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Abstract. Embedded information assurance applications that are critical to na-
tional and international infrastructures, must often adhere to certification regimes
that require information flow properties to be specified and verified. SPARK, a
subset of Ada for engineering safety critical systems, is being used to develop
multiple certified information assurance systems. While SPARK provides infor-
mation flow annotations and associated automated checking mechanisms, indus-
trial experience has revealed that these annotations are not precise enough to
specify many desired information flow policies. One key problem is that arrays
are treated as indivisible entities – flows that involve only particular locations of
an array have to be abstracted into flows on the whole array. This has substantial
practical impact since SPARK does not allow dynamic allocation of memory, and
hence makes heavy use of arrays to implement complex data structures.

In this paper, we present a Hoare logic for information flow that enables pre-
cise compositional specification of information flow in programs with arrays, and
automated deduction algorithms for checking and inferring contracts in an en-
hanced SPARK information flow contract language. We demonstrate the expres-
siveness of the enhanced contracts and effectiveness of the automated verification
algorithm on realistic embedded applications.

1 Introduction

Much effort has been spent on developing techniques to analyze information flow in
computer programs [27] – leading to several languages such as Myers’ JFlow [21],
and FlowCaml [28], that include language-level specifications (often in the form of
“security types”) and automated checking mechanisms that establish that a program’s
information flow conforms to supplied specifications. SPARK, a safety-critical sub-
set of Ada, is being used by various organizations, including Rockwell Collins [23]
and the US National Security Agency (NSA) [7], to engineer information assurance
systems including cryptographic controllers, network guards, and key management sys-
tems. SPARK provides automatically checked procedure annotations that specify infor-
mation flows between procedure inputs and outputs. In the certification process, these
annotations play a key role justifying conformance to information flow requirements
and separation policies relevant to architectures such as MILS (Multiple Independent
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Levels of Security) [10]. However, experience in these industrial/government devel-
opment efforts has shown that the annotations of SPARK, as well as those of other
language-based information flow specification frameworks, are not precise enough to
specify many important information flow policies. In such situations, policy adherence
arguments are often reduced to informal claims substantiated by manual inspections
that are time-consuming, tedious, and error-prone.

Inability to specify desired information flow policies in realistic applications, us-
ing existing language annotation frameworks, often stems from two issues: a) Coarse
treatment of information channels, where information flowing between two variables
is regarded as creating a channel without regard to the conditions under which that
channel is active; and b) Coarse treatment of structured data, such as arrays, where in-
formation can only be specified as flowing into/from an array as a whole, instead of its
constituent cells. Our previous work [5] gives one approach for addressing the first issue
by providing inference and checking of conditional information flow contracts, allow-
ing the specification of conditions that determine when the information flow channels
are active, using a precondition generation algorithm and an extension to the logic pre-
viously developed by Amtoft and Banerjee [2,3]. This paper builds on this earlier work
to address the second problem: precise information flow analysis for arrays.

Support for precise reasoning about information flow in arrays is especially impor-
tant in resource-bounded embedded high-assurance security applications, because stor-
age for data structures such as buffers, rule tables, etc., must often be statically allocated
and accessed via offset calculations. Motivated by the need to guarantee analyzability
and conformance to resource bounds, SPARK does not include pointers and heap-based
data. Thus, complex data structures must be implemented in terms of arrays whose size
is fixed at compile time.

This paper presents a novel approach for automated contract-based reasoning about
information flow within arrays – targeted to applications that require high assurance and
certification. The specific contributions of this work are as follows:

– A language-independent Hoare-like logic for secure information flow that can be
used to reason precisely about information flow between array components,

– An extension of the SPARK information flow contract language (with semantics
provided by the Hoare logic) that supports specification of information flow policies
about array components,

– An algorithm for automatically checking and inferring enhanced SPARK contracts
against code,

– A novel approach for computing universally-quantified information flow properties
for arrays,

– The study of an information assurance application that shows the importance of
precise information flow analysis for arrays, based on the MILS Message Router
specification given in [25], and

– An empirical evaluation of the performance and verification effectiveness of our
approach against a collection of SPARK programs.

The logical/algorithmic foundations of our work are language independent, and could be
applied to array-based data structures in other languages. However, our implementation
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in the context of SPARK is especially relevant because SPARK is the only commercially
supported framework that we know of for specifying and checking information flows.
Indeed, this work has been inspired by challenge problems provided by our industrial
collaborators at Rockwell Collins who are using SPARK on multiple information as-
surance development projects.

2 Information Flow Contracts in SPARK

SPARK is a safety critical subset of Ada developed and supported by Praxis High In-
tegrity Systems that provides (a) an annotation language for writing both functional
and information flow software contracts, and (b) automated static analyses and semi-
automated proof assistants for proving absence of run-time exceptions, and confor-
mance of code to contracts. SPARK has been used to build a number of high-assurance
systems including the UK’s iFACTS next generation air traffic control system.

Figure 1 (a) shows a collection of very simple procedures with SPARK information
flow annotations. SPARK demands that all procedures explicitly declare all the global
variables that they read and/or write. As illustrated in the SinglePositionAssign

procedure, this is done via a global annotation that lists global variables with each
variable prefixed by a modifier that indicates the mode of the variable, i.e., whether
the variable is read (in), written (out), or both (in out). Parameters to the proce-
dures must also be annotated with in and out modifiers indicating their mode. In ad-
dition, all out variables (i.e., all variables that are modified by the procedures) must
declare a derives clause. A derives clause for out variable X specifies the in pa-
rameters/globals whose initial values were used to derive the final value of variable X.
In SinglePositionAssign, the derives clause states that the out variable Flags

is derived from itself (*), Flag and Value. SPARK also provides other annotation

procedure S i n g l e P o s i t i o n A s s i g n
( F l ag : i n I n t ; Value : i n Types . F l a g v a l u e )

−−# g l o b a l i n o u t Fl a g s ;
−−# d e r i v e s Fl a g s from ∗ , Flag , Va l u e ;

i s
beg i n

F l a g s ( F l ag ) : = Value ;
end S i n g l e P o s i t i o n A s s i g n ;

procedure Scru b C ach e ( cach e : i n out Sen so r C ach e Ty p e )
−−# d e r i v e s ca ch e from ∗;

i s
beg i n

f o r I i n S e n s o r I d s l o o p
cach e ( I ) : = 0 ;

end l o o p ;
end Scru b C ach e ;

procedure Copy Keys ( i n k e y s : i n Key Table Type ,
o u t k e y s : i n out Key Tab l e Ty p e )

−−# d e r i v e s o u t k e y s from ∗ , i n k e y s ;
i s

beg i n
f o r I i n K e y T a b l e E n t r i e s l o o p

o u t k e y s ( I ) : = i n k e y s ( I ) ;
end l o o p ;

end Scru b C ach e ;

(a)

procedure S i n g l e P o s i t i o n A s s i g n
( F l ag : i n I n t ; Value : i n Types . F l a g v a l u e )

−−# g l o b a l o u t Fl a g s ( Flag ) ;
−−# d e r i v e s Fl a g s ( Flag ) from Va l u e ;

i s
beg i n

F l a g s ( F l ag ) : = Value ;
end S i n g l e P o s i t i o n A s s i g n ;

procedure Scru b C ach e ( cach e : out Sen so r C ach e Ty p e )
−−# d e r i v e s f o r a l l J i n S e n s o r I d s => ( ca ch e ( J ) from {});

i s
beg i n

f o r I i n S e n s o r I d s l o o p
cach e ( I ) : = 0 ;

end l o o p ;
end Scru b C ach e ;

procedure Copy Keys ( i n k e y s : i n Key Table Type ,
o u t k e y s : out Key Tab l e Ty p e )

−−# d e r i v e s f o r a l l J i n K e y T a b l e E n t r i e s
−−# => ( o u t k e y s ( J ) f rom i n k e y s ( J ) ) ;

i s
beg i n

f o r I i n K e y T a b l e E n t r i e s l o o p
o u t k e y s ( I ) : = i n k e y s ( I ) ;

end l o o p ;
end Copy Keys ;

(b)

Fig. 1. (a) Limitations of SPARK annotations and (b) proposed enhancements
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mechanisms to specify pre- and postconditions, but for this discussion we will focus on
those directly related to information flow analysis.

