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Abstract. We study the model checking problem of timed automata
based on SAT solving. Our work investigates alternative possibilities for
coding the SAT reductions that are based on parallel executions of inde-
pendent transitions.

While such an optimization has been studied for discrete systems, its
transposition to timed automata poses the question of what it means for
timed transitions to be executed “in parallel”. The most obvious inter-
pretation is that the transitions in parallel take place at the same time
(synchronously). However, it is possible to relax this condition. On the
whole, we define and analyse three different semantics of timed sequences
with parallel transitions.

We prove the correctness of the proposed semantics and report exper-
imental results with a prototype implementation.

1 Introduction

In this paper, we describe a SAT based model checking algorithm for timed
concurrent systems that includes partial order concepts, as well as its implemen-
tation in the POEM model checker.

While symbolic state exploration with zones [I0] as implemented in Uppaal
[2] remains the most widely used algorithm for model checking timed automata,
reductions to SAT solvers [IBI3[TII7] have been studied with encouraging re-
sults. However, the situation is far from the dominance of SAT methods used to
analyse synchronous circuits.

On the other hand, the zone based state exploration has seen several works
investigating improvements based on partial order semantics [T2[T6I714]. In the
development of timed automata, this investigation came late, maybe because the
algorithms used defy the intuition of time as a total order. For instance, in [12]
it is possible that the algorithm provides sequences where the time may go back-
wards between transitions (but these executions can nevertheless be reordered
to represent real executions).

The basis of most so-called partial order approaches for model checking asyn-
chronous systems is the structural observation that pairs of independent transi-
tions, i.e. transitions that concern separate parts of a distributed system, may
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be executed in any order with the same result. For timed automata, this was at
first not obvious, since these transitions may reset clocks and the order of firing
introduces a relation on the clock values. The cited works using partial order
concepts for timed automata avoid in one way or another the introduction of
this artificial relation and can therefore outperform the classical algorithms in
many cases.

An obvious question occurs when combining two different methods (here SAT
reductions and partial order semantics): will the performance improve on each
method separately? For untimed asynchronous systems like safe Petri nets, a
positive answer to this question was given in [III] and a few sequels. How-
ever, the answer given in those works was to improve the SAT reduction by
allowing several independent transitions to actually occur in parallel, i.e. in one
step. This concept was known before in Petri nets as step semantics [8], but
it found an unexpected application. Intuitively, multisteps (transitions that are
executed in parallel) allow to compress execution sequences leading to a state:
while the overall number of executed transitions remains the same, the possi-
bility of executing several of them in one parallel step means that there are
less intermediate states to consider. Moreover, when coding reachability in SAT,
differently from state exploration, the sub-formulae coding the possible execu-
tion of a transition are present for every step in the sequence anyway. From
this perspective, requiring interleaving semantics can be perceived as nothing
more than a restriction stating that in any multistep at most one transition
takes place. In tight cases, the best SAT solver will have to try out every inter-
leaving, i.e. every permutation of independent transitions. We cannot imagine
a case where this interleaving requirement will have any benefit for the SAT
approach, but relaxing it and allowing multisteps will very often give dramatic
improvements.

The contribution of this work is to extend the reduction with multisteps to
timed automata.

This being said, we invite the reader to consider what it means for several
timed transitions to be executed “in parallel” or in the same multistep before
reading on.

Indeed, the first idea that may come to ones mind is that these transitions
should take place “at the same time”, but this turns out to be just one of several
options, which we call “synchronous”. A more relaxed notion may require that
each transition in a multistep has to be executed temporally before each tran-
sition of the following multistep, yet allowing the individual transitions to take
place at different times, a notion we call “semi synchronous time progress”. Based
on notions from [I2IT4], the seemingly least restrictive sensible notion limits the
time progress to transitions that are dependent, which we call “relaxed time
progress”. Based on previous work, we show that the three proposed notions of
time progress are equivalent in the sense that the execution sequences of either
semantics can be transformed into execution sequences of the other and into the
classical notion of runs. However, they turn out not to be equivalent with respect
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to performance: the more relaxed notions are more complex to code in SAT but
can in some cases yield superior results.

