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Abstract. Type-based amortised resource analysis following Hofmann
and Jost—where resources are associated with individual elements of
data structures and doled out to the programmer under a linear typing
discipline—have been successful in providing concrete resource bounds
for functional programs, with good support for inference. In this work we
translate the idea of amortised resource analysis to imperative languages
by embedding a logic of resources, based on Bunched Implications, within
Separation Logic. The Separation Logic component allows us to assert
the presence and shape of mutable data structures on the heap, while
the resource component allows us to state the resources associated with
each member of the structure.

We present the logic on a small imperative language with procedures
and mutable heap, based on Java bytecode. We have formalised the logic
within the Coq proof assistant and extracted a certified verification con-
dition generator. We demonstrate the logic on some examples, including
proving termination of in-place list reversal on lists with cyclic tails.

1 Introduction

Tarjan, in his paper introducing the concept of amortised complexity analysis
[15], noted that the statement and proof of complexity bounds for operations on
some data structures can be simplified if we can conceptually think of the data
structure as being able to store “credits” that are used up by later operations.
By setting aside credit inside a data structure to be used by later operations we
amortise the cost of the operation over time. In this paper, we propose a way to
merge amortised complexity analysis with Separation Logic [12J14] to formalise
some of these arguments.

Separation Logic is built upon a notion of resources and their separation.
The assertion A * B holds for a resource if it can be split into two resources that
make A true and B true respectively. Resource separation enables local reasoning
about mutation of resources; if the program mutates the resource associated with
A, then we know that B is still true on its separate resource.

For the purposes of complexity analysis, we want to consider resource con-
sumption as well as resource mutation, e.g. the consumption of time as a program
executes. To see how Separation Logic-style reasoning about resources helps in
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this case, consider the standard inductively defined list predicate from Separa-
tion Logic, augmented with an additional proposition R denoting the presence
of a consumable resource for every element of the list:

listr(z) = @« =null Aemp
nex

V3y,z. [z s y] * [ 15 2] % R listr(2)
We will introduce the assertion logic properly in Section [ below. We can repre-
sent a heap H and a consumable resource r that satisfy this predicate graphically:

___________________________________

So we have r, H |= listr(x), assuming = points to the head of the list. Here
r = R-R-R-R—we assume that consumable resources form a commutative
monoid—and r represents the resource that is available for the program to use
in the future. We can split H and r to separate out the head of the list with its
associated resource:

__________________________________

next

This heap and resource satisfy r1-ro, H1 WHy = [z s al [z — y]* Rxlistr(y),
where HiWHy = H, r1-r9 = r and we assume that y points to the b element. Now
that we have separated out the head of the list and its associated consumable
resource, we are free to mutate the heap H; and consume the resource r; without
it affecting the tail of the list, so the program can move to a state:

__________________________________

___________________________

where the head of the list has been mutated to A and the associated resource
has been consumed; we do not need to do anything special to reason that the
tail of the list and its associated consumable resource are unaffected.

The combined assertion about heap and consumable resource describes the
current shape and contents of the heap and also the available resource that
the program may consume in the future. By ensuring that, for every state in
the program’s execution, the resource consumed plus the resource available for
consumption in the future is less than or equal to a predefined bound, we can
ensure that the entire execution is resource bounded. This is the main assertion
of soundness for our program logic in Section [3.41
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By intermixing resource assertions with Separation Logic assertions about
the shapes of data structures, as we have done with the resource carrying listg
predicate above, we can specify amounts of resource that depend on the shape of
data structures in memory. By the definition of listg, we know that the amount
of resource available to the program is proportional to the length of the list,
without having to do any arithmetic reasoning about lengths of lists.

The association of resources with parts of a data structure is exactly the
banker’s approach to amortised complexity analysis proposed by Tarjan [15].

Our original inspiration for this work came from the work of Hofmann and Jost
[9] on the automatic heap-space analysis of functional programs. Their analysis
associates with every element of a data structure a permission to use a piece
of resource (in their case, heap space). This resource is made available to the
program when the data structure is decomposed using pattern matching. When
constructing part of a data structure, the required resources must be available.
A linear type system is used to ensure that data structures carrying resources
are not duplicated: this would entail duplication of consumable resource. This
scheme was later extended to imperative object-oriented languages [TO/TT], but
still using a type-based analysis.

Contributions We summarise the content and contributions of this work:

— In Section [B] we define a program logic that allows mixing of assertions
about heap shapes, in the tradition of separation logic, and assertions about
future consumable resources. Tying these together allows us to easily state
resource properties in terms of the shapes of heap-based data structures,
rather than extensional properties such as their size or contents. We have
also formalised the soundness proof of our program logic in Coq, along with
a verified verification condition generator.