While the semantics of existing SPARK contracts, as presented in Figure 1 (a), can
be captured using conventional slicing and data/control-dependence, we have devel-
oped a more powerful and flexible theory of information flow contracts backed by a
Hoare-style logic, and a precondition generation algorithm [5] that is able to provide
additional analysis precision and contract expressiveness not found in conventional
static-analysis-based approaches. Moreover, in the context of embedded applications
and languages like SPARK, which eschew complicated language features, we have
been able to achieve this power while maintaining a very high degree of automation
and low computational costs. In our previous work [5], we demonstrated how this log-
ical framework could support extensions to SPARK contracts that allow developers to
specify that information flows from inputs to an output only under certain conditions,
i.e., conditional information flow. This provides the ability to state information flow
policies that are typical of network guard applications, where a message on an input
port may flow to a certain output in one state, but may flow to a different output in
another state.

In this paper, we overcome other limitations of conventional dependence/information
flow frameworks by adding additional capabilities to the logic, and associated auto-
mated deduction algorithms that enable precise reasoning about array-based data struc-
tures. Figure 1 (a) presents a series of micro-examples that illustrate the deficiencies
of current SPARK annotations for arrays, and Fig. 1 (b) shows our proposed enhance-
ments. These examples are concise representations of common idioms that occur in the
embedded information assurance applications of our industrial partners.

Procedure SinglePositionAssign assigns a value to a particular index position
(the value of Flag) in the array Flags. However, the SPARK information flow contract
states that (a) the whole array is modified (i.e., global out flags), and (b) the new
value of the array is derived from its old value, the Value parameter, and the Flag index
parameter. This is an over-approximation of the true frame-condition and information
flow, but the contract cannot be made more precise in the current SPARK annotation
language. To remedy this, Figure 1 (b) illustrates that our enhanced language provides
the ability to specify properties of particular array cells. The global out declaration
now indicates that the only array cell modified is Flags(Flag) (which currently is
a disallowed global expression in SPARK) while the contents of other cells remain
unchanged. The enhanced derives indicates that the modified cell derives its value
only from the parameter Value. To support this more precise reasoning, the underlying
analysis algorithm must be able to reason symbolically about array index values.

Scrub Cache in Fig. 1 (a) presents a code idiom often used when initializing an
array or scrubbing the contents of a message buffer; all positions of the array are ini-
tialized to a constant value. The SPARK annotations required for this example exhibit
several forms of imprecision. First, the cache array parameter must be declared with
mode in even though no array element value is read during execution of the procedure.
Second, the information flow specification captured in the derives clause is the an-
tithesis of what we desire: it states that the final value of cache depends on the initial
value of cache, whereas we desire a specification that captures the fact that the final
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value of cache does not depend on the initial value of cache, i.e., all values in the
input cache have been erased.

This imprecision stems from the fact that on each iteration of the loop, the entire
array is treated as a single entity in the information flow analysis: the updated value of
the array depends on a constant value at position I and on its previous value at all posi-
tions other than I. Since flow from constants is not indicated in SPARK contracts, the
information flow analysis indicates that the new value of the array depends on the old
value at every iteration. There is no way to indicate that the loop has carried out an ex-
haustive processing of each position of the array in which the old value at each position
is overwritten with a new value not based on the array’s previous contents. Figure 1 (b)
illustrates that we address this problem by extending the specification language with
a notion of universal quantification (using syntax based on SPARK’s universal quan-
tification allowed in assertions) to specify schematically the information flow for each
array cell. We also add the capability to indicate that the source of the information flow
is some constant (represented by {}). Together, these additions allow us to formalize
the higher level security policy: the array contents are indeed scrubbed – cache’s final
value does not depend in any way on its initial value, nor does information from any
other piece of the program state flows into it.

To support this more precise reasoning, the underlying analysis algorithm must be
able to perform a logical universal generalization step to introduce the quantified flow
specification. In general, this is quite difficult to do, but we have found that loops that
manipulate arrays often follow a structure that admits an automated solution. When
an automated solution is not possible, the developer may supply an information flow
loop invariant (which are simpler than functional invariants) that enables the rest of the
checking to be completed automatically.

The Copy Keys example of Fig. 1 (a) illustrates a common idiom in which the con-
tents of a table are copied, or where a portion of a database is moved from a central
database to a copy for a client. In essence, this creates multiple channels of informa-
tion flow – one channel for each index position of the arrays. In such cases, one often
seeks to verify a separation policy that states that information flow between the differ-
ent channels is not confused or merged. The SPARK derives clause for Copy Keys

simply states that information flows from the inkeys array to the outkeys array and
cannot capture the separation property that information only flows between correspond-
ing entries of the arrays. Fig. 1 (b) illustrates that, using the universal quantification
introduced in the previous paragraph, one formalizes the policy that information only
flows between entries at the same index position. Notice also that this enables us to
specify flow between different regions of the array, by having the quantified variables
take values from more restricted ranges of the possible index values.

3 Syntax and Semantics Background

We now present the foundations of our approach using a simple imperative language
that can be considered an “idealized core language” for SPARK. Since SPARK omits
constructs that are difficult to reason about, such as dynamically allocated data, pointers,
and exceptions, its semantics is very close to that of this language.
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Expressions:

arithmetic

A ::= x | u | c | A op A | H [A]

array

H ::= h | Z | H{A : A}
boolean

φ,B ::= A bop A | φ ∧ φ | φ ∨ φ | ¬φ

Commands:

S ::= skip | S ; S | x := A | assert(φ)
| call p
| if B then S else S
| for q ← 1 to y do S
| while B do S od
| h := new | h[A] := A

Fig. 2. Syntax of a simple imperative language

In Fig. 2, we present the syntax of the simple imperative language. For commands,
procedures are parameterless; this simplifies our exposition but our implementation sup-
ports procedures with parameters (there are no conceptual challenges in this extended
functionality). In for loops, following similar restrictions in SPARK, we require that
the index variable q is not modified by S, and does not occur anywhere except in S.
Arrays are restricted to a single dimension with integer contents. Array assignment has
two forms: h := new creates an array with all elements set to 0, and h[A0] := A1

assigns the integer value of A1 to array h at the index position given by A0. For con-
venience of presentation, we omit some SPARK features such as records and package
structure since these do not present conceptual challenges.

We use E to range over expressions which include arithmetic, boolean, and array
expressions. Boolean expressions are also used as assertions. We use x to range over
integer (scalar) variables (but q to range over such when used as counters in for loops),
h to range over array variables, u to range over universally quantified variables; we
shall use w, z to range over all kind of variables. We use c to range over integer con-
stants, op to range over arithmetic operators in {+,×, mod, . . .}, and bop to range over
comparison operators in {=, <, . . .}.