Plan. The paper is structured as follows: in Section 2] we introduce the basic
notions of timed systems on a certain specification level: multithreaded programs
with shared variables. It is essential to use such a model to understand the SAT
coding. We also introduce notions from timed automata, notably “clocks”; clock
conditions and resets. For the sake of readability, we do not introduce state
invariants at this point. In Section [B] we recall notions of independence in the
context of timed automata and introduce semantics with multisteps. The main
formal tools are developed here, different notions of time progress are formally
defined and their equivalence is shown. In Section Fl we show how these concepts
integrate into a SAT reduction for systems of the kind described in Section
This description, although held informal where possible, aims to give a self-
contained description of how such a reduction is constructed and how the notions
of Section [3 integrate in the construction of a SAT problem instance. In Section
Bl we informally discuss how state invariants, an important modelling concept
in timed automata can be integrated with each of the three notions of time
progress. In Section [6] we illustrate the potential of the algorithms by a few
benchmarks in our prototype implementation. We conclude and discuss related
work in Section [7]

2 Preliminaries

Let T; with 1 < i < N denote a thread with trans; its set of transitions. Let
trans = |Jtrans; the set of all transitions. Let V; be the set of local variables of
T; and let V, the set of global variables. Then we introduce V' = V,U{J V; the set
of all variables. Each variable v € V' takes its values in the domain D,. Control
locations of a thread T; are represented by a local variable pe; € V; (program
counter).

A state of a program is a valuation of local and global variables, formally
s:V — |UD, with s(v) € D,. The set of all states is denoted by S = [[ D.,.
We moreover assume an initial state sg, i.e. an initial valuation of variables.

Expressions over the variables are defined as usual (e.g. arithmetic expres-
sions). Atoms are comparisons over pairs of expressions and conditions are
boolean combinations of atoms.

Syntactically, a transition ¢ of T; is enabled by a condition (boolean combina-~
tion of atoms) ranging over V;UV,, and it has as effect an action defined as a set
of assignments (of expressions to variables), i.e. values of variables are written.
For both actions and conditions, the variables appearing in the expressions are
read. If ¢ is a transition from the control location loc; to control location locs
then the condition of ¢ includes pc; = locy and the action includes pc; := locs.

For two states s,s" € S, s L, & denotes a state transition enabled at s and

transforming s to s’ when applying the action of ¢. Let s L, 81 . In, Sp =8
denote a sequence of transition executions.
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2.1 Adding Time
We introduce real valued variables called clocks which differ from other variables:

— Their values increase synchronously and proportionally with time: if = has
value p at time 7 then it has value p + § at time 7 + 4.

— The only assignments allowed are resets (to zero).

— We only allow comparisons of clocks with integer constants (e.g. = < 3).

— At the initial state sg, all clocks are valued 0.

Now, each transition execution t; has an execution time 7, € RT also called
a timestamp. Then, we denote a timed transition t; executed at time 7 as

(te,me) . (t1,71) (tn,mn) ,
——= ¢’ and timed sequence as sg S1... Sy = S
. (tlel) (tnﬂ'n) ’ . .
A timed sequence sy —— s1... ——— s, = s’ satisfies normal time

progress iff for every pair k < [, we have 7, < 77.

The reachability problem for timed automata can be understood in this setting
as the existence of a timed sequence with normal time progress leading from s
to a state s’ satisfying a desired property.

3 Concurrency

In this section, we will review standard notions from classical partial order meth-
ods. Then we will introduce the notion of multisteps, i.e. the execution of sev-
eral transitions in parallel and we will see how to analyse timed systems using
multisteps.

3.1 Independence Relation

A classical definition underlying concurrency analysis is reader-writer depen-
dency as first introduced in [6]: two transitions ¢; and ¢ are said to be depen-
dent if a variable read in ¢; (in the guard or in the action) is written in ¢» (or
vice versa), or if the same variable is written by ¢; and to. Otherwise, they are

independent.

. (t1,71) (tn,Tn) . .
A timed sequence sy ——> s1... ——> s, = &' satisfies relaxed time

progress if for every pair k < [ with tx,t; dependent, we also have 7, < 7.
Note, that normal time progress as defined in the previous section trivially im-
plies relaxed time progress.