— In Section B we define a restricted subset of the assertion logic that allows
us to perform effective proof search and inference of resource annotations.
A particular feature of the way this is set up is that, given loop invariants
that talk only about the the shape of data structures, we can infer necessary
resource bounds.

— In Sections[Zand 6, we demonstrate the logic on two small examples, showing
how a mixture of amortised resource analysis and Separation Logic can be
used to simplify resource-aware specifications, and how it can be used to
prove termination in the presence of cyclic structures in the heap.

2 DMotivating Example: Functional Queues

Before defining our program logic, we give another example to demonstrate how
amortised reasoning is easier than the traditional approach of keeping a global
counter for consumed resources as an auxiliary “ghost” variable in the proof. This
example is a standard one for introducing amortised complexity analysis, but
here we look at the specifications of operations on an imperative data structure
taking into account their resource consumption.
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We consider functional queues, where a queue is represented by a pair of lists:

null

The top list represents the head of the queue, while the bottom list repre-
sents the tail of the queue in reverse; thus this structure represents the queue
[a,b,c,d, f,e]. When we enqueue a new element, we add it to the head of the
bottom list. To dequeue an element, we remove it from the head of the top list. If
the top list is empty, then we reverse the bottom list and change the top pointer
to point to it, changing the bottom pointer to point to null.

When determining the complexity of these operations, it is obvious that the
enqueue operation is constant time, but the dequeue operation either takes con-
stant time if the top list is empty, or time linear in the size of the bottom list,
in order to perform the reversal. If we were to account for resource usage by
maintaining a global counter then we would have to expose the lengths of the
two lists in specification of the enqueue and dequeue instructions. So we would
need a predicate queue(x, h,t) to state that = points to a queue with a head
and tail lists of lengths h and ¢ respectively. The operations would have the
specifications:

{queue(z, h,t) A r. = ri }enqueue{queue(x, h,t + 1) Ar. =11 + R}
{queue(x,0,0) A 7. = r1 }dequeue{queue(x,0,0) A1, =r1}
{queue(z,0,t + 1) A r. = r1 }dequeue{queue(z,t,0) Ar. =r; + (1 + )R}
{queue(x, h + 1,t) Ar. = r1 }dequeue{queue(z, h,t) Ar. =71 + R}

where 7. is a ghost variable counting the total amount of resource (time, in this
case) consumed by the program, and R is the amount of resource required to
perform a single list node manipulation. Note that we have had to give three
specifications for dequeue for the cases when the queue is empty, when the head
list is empty and when the head list has an element. The accounting for the sizes
of the internals of the queue data structure is of no interest to clients of this
data structure, these specifications will complicate reasoning that must be done
by clients in order to use these queues.

Using amortised analysis, this specification can be drastically simplified. We
associate a single piece of resource with each element of the tail list so that when
we come to reverse the list we have the necessary resource available to reverse
each list element. The queue predicate is therefore:

queue(z) = Jy, 2.[z head y| * [x fat z] * list(y) * listr(2)
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where list is the standard Separation Logic list predicate, and listg is the resource-
carrying list predicate given above. The specifications of the operations now
become straightforward:

{queue(z) * R * R}enqueue{queue(x)} {queue(z) * R}dequeue{queue(x)}

To enqueue an element, we require two resources: one to add the new element
to the tail list, and one to “store” in the list so that we may use it for a future
reversal operation. To dequeue an element, we require a single resource to remove
an element from a list. If a list reversal is required then it is paid for by the
resources required by the enqueue operation.

Once we have set the specification of queues to store one element of resource
for every node in the tail list, we can use the resource annotation inference pro-
cedure presented in Section[B] to generate the resource parts of the specifications
for the enqueue and dequeue operations.

3 A Program Logic for Heap and Resources

We define a logic that is capable of asserting facts about both the mutable heap
and the consumable resources that a program has access to. Assertions about
resources available to a program are intimately connected to the shapes of the
data structures that it is manipulating. In this section, we introduce a simple
programming language and a resource-aware program logic for it. We define a
“shallow” program logic where we treat pre- and post-conditions and program
assertions as arbitrary predicates over heaps and consumable resources. In the
next section, we will layer on top a “deep” assertion logic where predicates are
actually Separation Logic formulae augmented with resource assertions.

3.1 Semantic Domains

Assume an infinite set A of memory addresses. We model heaps as finite partial
maps H = (A x F) —g, V, where F ranges over field names and V= A | + Z rep-
resents the values that programs can directly manipulate: possibly null addresses
and integers. We write dom(H ) for the domain of a heap and Hy# Ho» for heaps
with separate domains; H; W Hy denotes union of heaps with disjoint domains.

