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Abstract. Model checking can be applied to finite state systems in
order to find counterexamples showing that they do not satisfy their
specification. This was generalized to handle parametric systems under
some given constraints, usually using some inductive argument. How-
ever, even in the restricted cases where these parametric methods apply,
the assumption is usually of a simple fixed architecture, e.g., a ring. We
consider the case of nontrivial architectures for communication proto-
cols, for example, achieving a multiparty interaction between arbitrary
subsets of processes. In this case, an error may manifest itself only under
some particular architectures and interactions, and under some specific
values of parameters. We apply here our model checking based genetic
programming approach for achieving a dual task: finding an instance of
a protocol which is suspicious of being bogus, and automatically correct-
ing the error. The synthesis tool we constructed is capable of generating
various mutations of the code. Moving between them is guided by model
checking analysis. In the case of searching for errors, we mutate only the
architecture and related parameters, and in the case of fixing the error,
we mutate the code further in order to search for a corrected version. As a
running example, we use a realistic nontrivial protocol for multiparty in-
teraction. This protocol, published in a conference and a journal, is used
as a building block for various systems. Our analysis shows this protocol
to be, as we suspected, erroneous; specifically, the protocol can reach a
livelock situation, where some processes do not progress towards achiev-
ing their interactions. As a side effect of our experiment, we provide
a correction for this important protocol obtained through our genetic
process.

1 Introduction

Model checking is a successful technique for comparing a model of a system with
some formal specification. One of its limitations is that of state space explosion.
This is combated by many techniques that avoid the simple enumeration of all
the reachable states. Since model checking of concurrent systems is intractable,
this is a very challengeable problem, with many interesting heuristics. Another
limitation of model checking is that the method is mainly restricted to finite state
systems, while the verification of infinite state systems is, in general, undecidable.
The problem of synthesizing correct code or attempting to automatically correct
errors is considered to be even harder than model checking. In some limited cases
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where this was shown to be decidable, the complexity was considerably higher
than simple model checking.

In recent papers [8,9,10] we demonstrated the approach of combining model
checking and genetic programming for the synthesis of correct-by-design pro-
grams. This is in particular effective for the automatic generation of code that is
hard to program manually. Examples are mutual exclusion problems and various
concurrent synchronization problems. In this paper we exploit a related tech-
nique, and extend the tool we developed, to assist the programming throughout
the code development process. Specifically, we use the ability of mutating code,
guided by ranking that is based on model checking, to find errors in some com-
plicated parametric protocol, and, moreover, to correct the errors.

The first main challenge that we tackle here is to check communication proto-
cols that are not limited to a particular number of processes or communication
architecture. Although each instance of the protocol is a finite state system,
this is a parametric problem, which means that in general, its verification is
undecidable [1]. Furthermore, this protocol is not limited to a particular simple
communication pattern or network topology (such as in [4]). We thus use code
mutation to generate instances of the protocol that we want to check. Since there
are several parameters that vary with the code (the number of processes, the
communication network, etc.) it is not simple to detect an instance that would
manifest the error, even if we suspect there exists one. We seek an alternative to
a simple enumeration of the instances of such a protocol. Since the communica-
tion architecture is not fixed, the enumeration can easily progress in a direction
that will not reveal the existence of an error (e.g., focusing on a particular ar-
chitecture such as a ring and just extending the number of processes). We thus
apply some ranking on the checked instances, based on the model checking re-
sults, in order to help direct the search in the space of syntactically constrained
programs towards an instance with an error. Then, when the error is revealed,
we apply similar techniques to help us correct the code.