We define the Mazurkiewicz equivalence of timed sequences as the least equiv-
(tr,7k) s (tht1,Th41)
k

alence relation = such that any timed sequence sq ... Sp_1

. . . . (trt1:Th41)
Sk+1.-.8 with ¢, tx+1 independent is equivalent to sg...s,-1 ———— s’

(tr,7x) .
—% Sgy1...5 for some state si’. In other words, two timed sequences are

equivalent if one can be transformed into the other by a finite number of ex-
changes of adjacent independent transitions together with their execution
times.
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Proposition 1. If a timed sequence satisfies relaxed time progress, then so do
its equivalent sequences. Each timed sequence satisfying relazed time progress is
equivalent to a timed sequence satisfying normal time progress

Proof. This was originally shown in [I2]. Indeed, the order of dependent transi-
tion executions is preserved by exchanges and hence so is relaxed time progress.
For the second part, it is possible to transform a timed sequence with relaxed
time progress by applying a “bubble sort” transformation: suppose that two ad-
jacent transitions are in bad order with respect to their timestamps, then relaxed
time progress implies that they are independent and it is possible to exchange
them. The result follows by applying this reasoning in an induction. |

3.2 Concurrently Enabled Transitions

The notions proposed in the following have first come up in the context of
(untimed) Petri nets under the name step semantics [§|, generalized here for our
purposes to timed automata. Let MT = {(t1,71),..., (tn,Tn)} & set of pairwise
independent transitions with timestamps: it is concurrently enabled at global
state s iff each transition is enabled at state s and at time 7;. Note, that implicitly
if (t,7,),(t, ) € MT then 7, = 7, because a transition is always dependent
with itself. By definition of independence, all possible executions using all these
transitions and beginning at s are equivalent, and lead to the same state s’. Then
we say that they can be executed in parallel and we write s MT, o

A multistep timed sequence is a sequence g M 81 ... M sp = s'. The
interest here of multisteps is immediate: because several transitions are executed

at each multistep, the execution can be shorter (i.e. a lower number of multisteps
may be executed) to reach a certain state than with interleaving semantics.

3.3 Time Progress in Multistep Sequences

MT MT,
A multistep timed sequence sg L5y " s, = s satisfies relaxzed time

progress if for every pair k < [ with (thﬁ) € MTy, (ta,m2) € MTy, t1,12 depen-
dent, we also have 7 < 7.

MT, MT, . .
Lemma 1. Let sg — s1... — s, = s be a multistep timed sequence

t1,T
that satisfies relaxed time progress, then there exists a timed sequence sg (1—1)>

(tm sTm )

81 ... —5 5, = 8" with m =Y |MT;| (the total number of single transition)
that satisfies relaxed time progress.

(t1,7m1) (tm>Tm)

Proof. We build a timed sequence s sm = s by extract-
ing each (¢;,7;) from each MTj respecting the order of the M T} (the order of
the (t;,7;) extracted from the same MT} is not important because they are
independent). O

We now introduce alternative representations of time progress of a multistep

. MTy MT, ,
timed sequence sg —— §1... —= s, = §":
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Fig. 1. Synchronous, semi synchronous and relaxed time progress in multisteps

— synchronous time progress: for all multisteps M T} and for all pairs of tran-
sitions (t1,71), (t2,72) € MTy it holds that 71 = 75 and for k < [ and any
(ta,7a) € Tk, (tp, ) € MT; it holds that 7, < 73, i.e. all transitions in the
same multistep are executed at the same time, and time progresses between
multisteps.

— semi synchronous time progress: for all k < [ and any (t,,7.) € MT,
(ty, ™) € MT; it holds that 7, < 7, i.e. all transitions of a later multi-
step are executed at a later time than the transitions of an earlier multistep
(but transitions of a same multistep may be executed at different times).

It is obvious that synchronous time progress implies semi synchronous time
progress which in term implies relaxed time progress.

Theorem 1. Let s, € S, then the following elements can be transformed into
each other:

1) A timed sequence s Crm), | Cnon) o ith normal time progress.

2) A timed sequence s ) (b 7n) s" with relazed time progress.

3) A multistep timed sequence s M M o with synchronous time progress.

4) A multistep timed sequence s ML, ML o with semi synchronous time
progress.

5) A multistep timed sequence s M, MIm o with relazed time progress.

