η-reduction

for streams (or an infinite reduction sequence of β, resp η) and rule fst
corresponds to popping the first element of a stream (or matching it);

– actually, Λμ-calculus can be seen as a core functional language for stream,
this direction being investigated in a current work with M. Gaboardi (see
long version of the paper for details).

Parigot already noticed some (weak) form of this in his seminal paper where “the
operator μ looks like a λ having potentially infinite number of arguments” [27].
Viewing μ as an operator iterating λ-abstraction until limit ordinal ω, the par-
allel with infinitary λ-calculi is natural. Such infinitary calculi have been con-
sidered in the literature [3,4,20] both to study infinite structures arising in lazy
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languages or to study consistency problems in λ-calculus. Though, infinitary
λ-calculi have been designed in a much different way from the infinitary calculus
underlying Λμ-calculus: while a reduction sequence may have transfinite length,
depths of terms are bounded by ω (that is any subterm of an infinite term is at
finite depth): subterms at transfinite depths are considered meaningless. On the
contrary, with Λμ-calculus, limit ordinal ω is reached by one μ-abstraction which
is a limit ordinal construction: μα.μβ.λx.x would correspond to transfinite term
λx0, x1 . . . xω , xω+1 . . . xω2.xω2 in which λxω2.xω2 is at depth ω2.

Even though we will not pursue this direction in this paper, this theme has
been extremely influential in developing the stream hierarchy. Indeed, once a
transfinite calculus is unveiled, the question of the ordinal by which it is indexed
(if any) is pending: λ-calculus corresponds to ordinal ω while Λμ-calculus cor-
responds to ordinal ω2 but what about other ordinals such as ω3 for instance?
The stream hierarchy is actually related to this question.

3.2 Definition of the Hierarchy of (Λn)n∈ω-calculi

Definition 7. Let V be a countable set of variables (x, y, · · · ∈ V). For any
i ∈ ω, one considers a copy of V, named V i (xi, yi, . . . denoting the elements of
V i), those copies being pairwise disjoint. Λω-terms (t, u, v, · · · ∈ ΣΛω) are defined
by the following grammar (closed Λω-terms are denoted by Σc

Λω ):

ΣΛω t, u ::= x0 | λ0x.t | (t)u
| λix.t | (t)xi for any i > 0

In λix.t (resp xi), i is the level of the abstraction (resp. variable) and λix binds
every variable xi which is free in t. An α-equivalence straightforwardly follows.

Definition 8. For n ∈ ω, ΣΛn (resp. Σc
Λn) is the restriction of ΣΛω (resp. Σc

Λω )
to terms with binders and variables of level lower or equal to n, for i ≤ n.

Definition 9. For n ∈ ω, −→Λn is the reduction on ΣΛn induced by rules:

(λ0x.t)u −→β0 t
{

u/x0
}

(λix.t)yi −→βi t
{

yi/xi
}

if 0 < i ≤ n
(λix.t)u −→μi/0 λix.t

{

(v)uxi/(v)xi
}

if 0 < i ≤ n
(λix.t)yj −→μi/j λix.t

{

(v)yjxi/(v)xi
}

if 0 < j < i ≤ n

Definition 10. For n ∈ ω, −→Λn
η

is the reduction on ΣΛn induced by rules:

(λ0x.t)u −→β0 t
{

u/x0
}

(λix.t)yi −→βi t
{

yi/xi
}

if 0 < i ≤ n
λix.(t)xi −→ηi t if xi �∈ FV (t), 0 ≤ i ≤ n
λix.t −→fsti/j λjx.λix.t

{

(v)xjxi/(v)xi
}

if xj �∈ FV (t) and 0 ≤ j < i ≤ n

Proposition 1. For any 0 ≤ j < i ≤ n, μi/j can be derived from fsti/j and βj.
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Definition 11. We consider the following subsystems of Λn
η -reduction:

– β (resp. η) is the subsystem of reductions (βi)0≤i≤n (resp. (ηi)0≤i≤n);
– fst is the subsystem made of reductions (fsti/j)0≤j<i≤n;
– β0

var is the restriction of β0 to redex where the argument is a level-0 variable;
– βvar is the subsystem made of reductions β0

var and (βi)1≤i≤n.