Consumable resources are represented as elements of an ordered monoid (R, C
,+,€), where e is the least element. Example consumable resources include (N, <
,+,0) or (Q2°, <, +,0) for representing a single resource that is consumed (e.g.
time or space), or multisets for representing multiple named resources that may
be consumed independently. The ordering on consumable resources is used to
allow weakening in our assertion logic: we allow the asserter to assert that more
resources are required by the program than are actually needed.

To talk about separated combinations of heaps and resources, we make use of
a ternary relation on pairs of heaps and consumable resources, as is standard in
the semantics of substructural logics [13]:

Ryyz < Hi#Hy NHiWHy = Hg Ary-rp T3
where x = (H1,7r1),y = (Ha,r2),2 = (Hz3,73)
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We extend the order on resources to pairs of heaps and resources by (Hy,r1) C
(H27T2) iff H1 = H2 and T1 E T9.

3.2 A Little Virtual Machine

The programming language we treat is a simple stack-based virtual machine,
similar to Java bytecode without objects or virtual methods, but with mutable
heap and procedures. There are two types: int and ref, corresponding to the two
kinds of values in V. We assume a set [P of procedure names, where a procedure’s
name determines its list of argument types and its return type. Programs are
organised into a finite set of procedures, indexed by their name and individually
consisting of lists of instructions from the following collection:

¢ ::= iconst z | ibinop op | pop | load n | store n | aconst null
| binarycmp cmp offset | unarycmp cmp offset | ifnull offset | goto offset
| new desc | getfield fnm | putfield fnm | free desc | consume r

| return | call pname

These instructions—apart from consume—are standard, so we only briefly ex-
plain them. Inside each activation frame, the virtual machine maintains an
operand stack and a collection of local variables, both of which contain values
from the semantic domain V. Local variables are indexed by natural numbers.
The instructions in the first two lines of the list perform the standard operations
with the operand stack, local variables and program counter. The third line in-
cludes instructions that allocate, free and manipulate structures stored in the
heap. The instruction consume r consumes the resource r. The desc argument
to new and free describe the structure to be created on the heap by the fields
and their types. The fourth line has the procedure call and return instructions
that manipulate the stack of activation frames.

Individual activation frames are tuples (code, S, L, pc) € Frm consisting of
the list of instructions from the procedure being executed, the operand stack
and local variables, and the program counter. The first two lines of instructions
that we gave above only operate within a single activation frame, so we give

their semantics as a small-step relation between frames: m C Frm x Frm. This
accounts for the bulk of instructions.

The third line of instructions includes those that manipulate the heap and
consume resources. Their small-step operational semantics is modelled by a re-
lation ™% C Frm x H x Frm x H x R, which relates the before and after activation
frames and heaps, and states the consumable resource consumed by this step.

A state of the full virtual machine is a tuple (r, H, fs) € State, where r is
the resource consumed to this point, h is the current heap, and fs is a list of
activation frames. The small-step operational semantics of the full machine for
some program prg is given by a relation —,,, C Statex State which incorporates

the frm, and ™ relations and also describes how the call and return instructions
manipulate the stack of activation frames.
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Finally, we use the predicate s | H,r,v to indicate when the last activation
frame is popped and the machine halts. The H,r and v are the final heap, the
consumed resources and the return value respectively.

3.3 Program Logic

We annotate every procedure pname in the program with a pre-condition Ppyqm.e
and a post-condition @ pname. Pre-conditions are predicates over V* x H x R: lists
of arguments to the procedure and the heap and available resource at the start
of the procedure’s execution. Post-conditions are predicates over V* x H x R x V:
argument lists and the heap, remaining consumable resource and return value.
Intermediate assertions in our program logic are predicates over V* x H x R x
V* x (N = V): argument lists, the heap, remaining consumable resource and the
current operand stack and local variable store.

For our program logic, a proof that a given procedure’s implementation code
matches its specification (P, @) consists of a map C from instruction offsets in
code to assertions such that:

1. Every instruction’s assertion is suitable for that instruction: for every instruc-
tion offset ¢ in code, there exists an assertion A such that C, Q F i:code[i] : A
and C[i] implies A. Figure [I] gives the definition of C,Q F i:. : A for a se-
lected subset of the instructions ¢. The post-condition @) is used for the case
of the return instruction.

2. The precondition implies the assertion for the first instruction: for all ar-
guments args, heaps H and consumable resources r, P(args, H,r) implies
C[0)(args, H,r,[],"args™), where [] denotes the empty operand stack, and
"7 maps lists of values to finite maps from naturals to values in the obvious
way.

When condition 1 holds, we write this as C' F code : @, indicating that the
procedure implementation code has a valid proof C' for the post-condition Q.

