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Abstract. In search for a foundational framework for reasoning about
observable behavior of programs that may not terminate, we have pre-
viously devised a trace-based big-step semantics for While. In this se-
mantics, both traces and evaluation (relating initial states of program
runs to traces they produce) are defined coinductively. On terminating
runs, it agrees with the standard inductive state-based semantics. Here
we present a Hoare logic counterpart of our coinductive trace-based se-
mantics and prove it sound and complete. Our logic subsumes both the
partial correctness Hoare logic and the total correctness Hoare logic: they
are embeddable. Since we work with a constructive underlying logic, the
range of expressible program properties has a rich structure; in partic-
ular, we can distinguish between termination and nondivergence, e.g.,
unbounded total search fails to be terminating but is nonetheless non-
divergent. Our metatheory is entirely constructive as well, and we have
formalized it in Coq.

1 Introduction

Standard big-step semantics and (partial correctness) Hoare logics do not sup-
port reasoning about nonterminating runs of programs. Essentially, they ig-
nore them. But of course nonterminating runs are important. Not only need
we often program a partially recursive function whose domain of definedness
we cannot decide or is undecidable, e.g., an interpreter, but we also have to
program functions that are inherently partially recursive. In programming with
interactive input/output, for example, diverging runs are often what we really
want.

In search for a foundational framework for reasoning about possibly nonter-
minating programs and intrigued by attempts in this direction in the literature,
we have previously devised a big-step semantics for While based on traces [I4].
In this semantics, traces are possibly infinite sequences of states that a program
run goes through. They are defined coinductively, as is the evaluation relation,
relating initial states of program runs to traces they produce. On terminating
runs, this nonstandard semantics agrees with the standard, inductive state-based
big-step semantics.
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In this paper, we put forward a Hoare logic to match this big-step semantics.
In this new trace-based logic, program runs are reasoned about in terms of
predicates on states and traces. More precisely, our Hoare triple {U} s {P} is
given by a statement s, a state predicate U (a condition on the initial state of
a run of s) and a trace predicate P (a condition on the trace produced by the
run). The interesting question is the choice of the language of assertions, i.e., the
language in which we want to express these predicates. We would like to identify
a suite of connectives for the assertion language with whom we achieve a sound
and complete Hoare logic for a constructive underlying logic. We adopt a solution
that is reminiscent of interval temporal logic [I3lJ7] (with a chop-connective). The
logic we propose is Spartan in terms of convenience of expression, but should well
qualify as a foundational formalism into which more specialized applied logics
can be translated.

The While language is total (as soon as we accept that traces of program runs
can be infinite) and deterministic. This allows our logic to conservatively extend
both the standard, state-based partial correctness Hoare logic as well as the
standard, state-based total correctness Hoare logic. On the level of derivability
alone this can be proved semantically by going through the soundness and com-
pleteness results. But we go one step further: we show that derivations in these
two state-based logics are directly transformable into derivations in our logic.
The transformations are relatively straightforward and do not require invention
of new invariants or variants, demonstrating that our logic incurs no undue proof
burden in comparison to the standard Hoare logics.

However, the power of our logic goes beyond that of the state-based par-
tial and total correctness Hoare logics. The assertion language has access to
traces. As suggested by its similarity to the assertion language of interval tem-
poral logic, this allows us to specify liveness properties of diverging runs. We
will demonstrate this extra expressiveness of our logic by a series of examples.
Also, interpreted into a constructive underlying logic, our assertion language
becomes quite discerning. In particular we can distinguish between termination
and nondivergence, e.g., unbounded totall search fails to be terminating, but is
nonetheless nondivergent.

We do not discuss this in the paper, but our logic can be adjusted to deal
with exceptions and nondeterminism.

The paper is organized as follows. In Section 2l we present our trace-based big-
step semantics. In Section Bl we proceed to the question of a corresponding Hoare
logic. We explain our design considerations and then present our Hoare logic and
the soundness and completeness proofs. In Section F, we show the embeddings
of the state-based partial and total correctness Hoare logics. In Section B we
consider examples. In Section [l we discuss the related work, to conclude in
Section [l We have formalized the development fully constructively in Coq ver-
sion 8.1pl3 using the Ssreflect syntax extension library. The Coq development is
available at http://cs.ioc.ee/~keiko/abyss.tgz.

1 'We should really say “nonpartial”.
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2 Big-Step Semantics

We start with our big-step semantics. This is defined in terms of states and
traces. The notion of a state is standard. A state o € state is an assignment of
inte%r values to the variables. Traces 7 € trace are defined coinductively by the

rule
T € trace

(o) € trace o :: T € trace

so a trace is a non-empty colist (possibly infinite sequence) of states. We also
define bisimilarity of two traces, 7 &~ 7/, coinductively by

T=T

(oY= (o) ocuTmouT

Bisimilarity is straightforwardly seen to be an equivalence. We think of bisimilar
traces as equal, i.e., type-theoretically we treat traces as a setoid with bisimi-
larity as the equivalence relation. Accordingly, we have to make sure that all
functions and predicates we define on traces are setoid functions and predicates
(i.e., insensitive to bisimilarity). We define the initial state hd 7 of a trace 7
by case distinction by hd (o) = o,hd (0 :: 7) = 0. The function hd is a setoid
function. We also define finiteness of a trace (with a particular final state) and
infiniteness of a trace inductively resp. coinductively by

Tlo T

(o) lo ouTlo (o0 :7)

Finiteness and infiniteness are setoid predicates. It should be noticed that in-
finiteness is defined positively, not as negation of finiteness. Constructively, it is
not the case that V7. (30.7 | o) V 77, which amounts to asserting that finiteness
is decidable. In particular, V7. (-~ J0.7 | 0) — 71 is constructively provable, but
V7. (=7") — Jo.7 | 0 is not.