In essence, we apply model checking techniques for finite state systems on
instances of the code, using the genetic programming approach as a heuristic
method to move between different variations of it, first to find the error, then
to find a correction. The mutation at the search for errors is limited to the
communication architecture and various related parameters. After finding an
erroneous instance of the protocol in this way, we reverse the search and allow
mutating the code in order to correct it. In this latter case, mutation is allowed
on the protocol itself, rather than the architecture. Correcting the code of a
parametric protocol is also challenging. When a new candidate (mutation) for
the protocol is suggested, it is again impossible to apply a decision procedure
to check its correctness. Thus, we have again to check each candidate against
various architectures, a problem that is similar to the one we are faced with
when trying to find the error in the original protocol. We thus alternate between
using mutations for generating new candidate protocols, and using mutations
for generating instances for model checking the suggested corrections. However,
there is some learning process here, as architectures that were shown to create
counterexamples for either the original algorithm or tested mutations can be
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used for the model checking of subsequent candidates. This alternation between
the evolution of architectures and programs code is repeated, gradually adding
new architectures against which the candidates for corrected code need to be
checked. This process continues until a program that cannot be refuted by the
tool is found.

Our running example in this paper is an actual protocol for coordinating
multiprocess interaction in a distributed system, named α-core [13]. This is quite
a nontrivial protocol, which extends the already difficult problem of achieving
multiprocess communication in the presence of nondeterminism both on the
sender and receiver side. The protocol we check appears both in a conference
and in a followup journal paper and is of practical use. Reading the paper, we
were suspicious of the correctness of the protocol, but due to its complexity and,
in particular, its multiple architecture nature, could not pinpoint the problem
with a manually constructed example. Except for the actual debugging of the
protocol, we followed some remarks made by the authors of that protocol in
the original paper [13] about subtle points in the design of the protocol, and
have let our tool discover these problems automatically. Thus, we believe that
a framework that performs a genetic model checking driven mutation, as we
developed and used here, is very effective as an interactive tool in the process of
protocol design.

2 Background

2.1 Model Checking Guided Genetic Programming

Genetic programming [11] is a program synthesis technique based on a search
in the state space of syntactically constrained programs. The search is guided
by providing fitness to the generated candidate programs, usually based on test
cases, but recently also on model checking results [7,8,9].

The genetic search begins with the construction of some random candidate
programs (typically, a few hundreds candidates). Then one iterates the following
steps. Some candidates Γ are selected at random, then they are syntactically
mutated by either erasing, adding or replacing program segments. The code is
often represented using a tree, and the mutation operations may also involve
adding some code, when the syntax requires it (e.g., just removing a test in a
program may result in syntactically erroneous code, hence the missing construct
is generated at random). A powerful operator that combines the code of several
candidates, called crossover1 may also be used, although there are also some
arguments against its utilization. The mutation (and crossover) operations gen-
erate some set of candidates Δ. Fitness of the candidates Γ ∪ Δ is calculated,
trying to rank their potential to further evolve towards correct code. Tradition-
ally, fitness is calculated in genetic programming by checking some test suite. In
contrast, we use model checking for calculating this value. Then, instead of the
old |Γ | candidates selected, we return for the next iteration the |Γ | candidates
with highest fitness value among Γ ∪ Δ.
1 In our work, we did not implement the crossover operation.
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The iterative process stops either when a candidate that achieves a fitness
value above some level is found, or some limit on the number of iterations expires.
In the former case, provided that the fitness is well crafted, the candidate found
has a good potential to be a solution of the synthesis problem. In the latter case,
the search may restart with some new random candidates.

Model checking based fitness was introduced independently by Johnson [7]
and by us [8]. In [7], fitness value reflected the number of temporal properties
that were satisfied by the checked candidate. We [8] suggested a finer measure
of fitness, with more levels per each property: (1) none of the executions satisfy
the property, (2) some but not all the executions satisfy the property, (3) each
prefix of an execution that does not satisfy the property can be continued into
an execution that satisfies it (hence in order to not satisfy the property, infinitely
many bad choices must be made) and (4) all the executions satisfy the property.
This calls for a deeper model checking algorithm than the standard one [9,12].