3.4 Soundness

We say that an activation frame is safe if there is a proof for the code being ex-
ecuted in the frame such that the requirements of the next instruction to be ex-
ecuted are satisfied. Formally, a frame f = (code, S, L, pc) is safe for arguments

s7 heap H, resource r and post-condition @, written safeFrame(f, H,r, args, Q)
iftl:

1. There exists a certificate C such that C' F code : Q;
2. Clpc] exists and C|pc|(args,r, H, S, L) holds.

! In this definition, and all the later ones in this section, we have omitted necessary
assertions about well-typedness of the stack, local variables and the heap because
they would only clutter our presentation.
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C,Q & i:consume r. : Aargs,r, H, S, L).3r" re - v’ Cr A C[i + 1](args,r’, H, S, L)

C, Q +aifnull n: X(args,r, H,S,L).¥a S".S =a :: S =
(a # null = C[i + 1](args,r, H,S", L))A
(a =null = C[nl(args,r,H,S', L))

C,Q ti:call pname :

X args,r, H,S,L).Vargs' §'.S = args'@QS’" =
H(Hl,rl) (Hz,’r‘z).

R(H1,7“1)(H2,7“2)(H, 7“)/\

Ppname(args’, Hi,r1)A

Yo (Hi,71).
H{#HQ =
Qpname(args’, Hy,r1,v) =
Cli + 1](args’,r} -ro, HL W Ho,v 2 S", L)

Fig. 1. Program Logic Rules (Extract)

Safety of activation frames is preserved by steps in the virtual machine:

Lemma 1 (Intra-frame safety preservation)

frm

1. If safeFrame(f, H,r, args, Q) and f — f’, then safeFrame(f', H,r, args, Q).

2. If safeFrame(f, Hy,r, args, Q) and Hi#Hy and Hy W Hy = H and f, H mut
' H' r, then there exists H| and v’ such that Hi#Hy and H] W Hy = H’,
re -7 C v and safeFrame(f', Hy,r', args, Q).

Remark 1. We pause for a moment to consider the relationship between our
program logic and traditional Separation Logic. The second part of the previous
lemma effectively states that execution steps for mutating instructions are local:
for any other piece of heap that is present but not mentioned in its precondition,
the execution of a mutating instruction will not affect it. This is usually expressed
in Separation Logic by the Frame rule that states if we know that {P}C{Q}
holds, then {P % R}C{Q * R} holds for any other resource assertion R. We do
not have an explicit Frame rule in our program logic; application of the rule is
implicit in the rule for the call instruction (so, conflatingly, the Frame rule is
applied when we create a new activation frame). We do not have access to the
Frame rule in order to modularly reason about the internals of each procedure,
e.g. local reasoning about individual loops. This is partially a consequence of
the unstructured nature of the bytecode that we are working with. It has not
been a hindrance in the small examples that we have verified so far, but may
well become so in larger procedures with multiple loops that need invariants. In
such a case it may be useful to layer a hierarchical structure, matching the loops
or other sub-program structure, on top of the unstructured bytecode that we
have considered here in order to apply Frame rules and facilitate local reasoning
inside procedures.
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We have now handled all the instructions except the call and return instruc-
tions that create and destroy activation frames. To state soundness of our pro-
gram logic for these we need to define what it means for a stack of activation
frames to be safe. Intuitively, a stack of activation frames is a bridge between the
overall arguments args,,, and post-condition Q4,, for the program and the ar-
guments args,,,, and post-condition Q.. for the current activation frame, with
respect to the current heap H and available consumable resources r, such that,
when the current activation frame finishes, its calling frame on the top of the
stack is safe. We write this as safeStack(fs, H, 7, args ..., Q curs a198 15, Qtop)-

Accordingly, we say that the empty frame stack is safe when r = e, H = emp,
args ey = 19545, aNd Qeur = Qrop. A frame stack fs = (code, S, L, pc) :: fs' is
safe when there exists (Hy,r1), (Ha,72), args, @ and C, A such that:

R(Hl,Tl)(HQ,’I"Q)(H, ’I“);

The code is certified: C, Q = code;

The next instruction has pre-condition A: Clpc] = A;

When the callee returns, the instruction’s pre-condition will be satisfied: for
all v € V, H}, rl, such that Hi#Hy and Q cur(a798 oy, Hy, 75, v) holds, then
A(args,rh -1, Hy W Hy,v :: S, L) holds.

5. The rest of the frame stack fs is safe when this activation frame returns:
safeStack(fs, Ha, 2, args, Q, args,,,, Qiop)-

Ll

cur?

Note how the safeStack predicate divides up the heap and consumable resource
between the activation frames on the call stack; each frame hands a piece of its
heap and consumable resource off to its callees to use.

Finally, we say that a state s = (r., H, fs) is safe for arguments args, post-
condition @ and maximum resource 7,4, written safeState(s, args, Q, rmaz), if:

1. there exists an 7fusure such that rc - rryure © Tmae; and also

2. Tputure and H split into (Hy,r1) and (Ha, r2), l.e. R(H1,7m1)(Ha, r2) (H, 7 future );

3. there exists at least one activation frame: fs = f :: fs’ and arguments args.,,,.
and post-condition @ .-; such that

4. safeFrame(f, Hi, 71, args oy, Qcur); and

5. safeStack(fs, Ha, 72, args ooy Q cur, a195, Q).