Evaluation (s,0) = 7, expressing that running a statement s from a state o
produces a trace 7, is defined coinductively by the rules in Figure [l The rules
for sequence and while implement the necessary sequencing with the help of
extended evaluation (s, 7) = 7', expressing that running a statement s from the
last state (if it exists) of an already accumulated trace 7 results in a total trace
7'. Extended evaluation is also defined coinductively, as the coinductive prefix
closure of evaluation.

We look closer at the sequence rule. We want to conclude that (sg; s1,0) = 7’
from the premise (sp,0) = 7. Classically, either the run of sg terminates, i.e.,
7 | o' for some o', or it diverges, i.e., 7'. In the first case, we would like to
additionally use that 7 is a finite prefix of 7" and that (s1,0") = 7", where 7"

2 We mark coinductive definitions by double horizontal rules.

3 Classically, strong bisimilarity is equality. But we work in an intensional type theory
where strong bisimilarity of colists is weaker than equality (just as equality of two
functions on all arguments is weaker than equality of these two functions).
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(s0,0) =71 (s1,7) =7
(x:=e,0) = 0 {o[z— [e]a]) (skip,o)= (o) (so;s1,0) = 7'
oclke (snon{o))ST olte (sp,ou{o)>T

(if e then s; else sy, 0) = 7 (if e then s; else sy, 0) = 7

oclEe (s,0:{0)) =71 (whileedos:,)=>7 olte
(while e do s¢,0) = 7/ (while e do s¢,0) = o :: (o)
(s,0) =T (s,7) =7

(s,{0)) ST (s,0uT)S 0T

Fig. 1. Big-step semantics

is the rest of 7/. In the second case, it should be case that 7 ~ 7/. In both cases,
the desirable condition is equivalent to (s1,7) = 7/, which is the second premise
of our rule. The use of extended evaluation, defined as the coinductive (rather
than inductive) prefix closure of evaluation, allows us to avoid the need to decide
whether the run of sy terminates or not.

Evaluation is a setoid predicate. Moreover, for While, it is deterministic (up
to bisimilarity, as is appropriate for our notion of trace equality).

Proposition 1. For any s, o, 7 and 7', if (s,0) = 7 and (s,0) = 7', then
TRT.

In our definition, we have made a choice as regards to what grows the trace of
a run. We have decided that assignments and testing of guards of if- and while-
statements augment the trace by a state (but skip does not). This is good for
several reasons. First, skip becomes a unit of sequential composition. Second,
we get a notion of small steps that fully agrees with a very natural coinductive
trace-based small-step semantics arising as a straightforward variation of the
textbook inductive state-based small-step semantics.

Third, we obtain that any while-loop always progresses. For instance, in
our semantics we can only derive (while true do skip,o) = o = 0 1 0 = ...
(up to bisimilarity). Giving up insisting on progress in terms of growing the
trace would introduce some semantic anomalies. For instance, we would not
like to have (while true do skip,o) = (o), because an intuitively clearly infi-
nite run would then be recorded in a finite trace, with the consequence that
(while true do skip;z := 17,0) = o :: {(o[z — 17]) etc. But it also ensures that
evaluation is total—as we should expect. Given that it also is deterministic, we
can thus equivalently turn our relational big-step semantics into a functional
one: the unique trace for a given statement and initial state is definable by
corecursion. (For details, see our previous paper [I4].)

The coinductive trace-based semantics agrees with the inductive state-based
semantics.
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Proposition 2. For any s, o, o', existence of T such that (s,0) = 7 and 7 | o’
is equivalent to (s,0) =" o',

We notice that the inductive state-based semantics is not total constructively—
we cannot decide the halting problem.

3 Hoare Logic

We now proceed to the Hoare logic and its soundness and completeness proof.
As we will base our consequence rule on semantic entailment rather than deriv-
ability in some fixed proof system, we sidestep the problem of its unavoidable
incompleteness (due to the impossibility of complete axiomatization of any the-
ory containing arithmetic). Regarding the choice of level of expressiveness of
the assertion language, we deliberately keep the assertion language open, only
making sure we have enough connectives to be able to express the strongest
postcondition for any expressible precondition.

3.1 Assertion Language

Our assertions will be about states and traces, i.e., expressing state and trace
predicates. A state predicate U is simply a predicate on states. From a trace
predicate P, we require that it is a setoid predicate, i.e., it must be unable to
distinguish bisimilar traces.