Proof. e 1= 2: by definition

e 2 = 1: see Proposition[Il
MT, MT,

e 2 = 3: we build a multistep timed sequence s —— ... — s,, = s’ where
each M T}, is the singleton {(¢x, 7) }; it is trivially a multistep timed sequence
with synchronous time progress

e 3 = 4: by definition

e 4 = 5: by definition

e 5 = 2: see Lemmal[ll O

4 SAT Reduction

4.1 Context

We have implemented the SAT coding outlined below in the tool POEM (Partial
Order Environment of Marseille).
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Input model POEM SAT formula SAT solver
(IF, UppAal, ...) (Picosat, ...)

Solution

Fig. 2. A diagram of POEM with a SAT BACKEND

POEM is a modular model checker written in OCAML. Its main executable
is composed of three parts, a frontend (syntactic analysis), a core with static
analysis and model transformation, and an analysis oriented backend. The fron-
tend part reads the model written in a specification language (currently Uppaal
[2], IF2 [B]) and transforms it into a common format (GDS) on which type
verification, transformations and other aspects of static analysis (notably for
dependency analysis) are applied.

The backends currently use as input the declaration of variables and processes
and a list of transitions much like the one described in Section 2 In particular,
for each transition the sets of written and read variables can be determined
statically (an over approximation) or dynamically (context dependent) where
the latter is close in practice to notions of dynamic dependency relations.

Previously, there was only a state exploration based backend with the un-
derlying algorithms described in [I2JT4]. In this section, we will describe the
way we coded the SAT backend, which is used to perform a Bounded Model
Checking (BMC): given a multi-threaded program and a reachability property,
we construct a SAT formula @ that is satisfiable iff a state with the property
can be reached by an execution of the program with up to K multisteps. This
construction involves several aspects described below.

4.2 Coding Variables

Each variable v € V' of the input model is transformed into a vector of boolean
variables of size log, | D,|. As an example, let’s examine the following declaration
in an IF2 input model:

var x range 0..3;

This command declares a variable x taking its values over the domain [0..3] or
a total of 4 possible values. Then we need a boolean vector of size 2: {x1, z2}.
The program counter pc; for each thread T; is coded as a normal variable, i.e.
as a boolean vector, its length depending on the number of states in the thread.
subsectionCoding expressions
Expressions are coded as digital circuits (like the simple adder below), where

each port is coded as a small set of clauses concerning ,_
input and output variables and the auxiliary cables of the CB'WS

circuits (that are neither inputs or outputs, 3 for the adder

circuit) are coded using additional boolean variables. Cou
Boolean vectors are manipulated bit-wise, e.g. if x and

y are two variables over the same domain [0..3], then the equality test x = y will
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be coded as z = ((z1 = y1) A (z2 = y2)). Again, the boolean variable z is an
implicit variable added to simplify the formula and to allow subformula sharing
(when the expression 2 = y appears in some context, it will be replaced by z).

4.3 Coding Time

Clock values increase with time, which is not easy to code in directly. Instead,
we introduce new real valued variables last, to store the time of the last reset of

clock z, e.g. if we have the following transition s t’—TO> s', then the action x := 0
=

. . . V. t, T
will be coded as last, := 7. A clock comparison in the transition s —— s’
xXc

with e {<,<,=,>,>} and ¢ a constant will be coded as 7 — last, =< c.
Hence, it is possible to substitute a clock x by the corresponding variable last,
with assignments and conditions as above: in this practical coding, variables do
not change between transition occurrences. The variables last, have the same
expressive power as clocks.

As seen above, real valued variables are used to manipulate time such as last,
and timestamps 7. However, as analysed in [I5I8], it is possible to restrict time
stamps to a bounded interval and fixed point numbers (a certain number of
variables for the bits of the integer part and the bits of the fractional part),
where both the size of the integer part and the precision of the fractional part
depend on the length of the searched sequence (more precicely, the number of
transition executions).

Alternatively, the coding could be applied for an SMT-solver as in [I61], where
all variables except the timestamps are coded with booleans but the timestamps
are coded as real valued variables.

4.4 Duplication of Variables

Because the formula @ must represent an execution of depth K, we need to add
a copy of all variables for each step. We denote v* € V? with 1 < i < K the
copy of v € V at step i. Then if K = 5 and v € [0..3], we have to allocate the
following boolean vectors {vi,vi}, {vZ, v3}, {v3,v3}, {vf, v3}, {vP, v3}.

The result is that the assignment = := y + 3 at step k& will be coded as
P+l = y* 4 3, i.e. an assignment becomes a relation between the value zF+! of
x after the current step and the value y* of y before the current step. Note, that
this transition reads y and writes z.