To enable convenient reasoning about individual array elements, in particular the
computation of preconditions, we follow Gries [18] and allow, in intermediate forms of
assertions manipulated by the automated reasoning engine, the construct H{A0 : A1},
which represents the value of array H except that index A0 now has value A1. We also
use Z to denote an initial array as created by the command h := new. We require a
program (command) submitted for verification to be pure in the sense that it does not
contain these additional array constructs. Thus, in a pure entity, all array accesses are
of the form h[A] with h a variable. Similarly, universal variables u are used only in
specifications; programs submitted for verification cannot contain universal variables.

The use of programmer assertions is optional, but often helps to improve the preci-
sion of our analysis. We refer to the assertions of Fig. 2 as 1-assertions since they repre-
sent predicates on a single program state; they can be contrasted with 2-assertions that
we introduce later for reasoning about information flow in terms of a pair of program
states. For an expression E, we write fv(E) for the variables in E and write E[A/x] for
the result of substituting in E all occurrences of x by A (similarly for E[H/h]).
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Expressions:
[[x]]s = s(x) similarly for u

[[H[A]]]s = [[H]]s([[A]]s)

[[h]]s = s(h)

[[Z]]s = λn.0

[[H{A0 : A}]]s = [[[H]]s | [[A0]]s �→ [[A]]s]

Commands:
s [[x := A]] s′ iff ∃v : v = [[A]]s and s′ = [s | x �→v]

s [[assert(φ)]] s′ iff s |= φ and s′ = s

s [[call p]] s′ iff s P(p) s′

s [[for q ← 1 to y do S]] s′ iff ∃n ≥ 1 : n = s(y) and ∀i ∈ {0 . . . n} ∃si : s0 = s and
s′ = [sn | q �→n+ 1] and ∀j ∈ {1 . . . n} : [sj−1 | q �→j] [[S]] sj

s [[h[A0] := A]] s′ iff ∃n, v : n = [[A0]]s, v = [[A]]s and s′ = [s | h(n) �→v]

s [[h := new]] s′ iff s′ = [s | h �→λn.0]

Fig. 3. Semantics of the Simple Programming Language (excerpts)

Fig. 3 gives excerpts of the language semantics definition (the definitions for con-
ditionals and while loops are standard and omitted). In the expression semantics, we
model an array as a mapping (a ∈ Array) from integers to values, where a value
(v ∈ Val) is an integer n; we write [a | n �→v] for the array that is like a except that it
maps n into v. We shall ignore bounds and range checks (unlike [15] where array length
may be revealed separately from array content) and assume that an array reference a(n)
is always well-defined (the typical SPARK development process will prove statically
that array-out-of-bounds exceptions cannot occur).

A store s ∈ Store (we shall also use σ to range over stores) maps scalar and universal
variables to values, and array variables to arrays; we write dom(s) for the domain of s
and write [s | x �→v] ([s | h �→a]) for the store that is like s except that it maps x into v
(maps h into a), and write [s | h(n) �→v] for [s | h �→ [s(h) | n �→v]]. We write s |= φ
for [[φ]]s = True. We define φ and φ′ to be 1-equivalent, written φ ≡1 φ′, if for all s it
holds that s |= φ iff s |= φ′. Similarly, we write φ �1 φ′ if whenever s |= φ then also
s |= φ′.

In the definition of the call command, we assume a global procedure environment
P that for each p returns a relation between input and output stores; we expect that if
s P(p) s′ then, with Sp the body of p, we have s [[Sp]] s′. For some S and s, there may
not exist any s′ such that s [[S]] s′; this can happen if a while loop does not terminate,
a for loop has a non-positive upper bound, or an assert fails.

4 Information Flow Contracts for Arrays

To motivate our treatment of information flow, consider the code

procedure p begin x := a +1 ; y := b ∗ 2 ; end p ;

where there are two “channels” of information flow associated with x and y: (1) from
a to x, and (2) from b to y Using SPARK to specify these flows, we would write:
derives x from a & y from b;

We may express the “non-interference” [16] of the assignment to y with channel (1)
via the following semantic property: for any pair of states s1 and s2, if s1(a) = s2(a)
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then s′1(x) = s′2(x) where s′1, s′2 are the states that result from executing the proce-
dure body on s1 and s2, respectively. Thus x depends on a but on no other variables,
cf. Cohen[12]. We desire to state such properties (which would provide a semantic foun-
dation for derives contracts), using program level assertions. However, the property
requires reasoning about two states at method pre/postcondition (cf. s1 and s2). Thus,
it cannot be stated using traditional assertions, because such assertions are interpreted
in terms of one state at a particular program point.

The innovation of the logic developed in [1,2] lies in the introduction of a novel
agreement assertion x� that is satisfied by a pair of states, s1 and s2, if s1(x) = s2(x).
Using this assertion, the non-interference property above is phrased {a�} S {x�}.
In general, triples are of the form {x1�, . . . , xn�} P {y1�, . . . , ym�} which is in-
terpreted as follows: given two runs of P that initially agree on variables x1 . . . xn,
at the end of both runs, they agree on variables y1 . . . ym. Such a specification says
that the variables yj may depend only on the variables xi, and not on any other vari-
ables. In situations as above where we want to reason about multiple separated chan-
nels of information flow simultaneously (e.g., a to x and b to y), we would not write
{a�, b�} S {x�, y�} since this would imply that y may depend on a and x depend on
b. Instead, channel-indexed agreement assertions would be used to distinguish the sep-
arate channels for x and y: {a�x, b�y} S {x�x, y�y}. This is equivalent to requiring
both {a�} S {x�} and {b�} S {y�} to hold in the unindexed version of the logic.
Our implementation uses the indexed assertions to deal with multiple channels, but to
simplify the formalization, in this document we shall deal with one channel at a time.

One advantage of this logical approach over traditional data/control-flow based ap-
proaches to reasoning about information flow and program dependencies, is that the
assertion primitive can be enhanced to reason about additional properties of the state –
leading to greater precision and flexibility. For example, to capture conditional informa-
tion flow, we use conditional agreement assertions φ ⇒ E�, also called 2-assertions,
introduced by Banerjee and the first author [3]. Such assertions are satisfied by a pair
of stores if either at least one of them does not satisfy φ, or they agree on the value of
E: s & σ |= φ⇒ E� iff whenever s |= φ and σ |= φ then [[E]]s = [[E]]σ .

We use θ ∈ 2Assert to range over 2-assertions. For θ = (φ ⇒ E�), we call
φ the antecedent of θ and write φ = ant(θ), and we call E the consequent of θ and
write E = con(θ). We often write E� for true ⇒ E�. We use Θ ∈ P(2Assert) to
range over sets of 2-assertions (where we often write θ for the singleton set {θ}), with
conjunction implicit. Thus, s&σ |= Θ iff ∀θ ∈ Θ : s&σ |= θ.

For the semantics of command triples, we write {Θ}S{Θ′} iff for all s, s′, σ, σ′, if
s [[S]] s′ and σ [[S]] σ′, and also s&σ |= Θ, then s′&σ′ |= Θ′.