Example 1. Λ0 and Λ1 are respectively λ-calculus and Λμ-calculus.
We shall consider here an example in Λi which is a CBN correspondent to the

level i Shift of the CPS-hierarchy S = λ0x.λiy.(x0)λ0z.(z0)yi.
Consider C<i = []ut1,1 . . . t1,n1x

j1
1 . . . tk,1 . . . tk,nk

xjk

k such that for all l ≤ k,
jl < i, we have C<i(S) −→	

Λi λiy.(u)λ0z.(z0)t1,1 . . . t1,n1x
j1
1 . . . tk,1 . . . tk,nk

xjk

k yi

that is S stores any context of level strictly less than i in a continuation that
can later be manipulated (for instance it can be composed with itself if u =
λ0x.(u′)λ0y.(x0)(x0)y0). The flow of control is given to u only once an argument
of level i (or higher) is reached, in which case λiy is destroyed.

3.3 Meta-theory of the Stream Hierarchy

In this section, we state two essential theorems of Λn-calculi: confluence and
separation. More details can be found in [30].

Confluence theorem. Confluence holds on closed terms. Such a restriction
is necessary: (λ2y.x)z2 reduces to x and to (λ0y.λ1y′.λ2y′′.x)z2 which cannot
reduce to the same term.

Theorem 6. For any n ∈ ω and any t, u, v ∈ Σc
Λn , if t −→	

Λn
η

u, v then there
exists w ∈ Σc

Λn such that u, v −→	
Λn

η
w.

As a corollary, Λj is a conservative extension of Λi, for any i < j:

Corollary 1. Let i < j ∈ ω and t, u ∈ Σc
Λi . Then t =Λi

η
u iff t =Λj

η
u.

Böhm theorem. To state the separation theorem (aka Böhm theorem) for the
stream hierarchy, we first define canonical normal forms for the hierarchy using
the notion of pre-redex.

Definition 12. t ∈ ΣΛn is a pre-redex if it is of the form (λix.t)yj or (λix.t)u
for 0 ≤ i, j ≤ n.

Canonical normal forms (Λn-CNF) can be considered as those terms containing
only fst-redexes such that a fst-reduction does not create any redex other than
fst-redexes:

Definition 13. A Λn-CNF is a βη-normal form with no pre-redex.

We can now state the separation result:

Theorem 7. Let n ∈ ω, t, u ∈ Σc
Λn . If t, u are non fst-equivalent Λn-CNF then

there exists a context C[] st. C[t] −→	
Λn

η
λ0x, y.x0 and C[u] −→	

Λn
η

λ0x, y.y0.
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4 Translating the Stream Hierarchy into λ-Calculus

We define in this section sound and complete translations of the stream hier-
archy into λ-calculus with pairs. These translations are inspired by the recent
CPS translation for λμ̂tp-calculus by Herbelin and Ghilezan [16]. Several trans-
lations into λ-calculus have been proposed for λμ-calculus in the literature. de
Groote [10] was the first to study CPS translations for λμ-calculus. Lafont, Reus
and Streicher [24] proposed a CPS translation for λ-calculus into λ-calculus with
pairs which later led to a continuation semantics for λμ-calculus[36] and is very
much related to CPS translations for λμ-calculus by Fujita [14] or Lassen [25].
A by-product of this section is to provide a sound and complete CPS translation
for Λμ-calculus. We recall the definition of the λ-calculus with pairs.