We introduce a number of connectives for our assertion language. All these
connectives yield setoid predicates. The inference rules of the Hoare logic rely
on the availability of these connectives. Indeed, it was an intriguing exercise for
us to come up with connectives that would be simple but expressive enough
practically and at the same time allow us to prove the Hoare logic sound and
complete constructively. The semantic definitions of these connectives are given
in Figure

The two most primitive state (resp. trace) predicates are true and false, which
are respectively true and false for any state (resp. trace). We can also use the
standard connectives —, A, V and quantifiers V, 3 to build state and trace pred-
icates. The context disambiguates the overloaded notations for these state and
trace predicates.

For a state predicate U, the singleton (U) is a trace predicate that is true of
singleton traces given by a state satisfying U. In particular (true) is true of any
singleton trace.

For a state predicate U, the doubleton (U)? is true of a doubleton trace whose
two states are identical and satisfy U.

For a state predicate U, the update Uz +— e] is the strongest postcondition
of the statement x := e for the precondition U. It is true of a doubleton trace

4 We use the symbol = for visual highlighting of predicates. We are not defining a
single satisfaction relation |= for some fixed language of predicates, but a number of
individual state/trace predicates and operations on such predicates. Some of them
are defined inductively, some coinductively, some definitions are not recursive at all.
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Fig. 2. Semantics of assertions

whose first state o satisfies U and second state is obtained from the first by
modifying the value of x to become [e] o.

For trace predicates P and @, the chop P *x @ is a trace predicate that is
true, roughly speaking, of a trace 7’ that has a prefix 7 satisfying P, with the
rest of 7/ satisfying Q. But its definition is carefully crafted, so that @ is not
checked, if 7 is infinite (in which case necessarily 7 ~ 7’), and this happens
without case distinction on whether 7 is finite. This effect is achieved with the
premise 7 = Q. The relation 7 =, @ is defined coinductively. It traverses all
of 7, making sure that it is a prefix of 7/, and, upon possible exhaustion of 7 in
a finite number of steps, checks @ against the rest of 7. This way the problem
of deciding whether 7 is finite is avoided, basically by postponing it, possibly
infinitely.

Our chop operator is classically equivalent to the chop operator from interval
temporal logic [137] (cf. also the separating conjunction of separating logic).
Indeed, classically, 7/ = P %% @ holds iff

— either, for some finite prefix 7 of 7/, we have 7 |= P and 7" |= @, where 7"
is the rest of 7/,
— or 7/ is infinite and 7/ |= P.

This is how the semantics of chop is defined in interval temporal logic. But it
involves upfront decision of whether P will be satisfied by a finite or an infinite
prefix of 7/. Our definition is fine-tuned for constructive reasoning.



494 K. Nakata and T. Uustalu

For a trace predicate P, its iteration P' is a trace predicate that is true of
a trace which is a concatenation of a possibly infinite sequence of traces, each
of which satisfies P. It is reminiscent of the Kleene star operator. It is defined
by coinduction and takes into account both infiniteness of some single iteration
and infinite repetition.

For a trace predicate P, Last P is a state predicate that is true of states that
can be the last state of a finite trace satisfying P. Note that Last P is defined
inductively.

Proposition 3. For any U, (U), Uz + €], (U)? are setoid predicates. For any
setoid predicates P, QQ, PxxQ is a setoid predicate. For any setoid predicate P,
Pt is a setoid predicate.

A number of logical consequences and equivalences hold about these connectives.
We have the trivial equivalence: (true)sxP < P < Psx(true). The chop operator
is associative: (P*% Q) #* R < Px*(Q#* R). The iterator operator P repeats P
either zero times or once followed by further repetitions: P < (true) V (Px*x PT).
A trace is infinite if and only if false holds for any last state: infinite < true *x
(false). We have Pxx Last P < P. We also have Last (P*xQ) = Last @, but the
converse does not hold. If every trace satisfying P is infinite, i.e., if P = infinite,
then Last P < false.

3.2 Inference Rules

The derivable judgements of the Hoare logic are given by the inductively inter-
preted inference rules in Figure Bl The proposition {U} s {P} states derivability
of the judgement. The intent is that {U} s {P} should be derivable precisely
when running a statement s from a initial state satisfying U is guaranteed to
produce a trace satisfying P.

The rules for assignment and skip are self-explanatory.

The rule for sequence is defined in terms of the chop operator. The pre-
condition V for the second statement s; is given by those states in which a
run of the first statement sp may terminate. In particular, if {U} so {P} and
P = infinite, i.e., so is necessarily diverging for the precondition U, then we
have {U} so {P #x (false)}. In this case, from the derivability of {false} s; {Q}
for any @, we get {U} sp;$1 {P *x Q} for any ). But this makes sense, since
P xx@Q < P as soon as P | infinite.

The rule for if-statement uses the doubleton operator in accordance with the
operational semantics where we have chosen that testing the boolean guard grows
the trace.