In [10] we synthesized solutions for the leader election problem. Since this
problem is parametric, properties were checked against all of the problem in-
stances up to a predefined cutoff value, and the ranking depended on whether
none, some or all of the instances satisfied the properties. We also used there
aggressive partial order reduction to speed up the model checking.

In all cases, a secondary “parsimony” measure was added to the fitness func-
tion in order to encourage the generation of shorter and hopefully efficient pro-
grams. Correcting programs can follow a similar search as described above, by
starting from the bogus version of the code rather than with randomly generated
programs.

2.2 The α-Core Protocol

The α-core protocol is developed to schedule multiprocess interaction. It general-
izes protocols for handshake communication between pairs of processes. For each
multiprocess interaction, there is a dedicated coordinator on a separate process.
To appreciate the difficulty of designing such a protocol, recall for example the
fact that the language CSP of Hoare [5] included initially an asymmetric con-
struct for synchronous communication; a process could choose between various
incoming messages, but had to commit on a particular send. This was important
to achieve a simple implementation. Otherwise, one needs to consider the sit-
uation in which after communication becomes possible between processes, one
of them may already continue to perform an alternative choice. Later Hoare
removed this constraint from CSP. The same constraint appears in the asym-
metric communication construct of the programming language ADA. The Buck-
ley and Silberschatz protocol [3] solves this problem for the symmetric case in
synchronous communication between pairs of processes, where both sends and
receives may have choices. Their protocol uses asynchronous message passing
between the processes to implement the synchronous message passing construct.
The α-core protocol, also based on asynchronous message passing, is more gen-
eral, and uses coordinator processes to allow synchronization among any number
of processes.
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The α-core protocol includes the following messages sent from a participant
to a coordinator:

PARTICIPATE. A participant is interested in a single particular interaction
(hence it can commit on it), and notifies the related coordinator.

OFFER. A participant is interested in one out of several potentially available
interactions (a nondeterministic choice).

OK. Sent as a response to a LOCK message from a coordinator (described
below) to notify that the participant is willing to commit on the interaction.

REFUSE. A participant decides it does not want to commit on an interaction
it has previously applied to, and notifies the coordinator. This message can
also be sent as a respond to a LOCK message from the coordinator.

Messages from coordinators are as follows:

LOCK. A message sent from a coordinator to a participant that has sent an
OFFER. requesting the participant to commit on the interaction.

UNLOCK. A message sent from a coordinator to a locked participant, indi-
cating that the current interaction is canceled.

START. Notifying a participant that it can start the interaction.
ACKREF. Acknowledging a participant about the receipt of a REFUSE

message.

Fig. 1(a) describes the extended state machine of a participant. Each partic-
ipant process keeps some local variables and constants:

IS a set of coordinators for the interactions the participant is inter-
ested in.

locks a set of coordinators that have sent a pending LOCK message.
unlocks a set of coordinators from which a pending UNLOCK message

was received.
locker the coordinator that is currently considered.
n the number of ACKREF messages required to be received from

coordinators until a new coordination can start.
α the coordinators that were asked for interactions but were subse-

quently refused.

The actions according to the transitions are written as a pair en → action ,
where en is the condition to execute the transition, which may include a test of
the local variables, a message that arrives, or both of them (then the test should
hold and the message must arrive). The action is a sequence of statements, exe-
cuted when the condition holds. in addition, each transition is enabled from some
state, and upon execution changes the state according to the related extended
finite state machine. The participant’s transitions, according to the numbering
of Fig. 1(a) are:

1. |IS > 1| → { foreach p ∈ IS do p!OFFER }
2. |IS = 1|→{ locker :=p, were IS ={p}; locker !PARTICIPATE; locks , unlocks :=∅ }
3. p?LOCK → {locker :=p; locks , unlocks :=∅; p!OK }
4. p?LOCK → {locks :=locks ∪ {sender}}
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Fig. 1. State machines

5. locks �= ∅ ∧ p?UNLOCK → {locker :=q for some q ∈ locks ; q!OK; locks :=locks \
{q}; unlocks :=unlocks ∪ {p}}