We define Θ �2 Θ′, pronounced “Θ 2-implies Θ′”, to hold iff for all s, σ: whenever
s&σ |= Θ then also s&σ |= Θ′. In development terms, when Θ �2 Θ′ holds we
can think of Θ as a refinement of of Θ′, and Θ′ an abstraction of Θ. Intuitively, Θ
requires agreement in more cases than Θ′ (Θ is a strengthening of Θ′). For example,
{x� , y�} refines x� by adding an (unconditional) agreement requirement on y, and
y < 10 ⇒ x� refines y < 7 ⇒ x� by weakening the antecedent of a 2-assertion so
that agreement on x is required for more values of y.
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{Θ}⇐= skip {Θ′} iff Θ = Θ′ {Θ}⇐= x := A {Θ′} iff Θ = Θ′[A/x]

{Θ}⇐= h := new {Θ′} iff Θ = Θ′[Z/h] {Θ}⇐= h[A0] := A1 {Θ′} iffΘ = Θ′[h{A0 : A1}/h]

{Θ}⇐= assert(φ0) {Θ′} iff Θ={(φ ∧ φ0)⇒ E� | φ⇒ E�∈Θ′}
{Θ}⇐= S1 ;S2 {Θ′} iff {Θ′′}⇐= S2 {Θ′} and {Θ}⇐= S1 {Θ′′}
{Θ}⇐= if B then S1 else S2 {Θ′} iff Θ =

⋃
θ∈Θ′ Preif (θ) where

Preif (φ
′ ⇒ E�) =

let {Θi}⇐= Si {φ′ ⇒ E�} for i = 1, 2
in if S1 preservesE and S2 preservesE

then {(φ1 ∧ B) ∨ (φ2 ∧ ¬B)⇒ E� | φi ⇒ � ∈ Θi (i = 1, 2)}
else {φ1 ∧ B ⇒ E1� | φ1 ⇒ E1� ∈ Θ1} ∪ {φ2 ∧ ¬B ⇒ E2� | φ2 ⇒ E2� ∈ Θ2} ∪
{(φ1 ∧ B) ∨ (φ2 ∧ ¬B)⇒ B� | φi ⇒ � ∈ Θi (i = 1, 2)}

{Θ}⇐= call p (= S) {Θ′} iff Θ = R ∪ ⋃
θ∈T Precall(θ) where

(R, T ) = PreProc(S,Θ′) and
Precall(φ

′ ⇒ E�) = let φ0 = NPC (S, φ′) in caseE of
w : {φ0 ∧ φw ⇒ Ew� | φw ⇒ Ew� ∈ 2PCp

w}
h[A] : let 2PCp

h[ ] = ∀u.Θh // S preservesA
in {φ0 ⇒ A�} ∪ {φ0 ∧ φh[A/u]⇒ Eh[A/u]� | φh ⇒ Eh� ∈ Θh}

{Θ}⇐= whileB do S0 od (= S) {Θ′} iff Θ = R ∪ΘA ∪ ΘW where
(R, T ) = PreProc(S,Θ′) ΘA = {NPC (S, φ)⇒ A� | φ⇒ h[A]� ∈ T}
ΘW = Prewhile(S0, B, TW ) Tw = {φ⇒ w� ∈ T} ∪ {φ⇒ h� | φ⇒ h[A]� ∈ T}

{Θ}⇐= for q ← 1 tom do S0 (= S) {Θ′} iff Θ = R ∪ΘA ∪ ΘW ∪ ΘF where
(R, T ) = PreProc(S,Θ′) u is fresh ΘA = {NPC (S, φ)⇒ A� | φ⇒ h[A]� ∈ T}
ΘW = Prewhile((S0 ; q := q + 1), q ≤ m,TW )[1/q]

ΘF = {NPC (S, φ) ∧ φ1[A/u]⇒ E1[A/u]� | φ1 ⇒ E1� ∈ Θh, φ⇒ h[A]� ∈ T, Θh �= fail}
Tw = {φ⇒ w� ∈ T} ∪ {φ⇒ h� | φ⇒ h[A]� ∈ T, Θh = fail}
Θh = Prefor(S0, q, m, h[u]�) (for all h)

Fig. 4. The Precondition Generator

5 Computing Preconditions

Figure 4, selected parts of which will be explained later, presents a rule-based precondi-
tion generation algorithm inductively defined over the language syntax. The definition
uses rules of the form {Θ}⇐= S {Θ′} to specify that, given command S and postcon-
dition Θ′, the algorithm computes precondition Θ. The algorithm uses some auxiliary
functions, defined in Fig. 5, as well as some other functions that will be sketched below
but for whose complete definitions we refer to [4].

The algorithm does not always compute the weakest precondition; main sources of
imprecision are: on loops, approximations have to be made to ensure termination of
the analysis; on procedure calls, the analysis (for the sake of modularity) uses the pro-
cedure’s specification rather than its actual code. As a result, antecedents may be too
weak, yielding too strong 2-assertions.

This algorithm extends our earlier work [5] by adding the notion of universal quan-
tification for reasoning about arrays, and a method for inferring universally quantified
preconditions for certain for-loop structures. The following theorem summarizes the
correctness of the algorithm:

Theorem 1. For all S, Θ, Θ′, if {Θ}⇐= S {Θ′} holds, then {Θ}S{Θ′} holds.

For a detailed proof of this theorem, we refer the reader to [4]. The main structure of
the proof is quite similar to our earlier work [3,5] though a main difference is that we



52 T. Amtoft, J. Hatcliff, and E. Rodrı́guez

PreProc(S,Θ′) =
P ← Purify(Θ′); R← ∅; T ← ∅
while P �= ∅ do: remove (φ⇒ E�) from P , and

if S preservesE then R← R ∪ {NPC (S,φ)⇒ E�}
else caseE of

E1 op E2 or E1 bopE2 or E1 ∧E2 or E1 ∨ E2 or ¬E1: P ← P ∪ {φ⇒ E1�, φ⇒ E2�}
w : T ← T ∪ {φ⇒ w�}
h[A] : if S preservesA and not S preserves h then T ← T ∪ {φ⇒ h[A]�}

else if S preserves h and not (S preservesA)
then P ← P ∪ {φ⇒ A�}; R← R ∪ {NPC (S,φ)⇒ h�}
else if not (S preserves h) and not (S preservesA)
then T ← T ∪ {φ⇒ h�}; P ← P ∪ {φ⇒ A�}

return (R, T )

Prefor(S0, q, m, h[u]�) =
let {Aj | j ∈ J} be all occurrences such that h[Aj ] := is a subcommand of S0
let {Θj}⇐= S0 {h[Aj]�} (for all j ∈ J)
in if 1. call p preserves h for all call p occurring in S0, and for all j ∈ J it holds that