The rule for while-statement is inspired by the corresponding rule of the stan-
dard, state-based partial-correctness Hoare logic. It uses a loop invariant I. This
is a state predicate that has to be true each time the boolean guard is about
to be (re-)tested in a run of the loop. Accordingly, the precondition U should
be stronger then I. Also, I must hold each time an iteration of s; has finished,
as enforced by having P #x (I) as the postcondition of s;. The postcondition
(U)2 5% (P *x (I)?)T % (=€) of the loop consists of three parts. (U)? accounts for
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{U} so {Px(V)} {V}s1 {Q}
U} o= e {Uls e} {U} skip {(U)} [U} 5051 (P #= Q)
{eNU} s {P} {-eAU} sy {P}
{U} if e then s; else sy {(U)? #x P}
UET {enl}s {Pxx(I)}
{U} while e do s {(U)? 5% (P s+ (I)?)" %% (—e)}
UEU {U}s{P} P EP V2{U}s{P}
{U} s {P} {32.U} s {3z. P}

Fig. 3. Inference rules of Hoare logic

the first test of the guard; (P *x* (I)2)! accounts for iterations of the loop body
in alternation with re-tests of the guard (notice that that we are again using
the doubleton operator); (—e) accounts for the state in which the last test of the
guard is finished.

We have chosen to introduce a separate rule for instantiating auxiliary vari-
ables. Alternatively, we might have stated the consequence rule in a more general
form, as suggested by Kleymann [I2]; yet the separation facilitates formalization
in Coq.

The various logical consequences and equivalences about the connectives sug-
gest also further alternative and equivalent formulations. For instance, we could
replace the rule for the while-statement by

{enT} s {Pxx(I)}
{I} while e do s; {{I)? %% (P *x (I)2)T xx (=e)}
if we strengthened the consequence rule to
URU {U'}s{P} (U)«P P
{U} s {P}

With our chosen rule for while, this strengthened version of consequence is ad-
missible:

Lemma 1. For any U,s and V, {U} s {P} then {U} s {(U) *x P}.

We do not attempt to argue that our formulation is the best choice; yet we
found that the present formulation is viable from the points-of-view of both the
meta-theory and applicability of the logic.

3.3 Soundness

The soundness result states that any derivable Hoare triple is semantically valid.

Proposition 4 (Soundness). For any s,U, P,o,7, if {U} s {P} and o U
and (s,0) = 7 and then T = P.
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Proof. By induction on the derivation of {U} s {P}. We show the main cases of
sequence and while.

— s = Sp;s1: We are given as the induction hypotheses that, for any o, 7,
(sg,0) = Tand o = U imply 7 = P#+(V), and that, for any o, 7, (s1,0) = 7
and o =V imply 7 = Q. We have to prove 7 = P xx Q, given o = U and
(s0,0) = 70 and (s1,79) = 71. By the induction hypothesis for sq, we derive
ho : 19 = P and 79 =r, (V). We prove by coinduction an auxiliary lemma:
for any 7, 7/, 7 =, (V) and (s1,7) = 7/ give 7’ =, Q, using the induction
hypothesis for s;. The lemma gives us hy : 71 =7, Q. We can now close the
case by hg and h;.

— 5 = while e do s;: We are given as the induction hypothesis that for any o
and 7, 0 = I Ae and (0,s) = 7 imply 7 = P *x (I). We have to prove 7 |=
(U)25x(Pxx(I)?) 5x(=e), given U |= I and o = U and (while e do s;,0) = 7.
We do so by proving the following conditions by mutual coinduction:

e for any o and 7, if o = I and (while e do s,0) = o = 7, then 7 |=
(P 5 (I)2)T 5% (—e)

e for any 7 and 7/, if 7 =, (I) and (while e do s¢,7) = 7/, then 7/ =,
(I)? %% (P #x (I)?)T %% (—e).

3.4 Completeness

The completeness result states that any semantically valid Hoare triple is deriv-
able. Following the standard approach (see, e.g., [I7]) we define, for a given
statement s and a given precondition U, a trace predicate sp(s,U)—the can-
didate strongest postcondition. Then we prove that sp(s,U) is a postcondition
according to the logic (i.e., {U} s {sp(s,U)} is derivable) and that sp(s,U)
is semantically stronger than any other trace predicate that is a postcondition
semantically. Completeness follows.

The trace predicate sp(s,U) is defined by induction on s in Figure @ The
definition is mostly self-explanatory, as it mimics the inference rules of the logic,
except that we need the loop-invariant Inv(e, s, U). Inv(e, s, U) characterizes the
set of states that running while e do s; from a state satisfying U can reach at
the boolean guard in finite steps.

For any s and U, the predicate sp(s,U) is a monotone setoid predicate.

Lemma 2. For any s, U, 7,7, if 7 = sp(s,U) and 7 = 7’ then 7' |= sp(s,U).
Lemma 3. For any s,U,U’, if U = U’ then sp(s,U) = sp(s,U’).

The following lemma states that any trace which satisfies sp(s,U) has its first
state satisfying U.

Lemma 4. For any s,U, T, if 7 = sp(s,U) then hd 7 = U.