6. locks = ∅ ∧ p?UNLOCK → { foreach q ∈ unlocks ∪ {p} do q!OFFER}
7. p?START → {α:=IS \unlocks \ {locker}; foreach q ∈ α do q!REFUSE; n := |α|;

start participating in the joint action managed by locker}
8. p?LOCK → {}
9. p?UNLOCK → {}

10. p?ACKREF → {n:=n − 1}
11. n = 0 → { Let IS be the new set of interactions required from the current state. }

For a coordinator, whose extended finite state machine appears in Fig. 1(b), we
have the variables waiting , locked , shared and α, holding each a set of processes,
and n is a counter for the number of processes that indicated their wish to
participate in the interaction. The constant C holds the number of processes that
need to participate in the interaction (called, the cardinality of the interaction),
and the variable current is the participant the coordinator is trying to lock. The
transitions, according to their numbering from Fig. 1(b) are as follows:

1. n < C ∧ p?OFFER → {n:=n + 1; shared := shared ∪ {p} }
2. n < C ∧ p?PARTICIPATE → {n:=n + 1; locked := locked ∪ {p} }
3. p?REFUSE → { if n > 0 then n:=n − 1; p!ACKREF; shared :=shared \ {p}}
4. n = C∧shared = ∅ → { foreach q ∈ locked do q!START; locked , shared :=∅; n:=0}
5. n = C ∧ shared �= ∅ → {current := min(shared); waiting :=shared \ {current};

current !LOCK}
6. waiting �= ∅ ∧ p?OK → {locked :=locked ∪ {current}; current :=min(waiting);

waiting :=waiting \ {current }; current !LOCK}
7. waiting = ∅ ∧ p?OK → {locked :=locked ∪ {current}; foreach q in locked do

q!START; locked , waiting , shared :=∅; n:=0}
8. p?REFUSE → {α:=(locked ∩ shared) ∪ {current , p}; foreach q ∈ α \ {p} do

q!UNLOCK; p!ACKREF; shared :=shared \ α; locked :=locked \ α; n:=n − |α|}
9. p?OK → {}
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As with other concurrency coordination constructs, such as semaphores, the
irresponsible use of the coordination achieved by the α-core protocol can result in
deadlock situation (when processes attempt to get into conflicting coordinations
in incompatible order). What the α-core protocol correctness is prescribed to
guarantee is that if some processes are all interested in some coordination, then
it, or some alternative coordination for at least one of the participant processes
will eventually occur. As we will show later, this property does not really hold
for this protocol.

3 Evolution of Architectures

The α-core algorithm is parametric, and should work for a family of architectures,
where each architecture consists of a set of participants, a set of coordinators,
and a particular connectivity between processes of the two kinds. Additional
configuration parameters, such as buffer sizes, can be instantiated as well. When
verifying the algorithm, we cannot simply perform model checking for all of
the architectures up to some size. One reason for that is the large number of
possible architectures. Another reason is the high model checking complexity for
such a nontrivial protocol, which requires a considerable amount of time and
memory, even after some reduction techniques (such as partial order reduction,
and coarser atomicity) are used.

Instead, we introduce a new method for the evolution of architectures by
genetic programming. The idea is to randomly generate portions of code rep-
resenting various architectures, each being a basis for a distinct instance of the
protocol. Then we gradually evolve these instances and improve them, until a
good solution is found. A “good solution” in this context, is an instance of the
protocol on which a counterexample for the given algorithm can be found. Thus,
our goal at this point is the reverse of the conventional goal of genetic program-
ming, where a good solution is a correct one.

3.1 Architecture Representation

A first step towards our goal is achieving the ability to represent architectures
as portions of code. This is done by creating a dedicated initialization process
(called init), and basing this process on code instructions and building blocks
that can let it dynamically generate any relevant architecture. Depending on the
problem we try to solve, these building blocks may allow the dynamic creation of
processes of various types, and the instantiation of global and local parameters
related to the created processes.