2. S0 preservesAj

3. there existsA′
j with fv(A′

j) ⊆ {u} ∪ fv(Aj) \ {q} where for all s,n with dom(s) ⊆ fv(Aj),
[[n = Aj ]]s = [[q = A′

j [n/u]]]s
4. there exists φj with fv(φj) ⊆ {u} ∪ fv(Aj) \ {q} where for all s,n with dom(s) ⊆ fv(Aj),

n ∈ {[[Aj]][s|q�→i] | 1 ≤ i ≤ s(m)} iff s |= φj [n/u]
5. if w ∈ fv(Θj) with w �= h then S0 preservesw
6. if h occurs in Θj it is in the context h[A] where for all j1 ∈ J , all s, all i, i′ ∈ {1 . . . s(m)}:

if [[A]][s|q�→i′] = [[Aj1 ]][s|q�→i] then i′ ≤ i
then succeed and return {φj ⇒ Θj [A′

j/q]� | j ∈ J} ∪
{∧j∈J¬φj ⇒ h[u]�} ∪ {x� | ∃j ∈ J : x ∈ fv(Aj) \ {q}} ∪ {m�}

else fail

Prewhile(S0, B,Θ
′) =

ψw ← ∅ for all variablesw (including a dummy variable d)
for φ⇒ w� ∈ Θ′ do
ψw ← ψw ∨ (φ ∧ ¬B); if w /∈ fv(B) and not (S0 preservesw) then ψd ← ψd ∨ (φ ∧ ¬B)

repeat
for each variable w do {Θw}⇐= S0 {ψw ⇒ w�} ;

for each φ⇒ E� ∈ Θw do
for each z ∈ fv(E) do ψz ← ψz ∨ (φ ∧ B);
if w ∈ fv(B) or S0 preservesw then ψw ← ψw ∨ (φ ∧ B)

for all w ∈ fv(B), for all z with not (S0 preserves z) do ψw ← ψw ∨ ψz

until each ψw stabilizes (through widening) into Ψw

return Θ = {Ψw ⇒ w� | w is variable}

Fig. 5. The Precondition Generator, Helper functions

have disposed with the “R-component”; this allows for a more streamlined presentation.
Quite similar to those earlier works, we need the following lemma:

Lemma 1. Assume that {Θ} ⇐= S {Θ′} . For all φ′ ⇒ � ∈ Θ′, there exists φ ⇒
� ∈ Θ such that whenever s [[S]] s′ and s′ |= φ′ then s |= φ.

Observe that it is easy to modify Fig. 4 so that Lemma 1 trivially holds, for example
by adding true⇒ 0� to all preconditions, but the analysis of a command may become
less precise if the analysis of a subcommand is augmented in that way.

The algorithm can be applied to automatically check or infer information flow con-
tracts. For implementing checking, the algorithm would be used to compute a candidate
precondition from the stated postcondition, and then a supplementary algorithm would
check that the stated precondition entails the computed precondition (this functional-
ity is present in our implementation using theorem-prover technology). We focus on
contract inference in the remainder of our discussion.
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As with conventional forms of compositional contract-based reasoning, when pro-
cessing the body of some procedure p, our algorithm assumes that any procedure called
by p already has an associated contract: for each w that may be modified by p, the
contract contains a precondition 2PC p

w (at least one assertion in which must be uncon-
ditional) such that {2PC p

w}p{w�}; for each h that may be modified by p, the contract
contains a precondition 2PC p

h[ ] which is a quantified set of 2-assertions of the form
∀u.Θ where we demand that {Θ}p{h[u]�}. Since SPARK does not include recursion,
contract inference for all procedures in the program can be carried out via a bottom up
traversal of the call graph.

Concerning the roles of universal variables, they are introduced in two situations:
when analyzing a for loop (the output of Prefor), and when looking up 2PC p

h[ ] for
procedure calls. In both cases, they are instantiated immediately afterwards. When we
compute summaries, however, universal variables are present throughout the derivation.

For most language constructs, the corresponding rule in Fig. 4 is straightforward. As-
signments, to variables as well as array elements, are handled by syntactic replacement,
as in classical Hoare logic.

For a conditional if B then S1 else S2, if E is such that neither S1 nor S2 modifies
E, the the precondition for φ ⇒ E� does not need to involve B�. There are several
other instances where the generation of the precondition for S from its post-condition
φ ⇒ E� can be simplified if S preserves the semantics of E. Accordingly, we utilize
a predicate S preserves E such that if S preserves E holds then whenever s [[S]] s′

we have [[E]]s = [[E]]s′ . S preserves E can be computed in a straightforward manner
by detecting if S modifies variables occuring in E either directly via an assignment or
indirectly via updates in a procedure call (in which case, the procedure’s contract is
consulted).

The NPC Function: When generating a precondition for S for post-condition φ′ ⇒
E� where S preserves E holds, but S may affect the antecedent φ′, we must compute
a new antecedent φ so that {φ ⇒ E�}S{φ′ ⇒ E�}. For this to be the case, we must
ensure that if two post-states satisfy φ′ then the pre-states satisfy φ and hence E�.

Accordingly, we utilize a function NPC computing a “necessary precondition” for
φ′ to hold after S. That is, with φ = NPC (S, φ′) (we can assume φ′ to be pure) it holds
that if s [[S]] s′ and s′ |= φ′ then s |= φ. It may seem counterintuitive that we are talking
about necessary precondition instead of weakest precondition, but this stems from the
contravariant nature of the antecedent component of 2-assertions.

Note that if S preserves φ then we can pick φ0 = φ, and that we can always pick
φ0 = true, but often we can compute something stronger. Our implementation, which
assumes that each procedure p is equipped with a function that computes NPC (p, ),
contains rules such as NPC (x := A, φ) = φ[A/x] and
NPC (if B then S1 else S2, φ) = (NPC (S1, φ) ∧B) ∨ (NPC (S2, φ) ∧ ¬B).

The Purify Function: As noted earlier, the rules for array update (creation) may gen-
erate a precondition that include impure expressions of the form H0{A0 : A1} (or Z)
that we would not like to see in contracts. We therefore employ a function Purify with
the following properties:
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1. given φ, with φ0 = Purify(φ) we have φ ≡1 φ0 with φ0 pure.
2. given A, Purify returns pure φ1 . . . φk, and pure A1 . . . Ak, such that for all i ∈

1..k: if s |= φi then [[A]]s = [[Ai]]s.
3. given Θ, with Θ0 = Purify(Θ) we have Θ0 �2 Θ with Θ0 pure, and for all

φ⇒ � ∈ Θ there exists φ0 ⇒ � ∈ Θ0 with φ �1 φ0.

As an example of case 2, if A is given by h{x : y}[z] then Purify returns φ1, φ2 given
by z = x and z �= x, and A1, A2 given by y and h[z]. As an example of case 3, with A
as above then Purify(y > 0⇒ A�) is given by

{y > 0 ∧ z = x⇒ y�, y > 0 ∧ z �= x⇒ h[z]�, y > 0⇒ (z = x)�}.

The PreProc Function: The computation of preconditions for procedure calls and
loops shares certain steps that can be broken out into a preprocessing phase realized
by a common function, called PreProc and listed in Fig. 5. Preprocessing includes two
main ideas: (1) strengthening 2-assertions to a canonical form φ⇒ Econ� where Econ
must be a variable name or array access expression (but not an operation), and (2) the
immediate construction of preconditions, which is possible for 2-assertions whose con-
sequents are not modified by the command under consideration. Point (1) is required
for, e.g., the identification of dependence connections between a calling context and the
contract of the called procedure. Formally, we have: PreProc(S, Θ′) always terminates
and returns R,T such that

1. for all Θ, if {Θ}S{T } then {Θ ∪R}S{Θ′}.
2. T is pure, and if φ ⇒ E� ∈ T then either E = w where S preserves w does not

hold, or E = h[A] where S preserves A holds but S preserves h does not hold.

To prove this result, we observe that an invariant for the loop inside PreProc is: for all
Θ, if {Θ}S{T ∪ P} then {Θ ∪R}S{Θ′}.
The Prefor Function: The rule (Fig. 4) for for-loops, with associated helper function
Prefor (Fig. 5), generates universally quantified information flow assertions for arrays,
and is one of the main innovations of this paper. The idea behind this function is to iden-
tify and exploit a common pattern: for-loops are often used to traverse arrays to perform
updates or other processing on a per-location basis and the processing is often done in a
manner in which the current iteration does not depend on previous iterations, i.e., there
are no loop-carried-dependencies [20]. Consider the following procedure body

for q ← 1 to m do (t := h[q] ; h[q] := h[q + m] ; h[q + m] := t) (1)

that flips the values between the upper and lower halves of an array, resulting in in-
formation flow between the two halves. However, if we apply the approach to loop
processing from our previous work [5], we obtain a contract that merely says that the
final value of the array is derived from its original value (h from *), but nothing more
precise.