Definition 14. Terms of λ-calculus with pairs are given by the following
syntax:

Σλπ t, u ::= x | λx.t | (t)u | 〈t, u〉 | (π1)t | (π2)t

Definition 15. Equations of λπ are βη (equationally) plus the following:

(π1)〈t1, t2〉 =π1 t1 (π2)〈t1, t2〉 =π2 t2 〈(π1)t, (π2)t〉 =SP t

Definition 16. We assume that the set of variables of λ-calculus with pairs is
V = {k}�V0�· · ·�Vn and we define a translation [−] : ΣΛn −→ Σλπ as follows:

[

x0
]

= λk.(x0)k
[

λix.t
]

= λk.((λxi. [t])(π1)n−i+1k)〈. . . 〈(π2)(π1)n−ik, (π2)(π1)n−i−1k〉 . . . , (π2)k〉
[

(t)xi
]

= λk.([t])〈. . . 〈〈xi, (π1)n−ik〉, (π2)(π1)n−i−1k〉 . . . , (π2)k〉
[(t)u] = λk.([t])〈. . . 〈〈[u] , (π1)nk〉, (π2)(π1)n−1k〉 . . . , (π2)k〉

with 0 ≤ i ≤ n for
[

λix.t
]

and 0 < i ≤ n for
[

(t)xi
]

.

Remark 8. In the previous definition, we abbreviated (πi)(πi) . . . (πi)t as (πi)nt.
The definition for [(t)u] when u = x0 corresponds to instantiating the defini-

tion for
[

(t)xi
]

with i = 0. An alternative definition for [(t)u] is thus possible:
[(t)u] =

[

(t)x0
] {

[u] /x0
}

if x0 �∈ FV (t), if clause for
[

(t)xi
]

is extended to i = 0.

Example 2. Consider t = λ1y0 . . . yn.(x0)t1 . . . tm ∈ ΣΛ1 . Then one has:

[t] −→	

λk.(x0)〈〈[t1] , . . . 〈[tm] , (π1)(π2)m+1k〉〉, (π2)m+2k〉{

(π1)(π2)ik/y1
i , 0 ≤ i ≤ m

}

The translation is sound and complete with respect to Λn
η -equational theory:

Theorem 9. For any n ∈ ω, t, u ∈ Σc
Λn , t =Λn

η
u iff [t] =βηπSP [u] .

For the completeness part, we study the image of ΣΛn terms by the translation
which is characterized by the terms T defined by the following grammar:
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Definition 17. The target of the CPS can be defined by the following grammar:

T, K0 ::= x0 | λk.(T )Kn+1 | (λxi.T )Ki | (π1)K1 (for 0 ≤ i ≤ n)
Ki ::= xi | 〈Ki−1, Ki〉 | (π2)Ki | (π1)Ki+1 (for 0 < i ≤ n)
Kn+1 ::= k | 〈Kn, Kn+1〉 | (π2)Kn+1

Proof. We only sketch the proof, more details are available in appendix and in
the long version. Soundness is obtained by induction on the length of a proof of
equality between t and u. Completeness is more involved. It mainly amounts to
the following arguments:

– an inverse translation, _�, is defined from the target language of Λn to Λn+1;
– one proves that the inverse translation preserves equality in Λn+1, and thus:

if [t] =βηπSP [u], then [t]� =Λn+1
η

[u]�;

– one then shows that [t]� =Λn+1
η

t so that we can deduce that t =Λn+1
η

u and
– finally we conclude thanks to the fact that Λn+1

η is a conservative extension
of Λn

η (corollary 1): t =Λn
η

u. �

Remark 10. It shall be noted that the proof of completeness is greatly simplified
by the use of the hierarchy in the sense that the inverse translation translates
back to Λn+1 and not to Λn. Indeed, it can take advantage of the regularity of
the structure of the n + 1th continuation used in the translation.

A sound and complete CPS translation for Λμ-calculus, []Λμ, is obtained by
instantiating the previous result with n = 1. We have the following corollary:

Corollary 2. For any t, u ∈ Σc
Λμ, t =Λμ u if, and only if, [t]Λμ =βηπSP [u]Λμ .

5 An Operational Investigation of the Stream Hierarchy

In the final section of his seminal paper, Parigot outlined an abstract machine
for λμ-calculus. Later, de Groote [11] and Streicher and Reus [36] studied ab-
stract machines for λμ-calculus. We shall be interested in this section in abstract
machines for the Stream hierarchy. We shall now define abstract machines which
compute Λn-head normal forms. In the following, we do not consider extension-
ality rules which are not necessary to compute head normal forms.