Considering our example, we observe that the α-core protocol involves an
arbitrary number of processes of two types: participating processes, and coor-
dinating processes. A coordinating process can be responsible for coordinating
any given subset of the participating processes, and a participating process may,
at each state, interact with any number of coordinators for coordinations it can
be involved in. It is even possible that there are several coordinating processes
that try to coordinate the same sets of processes. Fig. 2 presents an architecture
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Fig. 2. An architecture with three participants and three coordinators

where there are three participating processes: P1−P3, with three coordinators:
C1 − C3. An edge appears between a participating process and a process that
coordinates it. P2 is interested in a single interaction (handled by C3), while P1
and P3 are involved in multiple interactions.

To enable the generation of such architectures, the following building block
are provided for the init process:

CreateProc(proctype) - Dynamically creates a new process of type proctype.
Participant, Coordinator - constants of type proctype representing partici-

pant and coordinator process types.
Connect(part_proc_id, coord_proc_id) - connects a particular participant

and a coordinator whose process ids are given in the operands. The con-
nection involves updating IS - the set of coordinators that the participant
locally stores, and C - the cardinality of the coordinator.

A complete program representation includes the code for the init process, as well
as skeleton code for each other type of process. At runtime, the init process is
executed first, and according to its instructions, other processes are dynamically
created and instantiated. This is similar to the way Promela code is written and
executed in the Spin model checker [6], where the init process can dynamically
create other processes. When searching for the goal architecture, a permanent
code is given for each of the process types, where the genetic process is allowed
to randomly generate and alter only the code of the init process. Using the above
building blocks, the code for the architecture of Fig. 2 can look as follows.

CreateProc(Participant) Connect(1, 4)

CreateProc(Participant) Connect(1, 5)

CreateProc(Participant) Connect(2, 6)

CreateProc(Coordinator) Connect(3, 4)

CreateProc(Coordinator) Connect(3, 5)

CreateProc(Coordinator) Connect(3, 6)

The number of allowed processes, and accordingly, the range for the process ids
are bounded. As usual, the fitness function is also based on a secondary parsimony
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measure which prefers shorter programs. This often leads to the removal of redun-
dant lines from the code, and to the generation of simpler architectures and coun-
terexamples.

3.2 The Fitness Function

The evolution of architectures is based on a fitness function which gives score to
each program (consisting of architecture and other processes code). Like in our
previous work, here too the fitness values are based on model checking of the
given specification. However the function is different. Since the goal is to fail the
given program, satisfying the negation of the specification increases the fitness
rather than decreases it. This means that it is sufficient to find an architecture
which violates one of the given properties, and since we are dealing with LTL
properties, we only need to find a single execution path that violates a property.
Thus (unlike in our previous work) there is no use in considering the amount of
satisfied paths, or the need to make a distinction between the level of falsifying
the specification (see Section 2.1) when ranking the candidate solutions. Instead,
we apply a different method, and try to split properties into smaller building
blocks (whenever possible) whose satisfaction may serve as an intermediate step
in satisfying an entire property.

As an example, consider the LTL property ϕ = �(P → Q). We showed in [9]
how programs satisfying ϕ can be evolved. However, we are now interested in
progressing towards an architecture violating ϕ. We first negate it, obtaining
¬ϕ = �(P ∧ ¬Q). Then, we can give intermediate ranking to solutions that
contain a path satisfying �P , hoping that they finally evolve to solutions with
a path satisfying the entire ¬ϕ. This method can be particularly useful in a
common case where Q is an assertion about states, and P denotes the location
in the code where Q must hold. That is, P = at(�) for some label � in the
code. Then, when trying to violate the property ϕ, we can give higher fitness
to programs that at least reach the location �, and then give the highest fitness
value if the state property Q is violated when reaching �.