Still, this procedure possesses no loop-carried-dependencies: changes made in the
current iteration do not depend on previous ones. So, we should be able to reason
about the flows in all iterations of this loop (and analogously, flows related to all in-
dex positions of array h) using a single “schematic” iteration (and analogously, a single
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“schematic” index position h[u]). And indeed, replacing the for loop by its body (thus
being iterated once only) will result in a contract showing the flow between the two
locations on the separate halves of the array. What we want is a quantified version of
that specification.

The definition of Prefor given in Fig. 5 implements the above intuition, for a given ar-
ray h. (If multiple arrays are updated in the same loop, Prefor must be called separately
on each array.) To handle also multiple updates, none of which can happen indirectly
through procedure calls (condition 1), we let J range over all occurrences of such up-
dates. Thus each array update is of the form h[Aj ] := where (condition 2) we can not
allow Aj to be modified by the loop body (but we certainly expect Aj to contain the
loop counter). Condition 3 states that each Aj must have an “inverse” A′j . For example,
if Aj = q + 1, then A′j = u − 1. Condition 4 states that the range of each Aj can
be expressed. For example, if q ranges from 1 to 10, and Aj = q + 1, then the range
of Aj is determined by the predicate φj given by 1 + 1 ≤ u ≤ 10 + 1. Condition 5
states that nothing in the precondition is modified except possibly h; that is, there are
no loop carried dependencies between scalar variables. Condition 6 states that there are
no loop-carried dependencies between array locations. That is, an array location is not
read after it has been updated.

Thus conditions 3 and 4 ensure that contracts can be expressed, whereas the absence
of loop-carried dependencies, as formalized in conditions 5 and 6, ensures the sound-
ness of quantification: we can reason about a single run of the loop and generalize the
result, because there is no interdependence among the different iterations. If any of the
conditions is not satisfied, then the loop is treated as a while loop, in effect smashing
together all array entries without obtaining a quantified information flow precondition.

The following lemma is a key step in the proof of Theorem 1.

Lemma 2. Let S be for q ← 1 to m do S0. Assume Prefor(S0, q, m, h[u]�) succeeds,
with result Θ. Then for all integer constants c we have {Θ[c/u]}S{h[c]�}.
Example 1. Consider the for-loop from (1). With J = {1, 2} we have A1 = q , A2 =
q+m. Our algorithm then computes: A′1 = u , A′2 = u−m which satisfies Condition 3
since (n = q) ≡1 (q = n) and (n = q + m) ≡1 (q = n−m).

Next, we compute the ranges for expressions: φ1 = 1 ≤ u ≤ m , φ2 = m + 1 ≤
u ≤ m + m. This satisfies Condition 4 since for all s and for all n,

n ∈ {[[q]][s|q�→i] | 1 ≤ i ≤ s(m)} iff s |= 1 ≤ n ≤ m

n ∈ {[[q + m]][s|q�→i] | 1 ≤ i ≤ s(m)} iff s |= m + 1 ≤ n ≤ m + m.

With S0 the body of the for loop we now compute

{Θ1}⇐= S0 {h[q]�} , {Θ2}⇐= S0 {h[q + m]�}
where it is easy to see that Θ2 simplifies to h[q]�, and that Θ1 simplifies – assuming
we know that m ≥ 1 – to h[q + m]�.

The only non-trivial requirement which is left to check is condition 6 which splits
into 4 equations that each should imply i′≤ i (given s and i, i′ with i, i′∈{1 . . . s(m)}):

(1) [[q + m]][s|q�→i′] = [[q]][s|q�→i]
(2) [[q + m]][s|q�→i′] = [[q + m]][s|q�→i]

(3) [[q]][s|q�→i′ ] = [[q]][s|q�→i]
(4) [[q]][s|q�→i′ ] = [[q + m]][s|q�→i]
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Here (2) and (3) trivially imply i′ ≤ i since they reduce to i′ + s(m) = i + s(m) and
to i′ = i; (1) and (4) vacuously imply i′ ≤ i since they reduce to i′ + s(m) = i and to
i′ = i+s(m) which both are impossible given 1 ≤ i, i′ ≤ s(m). As all requirements are
fulfilled, we see that Prefor succeeds for the given program. After some simplifications,
we end up with the expected preconditions

1 ≤ u ≤ m⇒ h[u + m]�, m + 1 ≤ u ≤ (m + m)⇒ h[u−m]�,

(1 > u) ∨ (u > m + m)⇒ h[u]�, m�.

The Prewhile Function For the analysis of while loops (or for loops with loop-carried
dependencies), we employ the function Prewhile (Fig. 5) which expects a postcondition
Θ′ where each θ′ ∈ Θ′ is of the form φ⇒ w� (w a scalar or array variable).

The idea is to consider assertions of the form φw ⇒ w� and then repeatedly analyze
the loop body so as to iteratively weaken the antecedents until a fixed point is reached.

To ensure termination, we need a “widening operator” [13] on 1-assertions. A triv-
ial widening operator is the one that always returns true, in effect converting condi-
tional agreement assertions into unconditional. Our implementation uses disjunction as
a widening operator but returns true if convergence is not achieved after a certain num-
ber of iterations. Space constraints prevent us from further explaining the algorithm (a
variant of which was presented in [5]); we refer the reader to [4].

6 Experimental Assessment

To assess the ideas presented in this paper, we have developed an implementation that
checks and infers information flow contracts for SPARK using our more precise en-
hanced contract language. The algorithm extends our implementation for conditional
contracts described in [5] to support arrays, universally quantified flow contracts, and
precise processing of for loops as detailed in previous sections.

We tested this implementation on an information assurance application (a MILS
Message Router) that presents a number of challenges due to its extensive use of ar-
rays, a collection of embedded applications (an Autopilot, a Minepump, a Water Boiler
monitor, and a Missile Guidance system – all developed outside of our research group),
and a collection of small programs that we developed ourselves to highlight common
array idioms that we discovered in information assurance applications. We provide a
more detailed assessment of the MMR example after summarizing the results of the
experiments and illustrating the following array idiom examples (see Fig. 6 ).

– ArrayInit: A procedure that initializes all elements of an array to a particular value.
– ArrayScrub: A procedure that replaces the elements of an array that satisfy a pre-

determined condition, with a particular value.
– ArrayTransfer: A procedure that transfer the elements from one array to another.
– ArrayPartitionedTransfer: Similar to the previous one except that the transfer

from one array to the other is done only within certain partitions (ranges) defined
in each array.