The key point in the definition of safeState is that the assertions of the pro-
gram logic talk about the resources that will be consumed in the future of the
program’s execution. Safety for a state says that when we combine the future
resource requirements with resources that have been consumed in the past, r.,
then the total is less than the total resources r,,,, that are allowed for the
execution.

Theorem 1 (Soundness)

1. Assume that all the procedures in prg match their specifications. Then if
safeState(s, args, Q, Tmaz) and s —prg s’ then safeState(s’, args, Q, "maz)-

2. If safeState(s, args, Q,Tmaz) and s | H,r, v, then there exists an v’ such that
Q(args, H,r',v) and r C rypaq -
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In the halting case in this theorem, the existentially quantified resource r’ indi-
cates the resources that the program still had available at the end of its execution.
We are also guaranteed that when the program halts, the total resource that it
has consumed will be less than the fixed maximum 7,,,, that we have set, and
moreover, by part 1 of the theorem, this bound has been observed at every step
of the computation.

4 Deep Assertion Logic

In the previous section we described a program logic but remained agnostic as to
the exact form of the assertions save that they must be predicates over certain
domains. The shallow approach to stating makes the statement and soundness
proof easier, but inhibits discussion of actual specifications and proofs in the
logic. In this section we show that the logic of Bunched Implications, in its
Separation Logic guise, can be used as a language for assertions in the program
logic.

We defined three different types of assertion in the previous section: proce-
dure pre- and post-conditions and intermediate assertions in methods. These all
operate on heaps and consumable resources and the arguments to the current
procedure, but differ in whether they talk about return values or the operand
stack and local variables. To deal with these differences we assume that we have
a set of terms in our logic, ranged over by ¢,t1,to, ..., that at least includes log-
ical variables and a constant null for representing the null reference, and also
variables for representing the current procedure arguments, the return value and
the operand stack and local variables as appropriate.

Formulae are built from at least the following constructors:

Gu=t1 Xty | p1 NP2 | P1V b2 | p1 — Pa | emp | b1 % P2 | p1 —* P2 | Va.¢ | Tz
| [t1 o to] | Ry | ...

Where i € {=,#}. We can also add inductively defined predicates for lists and
list segments as needed. The only non-standard formula with respect to Separa-
tion Logic is R, which represents the presence of some consumable resource 7.
The semantics of the assertion logic is given in Figure 2l as a relation = between
environments and heap/consumable resource pairs and formulae. We assume a
sensible semantics [-], for terms in a given environment.

As a consequence of having an ordering on consumable resources, and our
chosen semantics of emp, * and —, our logic contains affine Bunched Implications
as a sub-logic for reasoning about pure consumable resources.

Proposition 1. If ¢ is a propositional BI formula with only R, as atoms, then

o ¢ Wff 0, (1, h) = o

We have only considered a single separating connective, ¢1 * @2, which states that
both the heap and consumable resources must be separated. Evidently, there
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nx ET iff always

n,T ': t1 <ty iff [[tl]]n > [[tg]]n

n,x = emp iff x = (h,r) and h = {}

n.@ [ [t it @ = (hyr) and b= {([6], )~ [tal}

n,z E Ry, iff x =(h,r)and r; Crand h={}

nx = o1 Ad2 iff n,x = ¢ and n,x = @2

nz = ¢1Vor iff n,x = ¢ ornx = ¢

n,x = ¢1x P2 iff exists y,z. st. Ryzz and 0,y = ¢1 and 0,z = ¢2
n,x E ¢1 — ¢ iff for all y. if z C y and n,y = ¢1 then n,y = ¢2
n,x E ¢1 = ¢o iff for all y, z. if Rxyz and 1,y = ¢1 then 1,z = ¢
n,x = Yv.é iff for all a,nv +— a],z = ¢

n,x = Jv.é iff exists a,n[v — al,z = ¢

Fig. 2. Semantics of assertions

are two other possible combinations that allow sharing of heap or resources.
Separation of resources, but sharing of heap:

n,x = ¢1%r ¢oiff x = (H,r) and exists ry, ra. st.
riore
and 7, (H7T1) ): ¢1 and 7, (H7T2) ): ¢2

may be useful to specify that we have a single data structure in memory, but
two resource views on it. However, we leave such investigation of alternative
assertions to future work.