The following lemma is central for the next two important lemmata, stating that
Last P and Inv(e, s,U) are adequate.
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sp(z =€, U) =Ulz + €]
sp(skip, U) = (U)
sp(so; s1,U) = P ** sp(s1, Last P) where P = sp(so,U)
sp(if e then s; else sy, U) = (U)? xx (sp(se,e AU) V sp(sf,me AU))
sp(whlle edo s,U) = (U)? sx (sp(s,e A ) sx (I)?)T sk (—e)
where I = Inv(e, s, U)

cEU V | Inv(e,s,U) o = Last ((Inv(e,s,U) Ae) xx sp(s,V))
o E Inv(e,s,U) o E Inv(e,s,U)

Fig. 4. Strongest postcondition

Lemma 5. For any 7,U, if for any o, 7 | o implies o = U, then 7 =, (U).
Proof. By coinduction with case analysis on 7.
Lemma 6. For any P, P < P xx (Last P).

Proof. Suppose we are given 7 = P. By the definition of Last P, we have for
any o, 7 | o implies o |= Last P. We then deduce 7 =, (Last P) by Lemma [l
thus conclude 7 = P xx (Last P).

Suppose we are given 79 = P and 71 =5, (Last P). We prove the following
condition by coinduction: for any U, 7,7/, 7/ =, (U) implies T ~ 7/. Therefore we
have 79 &~ 71, from which 71 |= P follows. (Recall that P is a setoid predicate.)

Lemma 7. For any s,e,U, 7, sp(s, Inv(e,s,U) Ae) < sp(s, Inv(e,s,U) A e) xx
(Inv(e, s,U)).

Proof. Suppose we are given 7 = sp(s, Inv(e,s,U) A e). It suffices to prove
T Er (Inv(e, s,U)). However, we have 7 |= (Inv(e, s,U) Ae) xx sp(s, Inv(e, s,U))
by Lemma Bl and Lemma @l By the definition of Inv, we have for any o, 7 | o
implies o |= Inv(e, s, U). Therefore we conclude 7 =, (Inv(e, s,U)) by Lemmalil
sp(s, Inv(e,s,U) Ne)xx (Inv(e, s,U)) = sp(s, Inv(e, s,U) Ae) is proved similarly
to Lemma

We are now ready to establish that sp(s,U) is a postcondition according to the
Hoare logic.

Lemma 8. For any s,U, {U} s {sp(s,U)}.

Proof. By induction on s. We show the main case of while: s = while e do s;.
We are given as induction hypothesis that, for any Uy, {Up} st {sp(st, Up)}. We
have to prove {U} while e do sy {(U)2 xx (sp(s¢,e A T) %% (I)?)T %% (—e)} where
I = Inv(e, s¢, U). Tt is sufficient to prove {e AT} s; {(sp(se,e AT)*x(I))}, which
follows from the induction hypothesis and Lemma [1l
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Following the standard route, it should remain to prove the following condition:
for any s,U, P, if for all 0,7, 0 = U and (s,0) = 7 imply 7 E P, then
sp(s,U) E P.
This will be an immediate corollary from Lemma @l and the following lemma,
stating that any trace which satisfies sp(s,U) is in fact produced by a run of s.

Lemma 9. For any s,U, 7, if 7 = sp(s,U) then (s,hd 7) = 7.
Proof. By induction on s. We show the main cases of sequence and while.

— s = s0; 51: We are given as the induction hypotheses that, for any U, 7/, 7/ =
sp(so,U’) (vesp. 7' |= sp(s1,U’)) implies (so, hd 7') = 7/ (resp. (s1,hd 7') =
7). We have to prove (so;s1,hd 7) = 7, given 7 | sp(so;s1,U), which
unfolds into 70 = sp(so,U) and 7 |=5, sp(s1, Last (sp(so,U))). By the
induction hypothesis for sg, we have (so, hd 79) = 79. Using the induc-
tion hypothesis for s;, we prove by coinduction that, for any 71,7, 7 Er,
sp(s1, Last (sp(so,U))) implies (s1,71) = 72, thereby we close the case.

— s = while e do s;: We are given as the induction hypothesis that, for any
U, 7', 7" = sp(s,U’) implies (s, hd 7') = 7'. We have to prove (while e do
se,hd T) = 7, given 7 = (U)2 xx (sp(s,e A I) #% (I)?) %% (=e) where [ =
Inv(e, s,U). We do so by proving the following two conditions simultaneously
by mutual coinduction:

o forany 7, 7 = (sp(s,eAl)*x (I)?) 5 (—e) implies (while e do s;, hd 7) =
hd T T,

o for any 7 and 7/, 7 =, (I)% *x (sp(s,e A I) % (I)?)! % (=e) implies
(while e do s4,7) = 7.

Corollary 1. Forany s, U, P, if for allo, 7,0 = U and (s,0) = 7 imply 7 E P,
then sp(s,U) = P.

Completeness is proved as a corollary of the last two lemmata.

Proposition 5 (Completeness). For any s,U, P, if for all 0,7, o = U and
(s,0) = 7 imply 7 = P, then {U} s {P}.

Proof. Assume that for all 0,7, ¢ E U and (s,0) = 7 imply 7 E P. By
Corollary [l we have that sp(s,U) = P. By Lemmal[8 we have {U} s {sp(s,U)}.
Applying consequence, we get {U} s {P}.