4.5 Transitions and Multisteps

Each execution of transition ¢ in a multistep M T} is coded with one boolean
variable t* indicating if the transition is executed or not.

V. t, T . . o, .
If the transition s, ————— sj41 is executed, then its condition cond is true
cond,action

at s (at time 7) and the assignments of the action are performed (where action
is coded as constraints between the variables at s, and at sp;; as indicated
above. Formally it is coded as

thtl cond(Sk, T) N actiony (S, Sk+1)
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At this point, if s is determined and the set of executed transitions includes a
transition ¢ that writes v, then action(sk, sg+1) also determines the value of v
at spy1. If however, v is written by no executed transition, then its value must
be maintained. Suppose that the set of transitions that writes v is {tq, tp, t.},
then this requirement is coded by the clause

thtby bty bty gy = o

As for dependency, the condition of pairwise independence of transition exe-
cutions in a multistep can be coded by a conjunction of constraints (—t* v —tF)
for dependent pairs t,, tp.

The combination of the action related clauses, dependency related clauses and
the clauses for the keeping of values ensure the consistency of successor states. In
practice, the constraints concerning writing and reading of variables and those for
dependency are coded together, allowing for a more compact coding with sharing.
Still, the conflict clauses constitute a significant part of the overall formula.

4.6 Coding Time Progress

— Synchronous: all transitions of a multistep M T}, are executed at the same
moment 7;, i.e. only one timestamp is needed for each step i. We get the
following constraints :

/\ Ti < Tit1

i=1.K—1
— Semi synchronous: all transitions of multistep M T}, are executed before some
moment (j, (additional variable) and all transitions of multistep MT}1 are
executed after (i . Each transition ¢ has its own timestamp 73, resulting to
the following constraints

/\ (14 < CZ) A (Cl < Tyrit1)
i=1..K—1
t,t’ €trans
— Relaxed: it is not straight forward to code relaxed time progress since the
condition given in Section is not local to two adjacent multi steps. A
trick can be used to make occurrence times of previous multisteps locally
accessible: for transitions that are not executed, the timestamp 7F has no
meaning. We then use it to represent the last execution time of t before or
including the current multi step. This leads to two cases : if the transition
t, 7, is not executed at step 7 then the value of 7, must be maintained at step
i+ 1 and if it is executed we add constraints < with timestamps of the last
executions of dependent transitions:

/\ /\ (7 —Ttk Ha

k=1..K—1 t&trans

A NN oG s

k=1..K—1 t,&trans t,ctrans
to Dty

In this formula ¢, D t; denotes that ¢, and t, are dependent transitions.
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4.7 The Global Formula

We resume all the steps for the construction of the global formula @ which states
the existence of a timed multistep sequence:

Allocate boolean vectors v¥, ... v* for all v € V and for all 1 < k < K
Initialise @ with initial assignments (constraints) for each variable v°
Foreachstep 1 <k < K —1

e ¢ := @ A transitions coding

e ¢ := @ A dependency coding

e & := @ A value maintaining

e & := @ Atime progress coding
e Add to @ constraints to ensure the desired path property. For reachabil-
ity, this can be achieved by stating that the last state satisfies the desired

property.

5 Integrating State Invariants

The reader familiar with timed automata will have noticed that we have not dealt
with “state invariants” in our reduction. In modelling frameworks like Uppaal, a
state invariant is a condition on clocks that is attached to a state of a thread (a
value of the local program counter in terms of Section 2) and which is intuitively
a ‘residence permit”: the condition pcs = locy — = < 5 states that the state 1
of thread 3 has to be left by a transition before clock x reaches 5. To avoid this
violation, either a transition of this thread leaving the state could be executed
or a transition of another thread could reset ¢, thus effectively extending the
residence permit for this state.

More generally, state invariants are of the form pc; = locy, = A z; < c¢j, i.e. a
state value implies a conjunction of upper bounds for clocks. For systems with
just one thread, a state invariant has the same effect as adding the constraints
to each outgoing transition of the state; they add nothing to the expressive-
ness of the formalism. For parallel systems, the invariants also imply additional
constraints for the outgoing transitions (which must therefore be considered to
be reading the corresponding clocks), however, they have a more global effect:
the entire system is forced to execute some transition before the expiring of
the invariants of each thread. This is very useful in modeling the coupling of
subsystems by time, e.g. for modeling timeouts.