5 Automated Verification

In this section we describe an verification condition generation and proof search
procedure for automated proving of programs against programs against specifi-
cations in our program logic, as long as procedures have been annotated with
loop invariants. The restricted subset of separation logic that we use in this
section is similar to the subset used by Berdine et al [3], though instead of per-
forming a forwards analysis of the program, we generate verification conditions
by backwards analysis and then attempt to solve them using proof search. As we
demonstrate below, the proof search procedure is mainly guided by the structure
of the program and the shape of the data structures that it manipulates. The
resource annotations that are required can be inferred by linear programming.

5.1 Restricted Assertion Logic

Following Berdine et al, the restricted subset of the assertion logic that we use
segregates assertions into pure data, heap and consumable resource sections.

Data: P:Ztlztg‘tl#tg‘—r

Heap: X = [t A to] | Iseg(©,t1,t2) | emp
Resource: R := R, | T
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The terms that we allow in the data and heap assertions are either variables,
or the constant null. The list segment predicate that we use here is defined
inductively as:

data

lseg(O, z,y) = (x =y Aemp) V (32,2, [# B 2] % [ 75 2] x O x Iseg(6, 2, 1))

We restrict the pre- and post-conditions of each procedure to be of the form
V,UT; A (X5 % ©;)) and we use S to range over such formulae. The three com-
ponents of each disjunct are lists of data, heap and resource assertions, with
interpretations as in the following table.

Data: .= r,.P, (PN.ANP)

Heap: Yoo=X1,.,X, (Xix.xX,)

Resource: © := Ry,..,R, (Rix*..*xR,)
Note that, due to the presence of resource assertions in the Iseg predicate, heap
assertions may also describe consumable resources, even if the resource part of
a disjunct is empty.

Finally, we have the set of goal formulae that the verification condition gen-
erator will produce and the proof search will solve.

G=5xG|S—~=G|S|Gi NGy | P—G|Vx.G |G

Note that we only allow implications (— and —) to appear in positive positions.
This means that we can interpret them in our proof search as adding extra
information to the context.

5.2 Verification Condition Generation

Verification condition generation is performed for each procedure individually by
computing weakest preconditions for each instruction, working backwards from
the last instruction in the method. To resolve loops, we require that the targets
of all backwards jumps have been annotated with loop invariants S that are of
the same form as the pre- and post-condition formulae from the previous section.
We omit the rules that we use for weakest precondition generation since they
are very similar to the rules for the shallowly embedded logic in Figure [l The
verification condition generator will always produce a VC for the required entail-
ment of the computed pre-condition of the first instruction and the procedure’s
pre-condition, plus a VC for each annotated instruction, being the entailment
between the annotation and the computed precondition. All VCs will have a
formula of the form \/,(II; A (X; * ©;)) as the antecedent and a goal formula as
the conclusion.

5.3 Proof Search

The output of the verification condition generation phase is a collection of prob-
lems of the form IT|X|© + G. We define a proof search procedure by a set of
rules shown in Figures 3 [ [6 and Bl The key idea here is to use the I/O model
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of proof search as defined for intuitionistic linear logic by Cervesato, Hodas and
Pfenning [5], and also the use of heuristic rules for unfolding the inductive list
segment predicate.

As well as the main proof search judgement IT|X|© F G, we make use of
several auxiliary judgements:

I 2|0 F X1\ X5,0" Heap assertion matching

O+ 6:\0, Resource matching
-1 Contradiction spotting
-1 Data entailment

The backslash notation used in these rules follows the I/O model of Cervesato
et al, where in the judgement © F ©1\O3, the proof context © denotes the
facts used as input and Oy denotes the facts that are left over (the output)
from proving @;. A similar interpretation is used for the heap assertion match-
ing judgement. We do not define the data entailment or contradiction spotting
judgement explicitly here; we intend that these judgements satisfy the basic
axioms of equalities and disequalities.

The rules in Figure [3 are the goal driven search rules. There is an individual
rule for each possible kind of goal formula. The first two rules are matching rules
that match a formula S against the context, altering the context to remove the
heap and resource assertions that S requires, as dictated by the semantics of
the assertion logic. We must search for a disjunct 7 that matches the current
context. There may be multiple such ¢, and in this case the search may have to
backtrack. When the goal is a formula .S, then we check that the left-over heap
is empty, in order to detect memory leaks.

exists . mxer \x, e I+ II; o'+ o,\0" mxe’+a
1210 \/(1: A (5% 6,)) G
exists i.  II|Y|OF Y\emp,®  II+FI; 6O F6)\0"
1210+ \/ (L A (S + 6))

forall i. I, 1|2, ;10,0 - G

1510 - \/(I1: A (5 5 ©1)) —+G I,PIZIe kG

mxerPr—-a

HXe+G M5O G, e+ G  zdf(IT)Ufu(x)
5|6 F Gy AGa 1|56 F Va.G
1|56 + Gt/
26+ 3a.G

Fig. 3. Goal Driven Search Rules
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Heap Matching Rules:

Tt =t ITFty=1th

I1|X|0 + emp\ X, 0 I3, [t V5 £2]|0 F [t V> 5]\, 0
o+ o\x,e X0 x\8" 6" Ity =ty
I|Xek X« 22\2”,8” II| X0 + Iseg(Oy, t1,t2)\ X, ©

Tt =t OFONO X0+ lseg(O, tn,t2)\X, 0"
|5, [t ), [t v t4]|© F lseg (O, ¢, t2)\ 5", 6"

I+ tll =1 H|2|9 I |Seg(91,t2,t3)\2/,@/
1715, Iseg(Oy, t1,t2)|O F lseg(Oy, th, t3)\ X', 6’

Resource Matching Rules:

OFO.\0  ©F6,\0"
O,R’F R"\O OF T\O OF 601 +0,\0"

Fig. 4. Matching Rules

The matching rules make use of the heap and resource matching judgements
defined in Figure @ The heap matching judgements take a data, heap and re-
source context and attempt to match a list of heap assertions against them,
returning the left over heap and resource contexts. The first three rules are
straightforward: the empty heap assertion is always matchable, points-to rela-
tions are looked up in the context directly and pairs of heap assertions are split,
threading the contexts through. For the list segment rules, there are three cases.
Either the two pointers involved in the list are equal, in which case we are im-
mediately done; or we have a single list cell in the context that matches the
start pointer of the predicate we are trying to satisfy, and we have the required
resources for an element of this list, so we can reduce the goal by one step; or we
have a whole list segment in the context and we can reduce the goal accordingly.
The resource matching rules are straightforward.

The final two sets of rules operate on the proof search context . The first set,
shown in Figure [ describe how information flows from the heap part of the
context to the data part. If we know that two variables both have a points-to
relation involving a field f, then we know that these locations must not be equal.
Similarly, if we know that a variable does point to something, then it cannot be
null. If any contradictions are found using these rules, then the proof search can
terminate immediately for the current goal. This is provided for by the first rule
in Figure

The final set of rules performs heuristic unfolding of the inductive Iseg predi-
cate. These rules are shown in Figure [0l These rules take information from the
data context and use it to unfold Iseg predicates that occur in the heap con-
text. The first rule is triggered when the proof search learns that there is a list
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I+ L
nzer G

X

[t o8] [t o #'], X It # 42|20 G
mxera

D=5ty IMt#nllX|OFG
nxer G

Fig. 5. Contradiction Flushing

II =ty # null
It =6|Y0FG X[t a], [t > ], lseg(R, 2, 12)|0, R+ G
H|2, Iseg(R,tl,t2)|8 FG

Hl—t1:null H,tQ:null|E|@l—G H|_t1:t2 H|E|@|‘G
II|3, Iseg(R, t1,12)|0 - G II| Y, Iseg(R, t1,12)|0 - G

Dty #ty I3[t 2], [t S y), lseg(R, 7, t2)|0, R+ G
I X, Iseg(R, t1,t2)|O F G

Fig. 6. List Unfolding Rules

segment where the head pointer of the list is not equal to null. In this case, two
proof search goals are produced, one for the case that the list segment is empty
and one for when it isn’t. The other rules are similar; taking information from
the data context and using it to refine the heap context.

The proof search strategy that we employ works by first saturating the con-
text by repeatedly applying the rules in Figures [ and [6] to move information
from the data context into the heap context and vice versa. This process termi-
nates because there are a finite number of points-to relations and list segment
predicates to generate rule applications, and when new predicates are introduced
via list segment unfolding they either do not trigger any new inequalities or are
over fresh variables about which nothing is yet known. Once the context is fully
saturated, the proof search reduces the goal by using the goal-driven search rules
and the process begins again.

Theorem 2. The proof search procedure is sound and terminating.

5.4 Integration with Linear Programming

A key feature of Hofmann and Jost’s system for inference of resource bounds
of functional programs [9] is the use of linear programming. In this section, we
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sketch how to extend the procedure of the previous section with linear constraint
generation. Using this technique, as long as the resource bounds are linear, we
can simply state our specifications in terms of the shapes of the data structures
that the program manipulates and infer the necessary resource annotations.

For simplicity, we assume that we are dealing with resources that are positive
rational numbers, so we can replace the resource contexts © in the proof search
procedure of the previous section with linear expressions over the rationals. The
resource matching judgement is altered to take and output linear expressions
over rationals, while producing linear constraints over the variables mentioned
in the resource expression, and we have the single rule:

e1 - ex\er —eae0 < e

The proof search judgement is altered to generate a set of constraints over the
variables mentioned in the resource expression e: IT|X|e - G\C. The goal driven
search rules are then modified to accumulate the generated constraints. The heap
matching rules are similarly modified.