Definition 18. Λn-head normal forms are defined by the following grammar:

h ::= g | λix.h for 0 ≤ i ≤ n
g ::= x0 | (g)t | (g)xi for 0 < i ≤ n, t denotes an arbitrary Λn-term

In the next definition we introduce constants representing variables in order to
compute head normal forms (and not only weak head normal forms).
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Definition 19. Let 0 ≤ i ≤ n. Constants of level i are defined as

ci = xi
ρi

| v(cj)i
ρi

with x ∈ V, i < j and ρi a finite sequence of integers k, 0 ≤ k < i (ε denotes
the empty sequence). We shall also consider particular constants which shall
represent empty contexts: ⊥i, 0 ≤ i ≤ n+1. The structure of constants takes into
account the need for treating the case of fst-rules. For instance xj

ε will represent
the variable xj in the left-hand side of λjx.t −→fstj/i λiy.λjx′.t′, while v(xj

ε)i
ε

and xj
[i] will respectively represent variable yi and x′j in the right-hand side.

Moreover, the following notions are needed to define the machine:

Definition 20. We define by mutual recursion contexts of level i, 0 ≤ i ≤
n + 1, closures and environments:

– a closure is a pair of a term t and an environment e, denoted t[e];
– an environment e is a partial function which, when defined, associates to a

variable of level i a context of level i;
– a context S0 of level 0 is defined as follows: S0 ::= ⊥0 | c0 | u[e];
– a context Si of level i (i ≥ 1) is defined as follows: Si ::= ⊥i | ci | Si−1 · Si.

We set ⊥i · Si+1 to be equal to Si+1, and (S1
i · . . . (Sn

i · ⊥i+1)) · (Si+1 · Si+2) to
(S1

i · . . . (Sn
i ·Si+1)) ·Si+2. These equalities allow us to assume that if S is of the

form (((S1
i · . . . (Sn

i · ⊥i+1)) · Si+2) . . . Sk), then either ∀j, i + 2 ≤ j ≤ k, Sj = ⊥j

or it is of the form ((((((S1
i · . . . (Sn

i · ⊥i+1)) · ⊥i+2) . . .⊥j−1) · cj
ρ) ·Sj+1) . . . Sk).

Definition 21. We define popi(Sn+1) and push(Si, Sn+1) as follows:

– push(Si, Sj) (with i < j):
• push(⊥i, Sj) = Sj;
• push(Si,⊥j) = ((Si · ⊥i+1) · · · · ⊥j) if Si �= ⊥i;
• push(Si, c

j
ρ) = ((Si · ⊥i+1) · · · · ⊥j−1) · cj

ρ if Si �= ⊥i;
• push(Si, Si+1) = (Si · Si+1) if Si �= ⊥i;
• push(Si, Sj · Sj+1) = (push(Si, Sj) · Sj+1) if Si �= ⊥i.

– popi(Sn+1) = popi,n+1(Sn+1) with popi,j(Sj) (for i < j):
• popi,j(⊥j) = (⊥i,⊥j);
• popi,j(cj

ρ) = (v(cj
ρ)i

ε
, cj

ρ·i);
• popi,j+1(((S1

i−1 ·. . . Sn
i−1·⊥i)·⊥i+1)·. . .⊥j+1) = (S1

i−1·. . . Sn
i−1·⊥i,⊥j+1);

• popi,j+1(((((S1
i−1 · . . . Sn

i−1 ·⊥i) · · · ·⊥k−1) · ck
ρ) ·Sk+1) · · · ·Sj+1) = (S1

i−1 ·
. . . Sn

i−1 · v(ck
ρ)i

ε, ((c
k
ρ·i · Sk+1) . . . Sj+1)). Otherwise, one has:

• popi,j+1(Sj · Sj+1) = (S′
i, S

′
j+1) if popi,j(Sj) = (S′

i, S
′′
j ) and S′

j+1 =
push(S′′

j , Sj+1).