4 Relation to the Standard Partial and Total Correctness
Hoare Logics

It is easy to see, by going through soundness and completeness results, that
our trace-based Hoare logic is a conservative extension of the standard, state-
based partial and total correctness Hoare logics. But more can be said. The
derivations in these two logics are directly transformable into derivations in our
logic, preserving their structure, without invention of new invariants or variants.
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We formalize our claim in the next two propositions, whose direct proofs are
algorithms for the transformations. Proposition [fl states that, if {U} s {V} is
a derivable partial correctness formula, then {U} s {true s« (V)} is derivable in
our logic. The trace predicate true #x (V') indicates that V holds of any state
that is reachable by traversing, in a finite number of steps, the whole trace 7
produced by running s. Classically, this amounts to the condition of V' being
true of the last state of 7, if 7 is finite and hence has one; if 7 is infinite, then
nothing is required. Proposition [1 states that, if {U} s {V'} is a derivable total
correctness judgement, then {U} s {finite =+ (V)} is derivable in our logic. The
trace predicate finitexx (V) states that the trace T produced by running s is finite
and V holds of the last state of 7; the finiteness of 7 guarantees the existence of
the last state.

(For reference, the inference rules of the state-based logics appear in the Ap-
pendix.)

Proposition 6. For any U,s and V, if {U} s {V} is derivable in the partial
correctness Hoare logic, then {U} s {true sx (V)}.

Proof. By induction on the Hoare logic derivation of {U} s {V}. We show the
main case of while: s = while e do s;. We are given as the induction hypothesis
{e N1} s {true s (I)}. We close the case by the derivation
{e AT} s {truesx (I)}
{I} while e do s; {{I)? *x (true s (I)2)T xx (=e)}
{I} while e do s; {true sx (I A —e)}

For the embedding of total correctness derivations, we prove a slightly stronger
statement to have the induction going through.

Proposition 7. For any U,s and V, if {U} s {V} is derivable in the total
correctness Hoare logic, then for any Uy, {U AUy} s {(Up) #x finite xx (V)}.

Proof. By induction on the Hoare logic derivation of {U} s {V'}. We show the
main case for while: s = while e do s;. We are given as the induction hypothesis
that for all n : nat and Uy, {e NI ANt =nAUp} s¢ {{Up) *x finite s« (I ANt < n)},
Therefore we close the case by the derivation
Vnd{e NI ANt =n} s¢ {{t =n)** finite xx (I ANt < n)}
{In.e NI ANt =n} st {In.(t = n) *«x finite xx (I ANt <n)}
{e AT} s¢ {(Tn.(t = n) *x finite xx (t < n)) *x (I)}
{I AUy} while e do s,
{{I AU 5% ((In.(t = n) *x finite xx (t < n)) #* ([)2)T xx (=e)}
{I AUy} while e do s; {Uy *x finite x* (I A —e)}

5 Examples

Propositions [ and [ show that our trace-based logic is expressive enough to
perform the same analyses that the state-based partial or total correctness Hoare
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logics can perform. However, the expressiveness of our logic goes beyond that of
the partial and the total correctness Hoare logics. In this section, we demonstrate
this by a series of examples. We adopt the usual notational convention that any
occurrence of a variable in a state predicate represents the value of the variable
in the state, e.g., a state predicate x + y = 7 abbreviates \o.ox + oy =17.

5.1 Unbounded Total Search

Since we work in a constructive underlying logic, we can distinguish between
termination of a run, finite, and nondivergence, —infinite. For instance, any
unbounded nonpartial search fails to be terminating but is nonetheless nondi-
vergent.

This example is inspired by Markov’s principle: =Vn.—~Bn — Jz.B n for any
decidable predicate B on natural numbers, i.e., a predicate satisfying Vn. Bn V
- Bn. Markov’s principle is a classical tautology, but is not valid constructively.
This implies we cannot constructively prove a statement s that searches a natural
number n satisfying B by successively checking whether B 0, B 1,B 2,... to be
terminating. In other words, we cannot constructively derive a total correctness
judgement for s. The assumption —=Vn. =B n only guarantees that B is not false
everywhere, therefore the search cannot diverge; indeed, we can constructively
prove that s is nondivergent in our logic.

We assume given a decidable predicate B on natural numbers and an axiom
B noncontradictory: =Vn.—B n stating that B is not false everywhere. Therefore
running the statement

Search = x := 0;while =Bz doz:=xz+1

cannot diverge: this would contradict B noncontradictory. In Proposition [§ we
prove that any trace produced by running s is nondivergent and B x holds of
the last state.

We define a predicate cofinally : nat — trace — Prop coinductively as follows:

cx=n Bn cx=n -Bn 7 cofinally (n+1)
o {o) = cofinally n oo T = cofinally n

cofinally is a setoid predicate.
A crucial observation is that, in the presence of B noncontradictory, cofinally O
is stronger than nondivergent:

Lemma 10. cofinally 0 = —infinite.