During the development of protocols, the developers often look at some in-
tricate possible behaviors of the protocol. The kind of guided search suggested
above, by mutating the architecture, can also be used, besides for finding errors
in protocols, for finding such scenarios and documenting them. We first demon-
strate this by two nontrivial transitions on the code of the α-core participant
code, which due to its authors, stem from some intricacies (in Section 5.1 we will
show how we used our method for finding a real error in the α-core protocol).

While being in the “sync” state, a participant usually receives ACKREF
messages (transition 10 in Fig. 1(a)), but it can accidentally receive either a
LOCK or UNLOCK messages (transitions 8 and 9 respectively), which it has
to ignore. In order to verify that, we added assertions for the participant’s code
claiming that the received message under the “sync” state must be ACKREF,
and then activated the tool in order to find architectures which refute this as-
sertion. Within seconds, the two architectures depicted in Fig. 3 were generated.
The architecture on the left is related to an example involving the LOCK mes-
sage, and is simpler than the one presented in [13] (although coordinators with
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Fig. 3. Architectures found for intricacies with LOCK (left) and UNLOCK (right)

only one process are not so useful). For the case of the UNLOCK message, an
identical architecture to the one described in [13] was found.

4 Co-evolution of Programs and Counterexamples

After finding a “wrong” architecture for a program, our next goal is to reverse
the genetic programming direction, and try to automatically correct the pro-
gram, where a “correct” program at this step, is one that has passed model
checking against the architecture. Yet, correcting the program for the wrong ar-
chitecture only, does not guarantee its correctness under different architectures.
Therefore, we introduce a new algorithm (see Algorithm 1) which co-evolves
both the candidate solution programs, and the architectures that might serve as
counterexamples for those programs.

Algorithm 1: Model checking based co-evolution
MC-CoEvolution(initialProg, spec, maxArchs)
(1) prog := initialProg
(2) archList := ∅
(3) while |archList| < maxArchs
(4) arch := EvolveArch(prog, spec)
(5) if arch = null
(6) return true // prog stores a “good” program
(7) else
(8) add arch to archlist
(9) prog := EvolveProg(archlist, spec)
(10) if prog is null
(11) return false // no “good” program was found
(12) return false // can’t add more architectures

The algorithm starts with an initial program initProg. This can be the existing
program that needs to be corrected, or, in case that we want to synthesize the
code from scratch, an initial randomly generated program. It is also given a
specification spec which the program to be corrected or generated should satisfy.
The algorithm then proceeds in two steps. First (lines (4)− (8)), the EvolveArch
function is called. The goal of this function is to generate an architecture on
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which the specification spec will not hold. If no such architecture is found, the
EvolveArch procedure returns null, and we assume (though we cannot guarantee)
that the program is correct, and the algorithm terminates. Otherwise, the found
architecture arch is added to the architecture list archList, and the algorithm
proceeds to the second step (lines (9) − (11)).

In this step, the architecture list and the specification are sent to the Evolve-
Prog function which tries to generate programs which satisfy the specification
under all of the architectures on the list. If the function fails, then the algorithm
terminates without success. Since the above function runs a genetic program-
ming process which is probabilistic, instead of terminating the algorithm, it is
always possible to increase the number of iterations, or to re-run the function so
a new search is initiated. If a correct program is found, the algorithm returns to
the first step at line (4), on which the newly generated program is tested. At each
iteration of the while loop, a new architecture is added to the list. This method‘
serves two purposes. First, once a program was suggested, and refuted by a new
architecture, it will not be suggested again. Second, architectures which were
complex enough to fail programs at previous iterations, are good candidates to
do so on future iterations as well. The allowed size of the list is limited in order
to bound the running time of the algorithm.

Both EvolveProg and EvolveArch functions use genetic programming and
model checking for the evolution of candidate solutions (each of them is equipped
with relevant building blocks and syntactic rules), while the fitness function
varies. For the evolution of programs, a combination of the methods proposed
in [9,10] is used: for each LTL property, an initial fitness level is obtained by
performing a deep model checking analysis. This is repeated for all the architec-
tures in archList, which determines the final fitness value. For the evolution of
the architectures, the method explained in the previous section is used.