Given a collection of verification conditions and a successful proof search over
them that has generated a set of linear constraints, we input these into a linear
solver, along with the constraint that every variable is positive and an objective
function that attempts to minimise variables appearing in the pre-condition.

6 Example: Frying Pan List Reversal

We demonstrate the use of the proof search procedure coupled with linear con-
straint generation to the standard imperative in-place list reversal algorithm on
lists with cyclic tails (also known as “frying pan” lists). This example was used
by Brotherston, Bornat and Calcagno [4] to demonstrate the use of cyclic proofs
to prove program termination. Here we show how our amortised resource logic
can be used to infer bounds on the complexity of this procedure.

The “handle” of the structure consists of the nodes a, b, c and the “pan” consists
of the nodes d, e and £. When the in-place list-reversal procedure is run upon
a structure of this shape, it will proceed up the handle, reversing it, around the
pan, reversing it, and then back down the handle, restoring it to its original
order. For the purposes of this example, we assume that it takes one element
of resource to handle the reversal of one node. Following Brotherston, Bornat
and Calcagno, we can specify a cyclic list in Separation Logic by the following
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formula, where vy points to the head of the list and v; points to the join between
the handle and the pan.

Jk.Iseg(x1, v, v1) * [v1 next k] % Iseg(xa, k, v1) * R*?

We have annotated the list segments involved with resource annotation variables
x1 and xo that we will instantiate using linear programming. The predicate R™3
denotes any extra resource we may require. Similarly, we have annotated the
required loop invariant (adapted from Brotherston et al):

(Fk.Iseg(ar, lo, v1) * Iseg(as, l1,null) * [v1 =5 k] « Iseg(as, k, v1) * R%)

V (3k.Iseg(by, k, null) = [j =5 k] « Iseg(ba, lo, v1) * Iseg(bs, l1, j) * R")

V (Fk.Iseg(cr, Lo, null) * Iseg(ca, I, v1) * [vn ©5 k] * Iseg(cs, k, v1) * R%)
Each disjunct of the loop invariant corresponds to a different phase of the proce-
dure’s progress. Brotherston et al note that it is possible to infer the shape part
of this loop invariant using current Separation Logic tools. Here, we are adding
the ability to infer resource bounds. Running our tool on this example produces
the following instantiation of the variables:

Pre-condition r1=2 a90=1 w3=2
Loop invariant, phase 1 a1 =2 as=1 az3=1 a4 =2
Loop invariant, phase 2 b1 =1 by=1 b3=0 by=1
Loop invariant, phase 3 ¢ =1 ¢ =0 ¢c¢3=0 ¢4 =0
Post-condition p=0 25=0 25=0

Pictorially, the inference has associated the following amount of resource with
each part of the input structure:

Each node of the handle has 2 associated elements of resource, to handle the two
passes of the handle that the procedure takes, while the pan has one element
of resource for each node. The inferred annotations for the loop invariant track
how the resources on each node are consumed by the procedure, gradually all
reducing to zero. Since we have added a consume instruction to be executed
every time the procedure starts a loop, the resource inference process has also
verified the termination of this procedure, and given us a bound on the number
of times the loop will execute in terms of the shape of the input.

7 Conclusions

The main limitation of our proof search procedure is that it only supports the
statement and inference of bounds that are linear in the size of lists that are
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mentioned in a procedure’s precondition. This is a limitation shared with the
work of Hofmann and Jost [9]. We note that this is not a limitation of the program
logic that we have presented, only of the automated verification procedure that
we have layered on top. We have demonstrated that the use of mixed shape and
resource assertions can simplify the complexity of specifications that talk about
resources, and this should extend to extensions of the proof search procedure, or
to interactive systems based on this program logic. The resource aware program
logic of Aspinall et al [2] also uses the same layering: a general program logic
for resources (which is proved complete in their case) is used as a base for a
specialised logic for reasoning about the output of the Hofmann-Jost system.

A possible direction for future work is to consider different assertion logics and
their expressiveness in terms of the magnitude of resources they can express. We
conjecture that the deep assertion logic we have presented here, extended with
the Iseg predicate can express resources linear in the size of the heap. It would be
interesting to consider more expressive logics and evaluate them from the point
of view of implicit computational complexity; the amount of resource that one
can express in an assertion dictates the amount of resource that is available for
the future execution of the program.

Other resource inference procedures that are able to deal with non-linear
bounds include those of Chin et al [6[7], Albert et al [I] and Gulwani et al [§].
When dealing with heap-based data structures, all of these techniques use a
method of attaching size information to assertions about data structures. As we
demonstrated in Section 2] this can lead to additional unwanted complexity in
specifications. However, all of these techniques deal with numerically bounded
loops better than our current prototype automated procedure can, and we are
currently investigating how to extend our approach to deal with non-linear and
numerically-driven resource bounds.
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