We now define the Λn-KAM:

Definition 22. States of Λn-KAM have the form λi1x1
i1
ε . . . . λinxn

in
ε .〈t, [e],

Sn+1〉 where t ∈ ΣΛn , e is an environment and Sn+1 is a context of level n + 1.
States are abbreviated as

−→
λ 〈t[e] Sn+1〉 when the prefix of abstractions is irrelevant.

An initial state of Λn-KAM is of the form 〈t, [∅],⊥n+1〉.
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Definition 23. The transitions of the machines are the following:
−→
λ 〈x0 [e] S〉 −→ −→

λ 〈t [e′] S〉 if e(x0) = t[e′]−→
λ 〈(t)u [e] S〉 −→ −→

λ 〈t [e] S′〉 with S′ = push(u[e], S)−→
λ 〈(t)xi [e] S〉 −→ −→

λ 〈t [e] S′〉 with S′ = push(e(xi), S)−→
λ 〈λix.t [e] S〉 −→ −→

λ 〈t [e′] S′〉 if popi(S) = (S′
i, S

′), e′ = [e, xi = S′
i]

and S′
i �= S1

i−1 · . . . (Sn
i−1 · ⊥i)−→

λ 〈λix.t [e] S〉 −→ −→
λ λixi

ε.〈t [e′] ⊥n+1〉 if popi(S) = (S1
i−1 · . . . (Sn

i−1 · ⊥i),⊥n+1)
and e′ = [e, xi = S1

i−1 · . . . (Sn
i−1 · xi

ε)]

The only case when the machine cannot reduce is when the machine state is in
case λi1xi1

1ε. . . . λ
inxin

nε.〈x0, [e], S〉 and x0 is associated by e to a variable constant
of level 0, c0, and not to a closure t[e′] since there is no rule for reducing this
case (it is easy to check that when the initial state is made of a closed term,
this is indeed the only case which can stop the machine). The final states of the
machine are thus of the form:

λi1xi1
1ε. . . . λ

inxin
nε.〈c0, [e], S〉

In that case, we have reached the head variable and obtained the head normal
form, the prefix of λixi

ε which has been gathered during the computation is the
prefix of abstractions of the head normal form (up to some fst-reduction which
have been lazily performed in the term and shall be propagated during the
reconstruction of the Λn-term). One actually has the following:

Theorem 11. If t is a closed Λn-term, Λn-KAM stops after a computation from
initial state 〈t[∅],⊥n+1〉 if and only if t has a head normal form.

Moreover, from the constant of level 0 which is the left-component of the final
state, one can compute the head variable of the head normal form and recursively
the complete head normal form.

6 Relating the Stream Hierarchy and the CPS Hierarchy

The aim of this section is to make clear how the Stream hierarchy relates to
Danvy & Filinski’s CPS hierarchy and to actually show that the Stream hierarchy
is indeed a call-by-name analogous to the CPS hierarchy, that is a CBN hierarchy
of delimited continuations. For this purpose, we first introduce a new hierarchy of
calculi, the λμ̂tpn-calculi that we use as mediators between the two CBN/CBV
hierarchies, following a method recently developed by Herbelin and Ghilezan.

6.1 λμ ̂tpn-calculi

Definition 24 (λμ ̂tpn-calculi). Let n ∈ ω. λμ ̂tpn-terms (t, u, v, · · · ∈ Σλμ̂tpn
)

are defined by the following syntax (with q ::= α | ̂tp):

Σλμ̂tpn
t, u ::= x | λx.t | (t)u | μiq.ci ci ::=

[

qi
]

t (1 ≤ i ≤ n)
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CBV and CBN λμ̂tpn-calculi can be naturally considered. In the CBV case,
values and evaluation contexts are defined as V ::= x | λx.t and Ei

v ::= [] |
(Ei

v)t | (V )Ei
v | μj

̂tp.
[

qj
]

Ei
v, 1 ≤ j < i while in the CBN case, every term is a

value and evaluation contexts are Ei ::= [] | (Ei)t | μj
̂tp.

[

qj
]

Ei, 1 ≤ j < i.