Proof. Tt is sufficient to prove that, for any 7, 7 = cofinally 0 and 7 |= infinite
are contradictory. Suppose there is a trace 7 such that 7 | cofinally 0 and
T |= infinite. Then by induction on n we can show that, for any n there is a
trace 7' such that 7’ = cofinally n and 7' |= infinite. But whenever the latter
condition holds for some 7/ and n, then =B n. Hence we also have VYn. -Bn. But
this contradicts B noncontradictory.
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{-Bz} z:=z+1{(-Bz)z— z+1]}
{z = 0} while Bz doz:=2+1
{{z = 0)? %% (=B )z — o + 1] % (true)?)T s+ (B z)}
\
{true} = := 0 {true[x — 0]} {z =0} while “Bz do z := z + 1 {cofinally 0}
{true} = := 0;while =Bz do x := z + 1 {true[x — 0] *x* cofinally 0}
{true} = := 0;while “Bx do © := x4+ 1 {(true ** (B x)) A —infinite}

Fig. 5. Derivation of {true} Search {(true sx (B x)) A —infinite}

{true} = :=x + 1 {true[z — = + 1]}

{z =0} while truedo z:=z+1
{{z = 0)% #x (true[z > x + 1] #* (true)?)T s« (false) }

\

{true} = := 0 {true[x — 0]} {z = 0} while true do = := = + 1 {eventually n}
{true} = := 0; while true do z := x + 1 {true[z — 0] ** eventually n}
{true} = := 0;while true do = := x + 1 {finite *x (x = n) ** true}

Fig. 6. Derivation of {true} s {finite *x (z = n) *x true}

Proposition 8. {true} Search {(true s« (B z)) A —infinite}.

Proof. The derivation is given in Figure Bl with trivial applications of the con-
sequence rule being omitted.

5.2 Liveness

As the similarity of our assertion language to the interval temporal logic suggests,
we can specify and prove liveness properties. In Proposition @ we prove that the
statement

2 := 0;while truedo x :=x + 1

eventually sets the value of z to n for any n : nat at some point.

The example is simple but sufficient to demonstrate core techniques used to
prove liveness properties of more practical examples. For instance, imagine that
assignment to x involves a system call, with the assigned value as the argument.
It is straightforward to enrich traces to record such special events, and we can
then apply the same proof technique to prove the statement eventually performs
the system call with n as the argument for any n.

We define inductively a predicate eventually : nat — trace — Prop stating a
state o in which the value of z is n is eventually reachable by finitely traversing 7:

cr=n cr=n T | eventually n
(0) = eventually n o :: 7 |= eventually n o = T = eventually n
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Proposition 9. For any n : nat, {true} s {finite *x (x = n) ** true} where
s = x := 0;while true do z := x + 1.

Proof. The derivation is given in Figure [6 with trivial applications of the con-
sequence rule being omitted.

5.3 Weak Trace Equivalence

The last example is inspired by a notion of weak trace equivalence: two traces
are weakly equivalent if they are bisimilar by identifying a finite number of
consecutive identical states with a single state. It is conceivable that (strong)
bisimilarity is too strong for some applications and one needs weak bisimilarity.
For instance, we may want to prove that the observable behavior, such as the
colist i/o events of a potentially diverging run, is bisimilar to a particular colist
of i/o events. Then we must be able to collapse a finite number of non-observable
internal steps. We definitely should not collapse an infinite number of internal
steps, otherwise we would end up concluding that a statement performing an i/o
operation after a diverging run, e.g., while true do skip; print “hello”, is observably
equivalent to a statement immediately performing the same i/o operation, e.g.,
print “hello”.

In this subsection, we prove that the trace produced by running the statement

while true do (y := x;(whiley 0 doy:=y — 1);z: =2+ 1)

is weakly bisimilar to the ascending sequence of natural numbers 0 :: 1::2:: 3 ::
..., by projecting the value of x. The statement differs from that of the previous
subsection in that it “stutters” for a finite but unbounded number of steps, i.e.,
while y # 0 do y := y — 1, before the next assignment to = happens.

This exercise is instructive in that we need to formalize weak trace equiva-
lence in our constructive underlying logic. We do so by supplying an inductive
predicate T ~» 7/ stating that 7/ is obtained from 7 by dropping finitely many
elements from the beginning, until the first state with a different value of x is
encountered, and a coinductive predicate up (n : nat) : trace — Prop, stating
that 7 is weakly bisimilar to the ascending sequence of natural numbers starting
at n, by projecting the value of x. Formally:

cx=hdtz T7 ocrFhiTr T=T

* o * o
g T ~~~T g T ~T

cx=n o=xT~71 T Eup (n+1)
ouTEuU N

These definitions are tailored to our example. But a more general weak trace
equivalence can be defined similarly. We note that our formulation is not the
only one possible nor the most elegant. In particular, with a logic permitting
mixing induction and coinduction [5], there is no need to separate the definition
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fy#0ty:=y-1{y#0)ly—y—-1]}
{y >0} whiley #0doy:=y—1
{{y > 0)% 5 ((y # 0)y = y — 1] #x (true)) " =x (y = 0)}
{y > 0} while y #0do y :=y — 1 {(z)"}
{true} z :=z + 1 {true[z — x + 1]}

>0} (whilty#0doy:=y—1);2:=x+1
{{z)* *x true[x — z + 1]}

{x >0} y:=z;(whiley#0doy:=y—1);2 :=x+ 1 {{(x)" ** true[r — = + 1]}

{z = 0} while true do (y := z;(while y #0doy :=y—1);z:=xz+ 1)
{{z = 0)% %% ((x)" *#x true[z — x + 1]+ (true)?)T +x (false)}

{z = 0} while true do (y := z;(while y #0doy:=y —1);z:=xz+ 1) {up 0}

>0 y=z{@>0y—a}

Fig. 7. Derivation of {true} s {up 0}

into an inductive part, 7 ~ 7/, and a coinductive part, up n. Yet our formulation
is amenable in our underlying logic, Coq.