In each of these examples, using original SPARK contracts/analysis would have allowed
us to specify only that information is flowing from one entire array to another. Fig. 6
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procedure A r r a y I n i t
−−# g l o b a l o u t A (∗ ) ;
−−# d e r i v e s f o r a l l I i n A . Range => (A ( I ) f rom {});

i s
beg i n

f o r I i n A. Range l o o p
A( I ) : = 0 ;

end l o o p ;
end A r r a y I n i t ;

procedure A r r ay Scru b
−−# g l o b a l i n S cru b C o n s t a n t ,
−−# o u t A (∗ ) ;
−−# d e r i v e s f o r a l l I i n A . Range =>
−−# (A ( I ) f rom S c r u b C o n s t a n t
−−# when s h o u l d s c r u b (A ( I ) ) ) ;

i s
beg i n

f o r I i n A. Range l o o p
i f s h o u l d s c r u b (A( I ) ) then

A( I ) : = S c r u b C o n s t a n t ;
end i f ;

end l o o p ;
end Ar r ay Scru b ;

procedure A r r a y T r a n s f e r
−−# g l o b a l i n B(∗ ) ,
−−# o u t A(∗ ) ;
−−# d e r i v e s f o r a l l I i n A . Range => (A( I ) f rom B( I ) ) ;

i s
beg i n

f o r I i n A. Range l o o p
A( I ) : = B( I ) ;

end l o o p ;
end A r r a y T r a n s f e r ;

procedure A r r a y P a r t i t i o n e d T r a n s f e r
−−# g l o b a l i n B(∗ ) , C(∗ ) , K ,
−−# o u t A(∗ ) ;
−−# d e r i v e s f o r a l l I i n ra n g e
−−# A’ F i r s t . . K => (A ( I ) f rom B ( I ) ) &
−−# f o r a l l I i n ra n g e
−−# K+1 . . A ’ L a s t => (A ( I ) f rom C( I−K ) ) ;

i s
beg i n

f o r I i n range A’ F i r s t . . K l o o p
A( I ) : = B( I ) ;

end l o o p ;

f o r I i n range k+1 . . A’ L a s t l o o p
A( I ) : = C( I−K ) ;

end l o o p ;
end A r r a y P a r t i t i o n e d T r a n s f e r ;

Fig. 6. Information flow contracts inferred by our implementation for a selection of examples

illustrates how our conditional and quantified contracts allow a much more precise ver-
ified specification of the flows.

A total of 66 procedures were analyzed, and information flow contracts were in-
ferred for all of them, taking less than two seconds for each to run on a Core 2 Duo
2.2GHz processor and 3 GB of RAM. Of these procedures, ten included array manipu-
lations that tested our new extensions to the logic. In all of these cases, our implemen-
tation generates a quantified information flow specification showing the dependence
dynamics in the arrays.

The MMR Example: The MMR (MILS Message Router) is an idealized version of a
MILS infrastructure component (first proposed by researchers at the University of Idaho
[25]) designed to mediate communication between partitions in a separation kernel [26]
– the foundation of specialized real-time platforms used in security contexts to provide
strong data and temporal separation.

Fig. 7 illustrates a set of partition processes that execute in a static round-robin sched-
ule. During each schedule cycle, each process is allowed to post up to one bounded-size
message to each of the other partitions and receive messages from partitions sent during
the previous cycle. Different partitions do not communicate directly. Instead, they post
messages to the MMR, which only propagates a message if it conforms to a static secu-
rity policy represented by a two dimensional boolean array Policy indexed by process
IDs. In Fig. 7, a shaded square (representing the value True) in the Policy array indicates
that the row process (e.g., B) is allowed to send messages to the column process (e.g.,
D). The figure illustrates that unidirectional communication can be enforced (e.g., D is
not allowed to send messages to B).

During the posting, the infrastructure attaches an unspoofable header to the message
indicating the ID of the sender process and the ID of the destination process. The MMR
places each posted message in a pool of shared Memory slots (represented as an array
of messages), and updates Pointers (represented as a two-dimensional array of indices
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Fig. 7. Diagram of the MILS Message Router

into Memory) that organizes incoming/outgoing messages. During posting, a Memory
cell indexed by row A, column B holding pointer X indicates that the memory location
pointed to by X is “owned” by process A and holds a message from process A destined
for process B. Entries in Flags (an array of boolean values with the same dimensions as
Pointers) indicate if the corresponding entry in Pointers represents a valid message or a
“place holder” default message that will not be propagated by the MMR.

Fig. 8 (a) displays the SPARK code for procedure Route that implements part of
the MMR routing phase. Conceptually, messages are routed by swapping Pointers

entries. Before Route is executed, the array of pointers points to outgoing messages,
whereas after routing it points to incoming messages. After routing, a Memory cell in-
dexed by Pointers row A, column B holding pointer X indicates that the memory
location pointed to by X is “owned” by process A and holds a message from process
B sent to process A. For any two processes A and B, the first two conditional blocks in
Route determine if messages from A and B (and vice versa) are allowed by the security
policy. If a message is not allowed, then the memory location holding it is cleared with
a default message and the corresponding Flags entry is set to false. Then, if there re-
mains a valid message flowing in either direction, Route swaps the Memory cell indices
in Pointers so that the ownership between the memory locations is exchanged among
the processes (note that if a message is allowed in one direction but not the other, the
swap will propagate a default message in the “disallowed” direction).

There are multiple reasons why it is very difficult to verify statically that the MMR
conforms to the end-to-end information flow policy as captured by the Policy matrix.
First, the examples of Section 2 illustrated the difficulties of statically reasoning about
individual cells of an array, and, in the MMR, invalid message channels are “squelched”
by clearing out (with a default message) individual cells within a large array. Second,
the information flow path between two partitions is not implemented via direct reference
to source and destination memory cells, but instead involves a level of indirection via
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procedure Route
−−# g l o b a l i n P o l i c y . Comm Pol icy ;
−−# i n o u t Flags , P o i n t e r s , Memory . Mem Space ;
−−# d e r i v e s P o i n t e r s from ∗ , P o l i c y . Comm Policy , Fl a g s &
−−# Memory . Mem Space from ∗ , P o l i c y . Comm Policy ,
−−# P o i n t e r s , F l a g s &
−−# Fl a g s from ∗ , P o l i c y . Comm Pol icy ;
i s

T : L b l t . P o i n t e r ;
beg i n

f o r I i n L b l t . P ro c ID l o o p
f o r J i n L b l t . P ro c ID range

I . . L b l t . Proc ID ’ L a s t l o o p
i f not P o l i c y . I s A l l o w e d ( I , J ) then
Memory . Wr i t e ( Msg t . Def Msg , P o i n t e r s ( I , J ) ) ;
F l a g s ( I , J ) : = FALSE;

end i f ;
i f not P o l i c y . I s A l l o w e d ( J , I ) then
Memory . Wr i t e ( Msg t . Def Msg , P o i n t e r s ( J , I ) ) ;
F l a g s ( J , I ) : = FALSE;

end i f ;
i f F l a g s ( I , J ) or F l a g s ( J , I ) then
T : = P o i n t e r s ( I , J ) ;
P o i n t e r s ( I , J ) : = P o i n t e r s ( J , I ) ;
P o i n t e r s ( J , I ) : = T ;

end i f ;
end l o o p ;

end l o o p ;
end Route ;