Definition 25 (CBN/CBV λμ ̂tpnequational theories)
CBV λμ̂tpn equational theory (written =

λμ̂tpcbv
n

) is defined by the following rules:

(βv) (λx.t)V = t {V/x} (ηv) λx.(V )x = V if x �∈ FV (V )
(ηi

̂tpv
) μi

̂tp.
[

̂tp
i
]

V = V (ηi
μ) μiα.

[

αi
]

t = t if αi �∈ FV (t)

(μi
̂tp)

[

̂tp
i
]

μi
̂tp.ci = ci (μi

v)
[

qi
]

Ei−1
v

[

μiα.ci

]

= ci

{[

qi
]

Ei−1
v [u]/

[

αi
]

u
}

(βi
Ω) (λx.Ei

v [x])μi
̂tp.ci = Ei

v

[

μi
̂tp.ci

]

(μ′i
̂tp)

[

̂tp
l
]

μiα.ci =
[

̂tp
l
]

μi
̂tp.ci

{

̂tp
i
/αi

}

(i ≤ l)
(μi

let) μjα.
[

qj
]

(λx.t)μi
̂tp.ci = (λx.μjα.

[

qj
]

t)μi
̂tp.ci (j ≤ i + 1)

=λμ̂tpcbn
n

is defined by keeping only rules βv, ηv, μ
i
v, μ

i
̂tp, η

i
̂tpv

and ηi
μ, by consider-

ing every terms as a value, Ei as evaluation contexts and constraining qi to be
αi. CBN rules are denoted by droping the v subscripts in the rule names.

Definition 26 (Translations between λSn and λμ ̂tpn)

|〈t〉i|S〉̂tp = μi
̂tp.[̂tp

i
]|t|S〉̂tp |Sik.t|S〉̂tp = μiα.[̂tp

i
](λk.|t|S〉̂tp)λx.μi

̂tp.[αi]x
|μi

̂tp.ci|̂tp〉S = 〈|ci|̂tp〉S〉i |μiα.ci|̂tp〉S = Sik
i
α.|ci|̂tp〉S

|[̂tpi
]t|̂tp〉S = |t|̂tp〉S |[αi]q|̂tp〉S = (ki

α)|t|̂tp〉S

Definition 27 (Translations between Λn and λμ ̂tpn)

|λix.t|Λ〉̂tp = μiαx.[̂tp
i
]|t|Λ〉̂tp |μi

̂tp.ci|̂tp〉Λ = |ci|̂tp〉Λ |μiα.ci|̂tp〉Λ = λixα.|ci|̂tp〉Λ
|(t)xi|Λ〉̂tp = μi

̂tp.[αi
x]|t|Λ〉̂tp |[̂tpi

]t|̂tp〉Λ = |t|̂tp〉Λ |[αi]t|̂tp〉Λ = (|t|̂tp〉Λ)xi
α

Theorem 12. For any n ∈ ω, Λn is in eq. correspondence with CBN λμ̂tpn:
let t, u ∈ Σc

Λn , t =Λn
η

u ⇒ |t|Λ〉̂tp =
λμ̂tpcbn

n
|u|Λ〉̂tp

let t, u ∈ Σc
λμ̂tpn

, t =
λμ̂tpcbn

n
u ⇒ |t|̂tp〉Λ =Λn

η
|u|̂tp〉Λ

In order to study the correspondence with CPS hierarchy, we recall Kameyama’s
axiomatization of λSn [19]:

Definition 28. =λSn is defined as:

(βv) (λx.t)V = t {V/x}
(ηv) λx.(V )x = V if x �∈ FV (V )
(βΩ) (λx.E0

v [x])t = E0
v [t] if x �∈ FV (E0

v )
(Reset − V alue) 〈V 〉i = V
(Reset − lift) 〈(λx.t)〈u〉i〉j = (λx.〈t〉j)〈u〉i j ≤ i
(S − reset) Sik.〈t〉i = Sik.t
(S − elim) Sik.(k)〈t〉i−1 = 〈t〉i−1 k �∈ FV (t)
(S − lift) 〈Ej−1

v [Sjk.t]〉i = 〈t {

λx.〈Ej−1
v [x]〉j/k

}〉i x �∈ FV (kEj−1
v )
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Theorem 13. For any n ∈ ω, CBV λμ̂tpn simulates λSn: let t, u ∈ Σc
λSn

,
t =λSn u ⇒ |t|S〉̂tp =

λμ̂tpcbv
n

|u|S〉̂tp.