We also use an auxiliary trace predicate (x)* that is true of a finite trace in
which the value of x does not change. It is defined inductively as follows:

cx=hdtz TE (z)*
(o) = ()" o7 ()"

Proposition 10. {z =0} s {up 0} where s = while true do (y := z; (while y #
Odoy:=y—1);2:=x+1).

Proof. The derivation is given in Figure [[l with trivial applications of the con-
sequence rule being omitted.

6 Related Work

Coinductive big-step semantics for nontermination have been considered by
Leroy and Grall [TOJTT] (in the context of the CompCert project, which is a ma-
jor demonstration of feasibility of certified compilation) and Cousot and Cousot
[4]. Leroy and Grall investigate two approaches. The first, based on Cousot and
Cousot [3], has different evaluation relations for terminating and diverges runs,
one inductive (with finite traces), the other coinductive (with infinite traces). To
conclude that any program either terminates or diverges, one needs the law of
excluded middle (amounting to decidability of the halting problem), and, as a
result, the small-step semantics cannot be proved sound wrt. the big-step seman-
tics constructively. The other approach [I] uses a coinductively defined evaluation
relation with possibly infinite traces, where while-loops are not ensured to be
progressive in terms of growing traces (an infinite number of consecutive silent
small steps may be collapsed).

Some other works on coinductive big-step semantics include Glesner [6] and
Nestra [I5/T6]. In these it is accepted that a program evaluation can somehow



504 K. Nakata and T. Uustalu

continue after an infinite number of small steps. With Glesner, this seems to have
been a curious unintended side-effect of the design, which she was experimenting
with just for the interest of it. Nestra developed a nonstandard semantics with
transfinite traces on purpose in order to obtain a soundness result for a widely
used slicing transformation that is unsound standardly (can turn nonterminating
runs into terminating runs).

Our trace-based coinductive big-step semantics [I4] was heavily inspired by
Capretta’s [2] modelling of nontermination in a constructive setting similar to
ours. Rather than using coinductive possibly infinite traces, he works with a
coinductive notion of a possibly infinitely delayed (final) state. The categorical
basis appears in Rutten’s work [I8]. But Rutten only studied the classical setting
(any program terminates or not), where a delayed state collapses to a choice of
between a state or a designated token signifying nontermination.

While Hoare logics for big-step semantics based on inductive, finite traces have
been considered earlier (to reason about traces of terminating runs), Hoare or
VDM-style logics for reasoning about properties of nonterminating runs seem not
have been studied before, with one very interesting exception, see below. Neither
do we in fact know about dynamic logic or KAT (Kleene algebra with tests)
approaches that would have assertions about possibly infinite traces. Rather,
nonterminating runs have been typically reasoned about in temporal logics like
LTL and CTL* or in interval temporal logic [I37]. These are however essentially
different in spirit by their “exogeneity”: assertions are made about traces in a
transition system rather than traces of runs of a particular program. Notably,
however, interval temporal logic has connectives similar to ours—in fact they
were a source of inspiration for our design.

Hofmann and Pavlova [9] consider a VDM-style logic with finite trace asser-
tions that are applied to all finite prefixes of the trace of a possibly nonterminat-
ing run of a program. This logic allows reasoning about safety, but not liveness.
We expect that we should be able to embed a logic like this in ours.

7 Conclusions

We have presented a sound and complete Hoare logic for the coinductive trace-
based big-step semantics of While. The logic naturally extends both the partial
and total correctness Hoare logics. Its design may be exploratory at this stage—
in the sense that one might wish to consider alternative choices of primitive
connectives. But at any rate we would see our logic as a viable unifying founda-
tional framework facilitating translations from more applied logics.
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A State-Based Partial Correctness and Total Correctness
Hoare Logics

The figures below give the rules of the standard, state-based partial correctness
and total correctness logics in the form used in Section [4

{enU} se {V} {—-enU} sy {V}
{U} skip {U} {Ule/z]} v =€ {U} {U} if e then s; else sy {V'}

{e NI} s {I} UEU {U}s{V'} V'V
{I} while e do s; {I A —e} {U} s {V}

Fig. 8. Inference rules of partial correctness Hoare logic

{eNU} s {V} {-eAU} sy {V}
{U} skip {U} {Ule/z]} v :=¢ {U} {U} if e then s; else sy {V'}

Vn:nat {eANIAt=n}si {INt<n} UEU {U}s{V'} VEV
{I} while e do st {I A —e} {U} s {V}

Fig. 9. Inference rules of total correctness Hoare logic
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