It is possible to extend the framework we have developed so far to include
state invariants, but technically, this integration depends on the notion of time
progress and it is quite complex for relaxed timed progress.

Interleaving Semantics and Synchronous Time Progress. Consider a

(t1,71) (tn,mn)
timed sequence sg S1 .- sp = s'. For standard interleaving se-

mantics, i.e. one transition at a tlme the conjunction of all (thread local) state
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invariants at global state s; must be satisfied at time 7,41 (the execution time of
the next transition after s;). Obviously, since 7,11 < T;+2 the invariant holding
after the execution of the transition also (already) holds at 7.

For synchronous time progress, the same coding as for interleaving semantics
is valid! Although we execute several transitions at time 7;;1 we do not execute
any transition before that date and hence the state invariant must be satisfied
at 7;41. Since intereavings of timed multisteps with synchronous time progress
do not let time pass between the transitions of a multistep, it is easy to see that
the condition is necessary and sufficient.

Semi Synchronous Time Progress. For semi synchronous time progress,
a similar reasoning as for the synchronous case helps to understand why it is
sufficient to require that for each execution time Tiﬁ_l of some transition in the
multistep the invariant must be satisfied.

This can be very efficiently coded by requiring the state invariant to hold
at (;+1, the separating variable introduced in Section 4.7 for coding semi syn-
chronous time progres: if all TZ-’fH satisfy the invariant then so does their maxi-
mum. (;+1, by the time progress condition situated anywhere between the times-
tamps of MT;11 and those of MT; 5 can be chosen minimal, i.e. the maximum
timestamp of MT;11. Requiring (;41 to respect the state invariant of s; is thus
equivalent to requiring this of every timestamp of MT; ;.

One might argue that this condition, while sufficient, need not be necessary
and that a more relaxed condition, while still sufficient, might allow shorter
timed multi step sequences. However, then a technique as indicated below for
relaxed time progress must be applied. We feel that the technique above is the
natural way of dealing with state invariants in the semi synchronous setting.

Relaxed Time Progress. For relaxed time progress, a technique developed
for handling invariants in the context of state exploration with zones and partial
order semantics [I4] can be used. We refer the reader to that paper for technical
details and the somewhat involved development of the correctness proof. But
we can give a hint on the constraints that actually need to be coded for that
approach. One has to distinguish between a local and a global view of invariants:
locally, transitions leaving a state must satisfy the invariant, as discussed at the
beginning of this section. Globally, a transition resetting a clock must satisfy all
variants of the current states of other threads that mention that clock. Finally,
the final state must satisfy the global invariant. These three types of constraints
are not very difficult to code (and are included in our prototype), the condition
for relaxed time progress itself is more complex than this addition.

6 Examples and Experiments

In this section, we present results obtained with a working version of POEM as
used in [I4], but with a new SAT backend, implementing all multistep algorithms
and using Picosat [4] as SAT solver.
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The tests were performed on a Mac Pro quad-core 2.66 Ghz, with 16 GB of
memory (but a single core is used only and no more than 1GB is required in
these computations). The time function of the Unix systems was used to get the
timings. By default, they all use seconds except when a 'm’ appears for minutes.
Uppaal [2] times are given for reference.

The numbers for interleaving (only one transition for each step) and multi-
steps columns are in the order: the time for the SAT solver to find a solution,
the number of clauses in the formula and the number of (multi) steps of the
solution, e.g. 2.4/164K/10 indicates a solving time of 2.4s for a formula with
approximatively 164000 clauses and 10 multisteps. The symbol ’—’ is used when
no solution has been found within 20 minutes.

Circuit Analysis

We introduce a simple circuit problem: several NOT gates are connected one to
the other as in figure [Bl Each gate has a delay to propagate its input signal to
its output. Initially each value is equal to zero. We want to know if the circuit
can stabilize, i.e. if there exists a time ¢ where input values and output values
are coherent (and thus will no longer change). Of course, the circuit can stabilize
only if there is an even number of gates. It turns out that the desired state is
reachable with one (synchronous) multi step. As can be seen, the more complex
encodings yield no advantage here.