Remark 14. If we have only implication ⇒ and not the converse, it is solely
because λμ̂tpn makes use of structural substitution and thus that some reductions
are anticipated in λμ̂tpn compared to the reduction in λSn. This already occurs
at the first level of the hierarchy [16] and is analyzed in [2].

7 Conclusion

In this paper we introduced a new hierarchy of calculi, the (Λn)n∈ω-calculi, called
the stream hierarchy. This hierarchy generalizes both λ-calculus and Λμ-calculus.
(Λn)n∈ω-calculi have layered, or hierarchical, abstractions as well as variables
with levels and its reduction system naturally extends the one for Λμ-calculus.
The main related works are the CBV studies of delimited continuations and of
the CPS hierarchiy and most notably works by Danvy, Filinski, Hasegawa and
Kameyama [5,8,13,18,19] and the works on CBN delimited control by Ghilezan,
Herbelin and Kiselyov [16,21]. The main results of the paper are:

– Church-Rosser and Böhm theorem for the hierarchy which ensures that the
hierarchy is well-structured;

– sound and complete CPS translations for the hierarchy. The completeness
proof strongly relies on conservativity results between different layers of the
hierarchy allowing for simpler completeness proofs compared to more tradi-
tional translations as Fujita’s CPS adapted to Λμ-calculus;

– an operational semantics for the hierarchy obtained by constructing ab-
stract machines, the Λn-KAM, inspired from Krivine abstract machine for
λ-calculus. The Λn-KAMs compute Λn-head normal forms;

– finally, we established that the stream hierarchy is indeed a hierarchy of
delimited continuations in call-by-name, by mediating between the CPS hi-
erarchy and the stream hierarchy thanks to the λμ̂tpn-calculi.

As a conclusion, we have developed a(n almost) complete study of the stream
hierarchy. Our contribution evidences that the Stream hierarchy is a CBN hi-
erarchy of delimited continuations and that fruitful connections exist between
delimited control and infinitary calculi which underly Λμ-calculus and the entire
stream hierarchy. However, some more developments are still to be done, which
are left for future work:

– the CPS translations for the hierarchy can be used for a semantical study
of the hierarchy. However, we are also interested in developping Böhm tree
semantics for Λμ-calculus and the stream hierarchy;

– the CPS translations and the abstract machines considered in this paper
have many similarities. It would be of interest to study how the abstract
machines can be generated from the CPS semantics;

– the Λn-KAM has a structure (states and reductions) very similar to abstract
machines for the CPS hierarchy [8,5]. We shall make this relation clear;
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– we developed an untyped study of the stream hierarchy but a typed study
of the hierarchy would also be of interest;

– the stream hierarchy that we considered here is indexed by ω. However, it
can straightforwardly be made more general by indexing the hierarchy by a
larger ordinal while preserving most results. We limited our presentation to
ω for two reasons: for simplicity, first, but also because the CPS hierarchy
is itself limited to ω. We conjecture that the CPS hierarchy can as well be
extended above ω which could actually be interesting for several applications
of the hierarchy where it might be of interest to have a delimiter that can
delimit an infinite number of different shift operators;

– the Stream interpretation of Λμ-calculus and the links with infinitary calculi
have been very influential. We shall develop these directions in future works.
See [35] for some early developments.

Finally, we think that the ability to develop the stream hierarchy as a natural
generalization of Λμ-calculus is a hint of the fact that Λμ-calculus is a calculus
with a strong structure: this hierarchical extension could not have been developed
based on Parigot’s syntax for instance (but for adding a dynamically bound
variable as we did with λμ̂tpn-calculi).

Acknowledgments. The author wishes to thank Hugo Herbelin, Luca Paolini,
Mauro Piccolo, Kazushige Terui and Simona Ronchi della Rocca for helpful
discussions and fruitful comments as well as the anonymous reviewers.
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