A related approach for automatic bug fixing was suggested in [2] where pro-
grams and unit tests were co-evolved. However, that work deals with functional
programs, where no model checking is needed. In addition, that work started
with a set of simple data structures, representing test cases, which can then be
evolved by some search algorithm. In contrast, in our work architectures are rep-
resented as variable length programs which allow greater flexibility. Moreover,
we start with a single architecture, and dynamically add new ones only when
necessary during the evolutionary process. In a recent work [15], locating and
repairing bugs on C programs were accomplished by manually defining positive
and negative test cases, and using them in the fitness function.

5 Finding and Correcting Errors in α-Core

5.1 Generation of a Violating Architecture

One weakness of the α-core algorithm is that the REFUSE message is used
both for canceling a previous offer to participate in an interaction, and as a pos-
sible response to a LOCK message. This may lead to some delicate scenarios,
and the authors mention that ideally, it would have been better to add another
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message type. However, in order to keep the algorithm simple, they refrain from
doing so, and instead try to deal with the intricate situations directly. This in-
cludes performing the following action when a coordinator receives a REFUSE
message while being in the “accepting” state according to transition 3:

if n > 0 then n:=n − 1

The variable n serves as a counter for the number of active offers the coordinator
currently has. If both the coordinator and one of its participants try to cancel
the interaction concurrently, n may be wrongly decreased twice. The comparison
to 0 is supposed to avoid the second decrease.

Reading that, we suspected that despite the above check, there may still be
situations on which n is decreased twice due to a single participant refusal, thus
causing n to no longer represent the correct number of active offers. In order to
check that, we added the following assertion to the program of the coordinator
just before receiving any message in the “accepting” state:

ASSERT (n = |shared| + |locked|)

We then applied our tool in order to dynamically search for an architecture
that violates the assertion by the method described in section 3. After a short
progress between various architectures, the tool found several architectures on
which the assertion is indeed violated. The simplest of these architectures is
shown at Fig. 4. It includes two participants denoted P1 and P2, which are
both connected to two coordinators denoted C1 and C2. The message sequence
chart at Fig. 5 shows the related counterexample, having the following messages
(the comments on the right refer to the values of the counter n of C2): At
messages (1)-(4) the two participants offers interactions to the two coordinators,
which causes C2 to set its local counter n to 2. Coordinator C1 responses first,
and successfully locks both participants (messages (5)-(8)). Coordinator C2 then
tries too to lock P1 (message (9)), and its request remains pending. Then C1
asks the participants to start the interaction, which cause them to refuse the
offers previously sent to C2 (messages (10)-(13)). C2 then cancels the interaction
by sending messages (14) and (15) (and resetting n), and a new interaction is
initiated by P2 (messages (16) and (17)), which sets n to 1.

Only then, message (11) with the refusal of P1 is received, and since n > 0
holds, n is wrongly decreased to 0, although there is an active offer by P2. After

C1 C2

P1 P2

Fig. 4. An architecture violating the assertion
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P1 P2 C1 C2

OFFER (1)

OFFER (2)

OFFER (3)
n=1

OFFER (4)
n=2

LOCK (5)

OK (6)

LOCK (7)

OK (8)

LOCK (9)

START (10)

REFUSE (11)

START (12)

REFUSE (13)

ACKREF (14)

UNLOCK (15)
n=0

OFFER (16)

OFFER (17)
n=1

n=0
ACKREF (18)

msc Assertion violation

Fig. 5. A Message Sequence Chart showing the counterexample for the α-core protocol

that, if another process (such as P1) sends a new offer to C2 and no other coordi-
nator tries to lock these participants, C2 will never execute the interaction (since
n is smaller than its cardinality). This violate the property termed Progress in
the α-core protocol paper [13], requiring that an enabled interaction (i.e., one in
which the participating processes have requested OFFER or PARTICIPATE
and did not subsequently sent a REFUSE) will eventually be executed. The
result can be a livelock, as some of the processes are waiting for this subsequent
coordination, which will not happen, or even deadlock, if this coordination is the
only progress that the program is waiting for.