(a)

procedure Route
−−# g l o b a l i n P o l i c y . Comm Pol icy ;
−−# i n o u t Flags , P o i n t e r s , Memory . Mem Space ;
−−# d e r i v e s f o r a l l I i n L b l t . Proc ID => (
−−# f o r a l l J i n L b l t . Proc ID => (
−−# P o i n t e r s ( I , J ) f rom
−−# P o i n t e r s ( J , I ) when
−−# ( P o l i c y . I s A l l o w e d ( I , J
−−# and ( Fl a g s ( I , J ) )
−−# or ( P o l i c y . I s A l l o w e d ( J , I )
−−# and Fl a g s ( J , I ) ) ,
−−# ∗ when
−−# ( n o t ( P o l i c y . I s A l l o w e d ( I , J )
−−# and Fl a g s ( I , J ) ) ) and
−−# ( n o t ( P o l i c y . I s A l l o w e d ( J , I )
−−# and Fl a g s ( J , I ) ) ) &
−−# f o r a l l I i n L b l t . Proc ID => (
−−# f o r a l l J i n L b l t . Proc ID => (
−−# Memory . Mem Space ( P o i n t e r s ( I , J ) ) f rom
−−# {Msg t . Def Msg} when
−−# n o t P o l i c y . I s A l l o w e d ( I , J ) ,
−−# ∗ when
−−# P o l i c y . I s A l l o w e d ( I , J ) ) ) &
−−# f o r a l l I i n L b l t . Proc ID => (
−−# f o r a l l J i n L b l t . Proc ID => (
−−# Fl a g s ( I , J ) f rom
−−# {FALSE} when
−−# n o t P o l i c y . I s A l l o w e d ( I , J ) ,
−−# ∗ when
−−# P o l i c y . I s A l l o w e d ( I , J ) ) ) ;

(b)

Fig. 8. Source code and initial specification for procedure Routing of the MILS Message Router
(a), and information flow specification for the same procedure using extended specification and
analysis techniques for arrays (b)

the Pointers array. Third, the information flow path through the MMR between two
partitions is not static (e.g., as is the case for information flow between two variables of
scalar type), but it is changing – information for the same conceptual path flows through
different Memory cells whose “ownership” changes on different iterations.

As anticipated, Figure 8 (a) illustrates that the original SPARK annotations for
Route are far too imprecise to support verification of the desired end-to-end policy. For
example, the derives clause for Pointers states that the final value of the array is de-
rived from its initial value (*), from the communication policy (Policy.Comm Policy),
and from the array of flags (Flags). The problem here is that the forced abstraction of
Pointers array cells into a single atomic entity collapses the individual allowed inter-
partition information flow channels (where we needed to verify separation of channels)
and does not capture the fact that some inter-partition flows are disallowed. Furthermore,
we have lost information about the specific conditions of the Policy that enable or dis-
able corresponding flows in Pointers. Finally, without precise accounting of flows for
Pointers, it is impossible to get a handle on what we are most interested in: flows of
the actual messages through Memory.

Figure 8 (b) displays a contract in our extended contract language that is automat-
ically inferred using the precondition generation algorithm of the preceding section.
The derives clause for Pointers uses nested quantification (derived from the nested
loop structure) to capture the “swapping” action of Route. Moreover, it includes the
conditions under which the swapping occurs or under which Pointers(I,J) retains
its value. The Memory derives clause correctly captures the fact that the cell holding
an outgoing message is “cleared” with the default message when the policy disallows
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communication between the sender and destination (the derives clause for Flags has
a similar structure).

7 Related Work

The first theoretical framework for SPARK information flow is provided by Bergeretti
and Carré [9] who present a compositional method for inferring and checking depen-
dencies among variables. That approach is flow-sensitive, unlike most security type
systems [31,6] that rely on assigning a security level (“high” or “low”) to each variable.
Chapman and Hilton [11] describe how SPARK information flow contracts could be ex-
tended with lattices of security levels and how the SPARK Examiner could be enhanced
correspondingly. Rossebo et al.[25] show how the existing SPARK framework can be
applied to verify various unconditional properties of a MILS Message Router. Apart
from Spark Ada, there exists several tools for analyzing information flow, notably Jif
(Java + information flow) which is based on [21]), and FlowCaml [28].

Agreement assertions (inherently flow-sensitive) were introduced in [2] together
with an algorithm for computing (weakest) preconditions, but the approach does not in-
tegrate with programmer assertions. To address that, and to analyze heap-manipulating
languages, the logic of [1] employs three kinds of primitive assertions: agreement, pro-
grammer, and region (for a simple alias analysis). But, since those can be combined
only through conjunction, programmer assertions are not smoothly integrated, and one
cannot capture conditional information flows. This motivated Amtoft & Banerjee [3]
to introduce conditional agreement assertions (for a heap-manipulating language); in
[5] that approach was applied to the (heap-free) SPARK setting and worked out ex-
tensively, with an algorithm for computing loop invariants and with reports from an
implementation. All of these works treat arrays as indivisible entities.

Reasoning about individual array elements is desirable for the precise analysis of
a loop that traverses an array. We have established syntactic and semantic conditions
for when we can allow such fine-grained analysis; these conditions include what is es-
sentially the absence of loop-carried dependencies. This suggests a relationship to the
body of work, with [24] as a seminal paper, addressing when loops can be parallel-
lized. Our conditions are more permissive though since they allow a location to be read
before it is written, as for the loop body h[q] := h[q + 1] (whereas we do not allow
h[q + 1] := h[q]). Even though our focus is on the flow between between array ele-
ments, not their actual content, we might look into the body of work on static analysis
of array content to see if some techniques may improve the precision of our analysis.

Rather than designing a specific logic for information flow, one can employ general
logic as does the recently popular self-composition technique. Here the information
flow property which we encode as {x�} S {y�} is encoded as {x = x′} S; S′ {y =
y′} where S′ is a copy of S with all variables renamed (primed); such a property can
be checked using existing static verifiers. This is the approach by Barthe et al. [8] that
was extended by, e.g., Terauchi and Aiken [30] and Naumann [22]. The effect of self-
composition can also be obtained through dynamic logic, as done by Darvas et al [14].
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When it comes to conditional information flow, the most noteworthy existing tool is
the slicer by Snelting et al [29] which generates path conditions in program dependence
graphs for reasoning about end-to-end flows between specified program points/vari-
ables. In contrast, we provide a contract-based approach for compositional reasoning
about conditions on flows with an underlying logic representation that can provide ex-
ternal evidence for conformance to conditional flow properties. We plan to investigate
the deeper technical connections between the two approaches.

Ground-breaking efforts in certification of MILS infrastructure [17,19] have used
approaches in which source code has been hand-translated into executable models in
theorem provers such as ACL2 and PVS. While the direct theorem-proving approach
followed in these efforts enables proofs of very strong properties beyond what our
framework can currently handle, our aim is to dramatically reduce the labor required,
and the potential for error, by integrating automated techniques directly on code, mod-
els, and developer workflows to allow many information flow verification obligations
to be discharged earlier in the life cycle.

8 Conclusions and Future Work

We believe that the results of this paper provide another demonstration that informa-
tion flow logic as introduced in [2] provides a powerful and flexible framework for
precise compositional reasoning about information flow. The logic seems particularly
well-suited for SPARK because (a) it naturally provides a semantics for SPARK’s orig-
inal flow contracts, and (b) SPARK’s simplicity means that extensive use of the more
complicated aspects of the logic (e.g., object invariants required to handle the heap[3])
can be avoided while still yielding significant increases in precision compared to the
original SPARK contract language.

Several challenges remain as we transition this work into an environment that will
be used by industrial engineers. First, the contracts that we infer can be so precise that
they become large and unwieldy. The complexity of the contracts in these cases often
results when the contract makes distinctions between different conditional flows that
are unnecessary for establishing the desired end-to-end flow policy of a system or sub-
system. We are developing tool-supported methodologies that guide programmers in
writing more abstract specifications that capture distinctions required for end-to-end
policies. Second, although our treatment of arrays using quantification works well for
buffer manipulations often seen in information assurance applications, it works less
well when trying to describe flows between elements of data structures such as trees
implemented using arrays. We are investigating how separation logic might be able to
provide a solution for this.
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