Do

Fig. 3. A circuit with NOT gates

Table 1. Results for the circuit problem

. Multistep
nodes UppAal Interleaving synchronous semi synchronous relaxed
4 0 0/12K/2 0/8K/1 0/23K/1 0/53K/1
10 0.1 0.3/48K/5 0/22K/1 0.1/58K/1 0.9/139K/1
16 - 1.7/112K/8 0.5/38K/1 1.6/99K/1 1.2/242K/1
20 -2.4/164K/10 0.8/48K/1 1.8/123K/1 1.3/301K/1
50 - - 1.2/129K/1 2.3/327K/1 2.8/811K/1
100 - - 3.1/279K/1 3.9/704K/1 5.6/1,7M/1
200 - - 4.3/608K/1 6.1/1.5M/1 11.1/3,8M/1

Timed Network Protocols

We consider the following simplistic broadcast protocol: nodes arranged in a (non
complete) binary tree can only send a signal to their children after receiving
a signal from their parents. When a leaf receives a signal, it sends back an
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acknowledgement. When an interior node receives ac- O
knowledgements from its two children, it sends one to its
own parent, and so on. To resume, a signal starts from the CHCo

root, is asynchronously propagated to the leaves and back

to the root. A random delay for each transmission between (=) (&) (&) ()
a parent and its children is added. The model checker is

asked to find a completed broadcast within a tight interval o ° °

of time. For this series of examples, the semi synchronous

coding allows significantly shorter multi step runs than the synchronous coding
and sometimes the relaxed coding allows even shorter sequences. It turns out
that shorter here means (much) faster, whereas at the same length, the relaxed
coding comes with an overhead over the semi synchronous coding and is slower.

Table 2. Results for the network protocol problem

. Multistep
nodes UppAal  Interleaving synchronous semi synchronous relaxed
5 0.0 0/11K/9 0.1/7K/6 0.2/19K/6  0.2/29K/6
10 0.1 2.9/49K /19 0.8/31K/12 0.3/59K/8 0.8/95K /8
15 20.0 19.0/110K/29 0.5/40K /10 0.5/90K /10 1.1/144K/8
20 - 4m46 /196K /39 3.5/93K/18 3.5/175K /12 2.3/240K/10
50 - - 18.2/292K/20 5.6/508K/12  8.2/846K /12
100 - - 11m06/812K/28  19.2/1.2M/14  34.1/2M/14
200 - - - 3m09/2.7M/18 2m15/4.6M/16

7 Conclusions and Future Work

We have studied the problem of enhancing the SAT reductions of bounded model
checking of timed automata with the help of multisteps. We have identified three
different alternative semantics for coding and have given a few experiments to
compare them.

Related work. While we are not aware of any work trying the combination we
have considered here (SAT, partial order, timed automata), many aspects of this
work find their origin in other works: The basic coding principles, including the
variable transformation (using timestamps rather than clock values) are already
present in previous works on BMC for timed automata, whether oriented to-
wards pure boolean SAT or SMT (SAT modulo theories) [I3UTIT5IIR]. “Relaxed
semantics” with respect to time has been widely discussed in the context of sym-
bolic state exploration of timed automata, e.g. in [3] whereas the idea of allowing
timestamps to be commuted was first presented in [12]. When abstracting from
time, the key idea of using step semantics in bounded model checking was stated
in [9]. Beyond the context of bounded model checking, one work considers exe-
cuting several transitions of timed automata in parallel in order to avoid zone
splitting [19], but no indication towards SAT applications is found in that work.
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Interpretation of experimental evidence. We have given two series of experi-
ments that illustrate how the alternative semantics can dramatically improve
the performance of the SAT approach to timed automata reachability. From
these and non-documented experiments, our personal assessment is that “syn-
chronous time progress”’ is always a good idea to start with (the smallest set
of clauses at the same path length), and if it runs out of time with increasing
path length to switch to semi synchronous time progress. We have not yet found
examples where relaxed time progress yields an advantage in execution time (al-
though sometimes shorter paths were found). Obviously, case studies on realistic
examples are necessary for further evaluation.

Perspectives. We have not implemented a reduction to SMT, but, as outlined
in Section 4, the coding would be the same except for the representation of
time stamps by real valued variables and corresponding constraints. We believe
that the improvement achieved for the current boolean only approach carry
over seamlessly to the SMT case. We might explore an SMT variant of our
implementation in the future.
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