5.2 Generation of a Corrected Algorithm

After finding the error in the algorithm, we set our tool to automatically gener-
ate candidate programs correcting the error. The α-core code was divided into
dynamic parts which the genetic process can change and evolve, and static parts
which are permanent portions of the code, and remain unchanged. We set the
code of the participant, and most of the code of the coordinator as static, and
set as dynamic only the code that we manually identified as wrong by observing
the counterexample we obtained during our search for an error phase. This is the
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code that deals with the REFUSE message. Although we could theoretically
allow the dynamic evolution of the entire program code, the approach we took
has two advantages. First, freely evolving the entire code could lead to a total
change in the structure of the original algorithm, while our goal is to handle
only some functional aspects of the code. Second, the search space for new code
is much smaller, thus allowing a fast progress into correct solutions. Certainly,
restricting the search space can make it impossible to reach a perfect solution,
but in such cases, it is always possible to set more code portions as dynamic,
keeping in mind the trade off between code expressibility and performance.

The tool first found a correction which holds for the architecture of Fig. 4.
However, after reversing its search direction and goal, the tool discovered a new
architecture on which that correction was not valid. This was followed by an al-
ternating series of code corrections, and generation of new violating architectures
(as described in Algorithm 1), until finally a simple correction was generated,
without any architecture on which a violation could be found. The syntax tree
that was generated for this simple correction, and its resultant code are depicted
in Fig. 6.

if

in --

(then)

nop

(else)

sender shared n

(a) Program tree

if sender ∈ shared then n:=n − 1

(b) Program code

Fig. 6. Final generated correction

This code replaces the original handling of the REFUSE message in transi-
tion 3 of the coordinator. Instead of the original code comparing n to 0, this code
decreases n only if the sender participant belongs to the shared list. This indeed
seems to solve the previous error, since after the first decrease of n, the sender
is removed from the shared list, thus avoiding a second redundant decrease.

6 Conclusions

In this work we suggested the use of a methodology and a tool that perform a
search among versions of a program by code mutation, guided by model checking
results. Code mutation is basically the kernel of genetic programming. Here it
is used both for finding an error in a rather complicated protocol, and for the
correction of this same protocol. Although several methods were suggested for



Code Mutation in Verification and Automatic Code Correction 449

the verification of parametric systems, the problem is undecidable, and in the few
methods that promise termination of the verification, quite severe restrictions
are required. Although our method does not guarantee termination, neither for
finding the error, nor for finding a correct version of the algorithm, it is quite
general and can be fine tuned through provided heuristics in a convenient human-
assisted process of code correction.

An important strength of the work that is presented here is that it was im-
plemented and applied on a complicated published protocol to find and cor-
rect an actual error. The α-core protocol is useful for obtaining multiprocess
interaction in a distributed system that permits also alternative (i.e., nonde-
terministic) choices. To the best of our knowledge, this error in the protocol is
not documented. Such a method and tool can be used in an interactive code
development process. It is, perhaps, unreasonable to expect in general the auto-
matic generation of distributed code, as it is shown by Pnueli and Rosner [14]
to be an undecidable problem. However, it is also quite hard to expect program-
mers to come up with optimized manual solutions to some existing coordination
problems.

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: IEEE Congress on Evolutionary Computation, pp. 162–168 (2008)

3. Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized
input-output construct of csp. ACM Trans. Program. Lang. Syst. 5(2), 223–235
(1983)

4. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based mes-
sage passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

5. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

6. Holzmann, G.J.: The SPIN Model Checker. Pearson Education, London (2003)
7. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
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