Dynamic Boundaries: Information Hiding by
Second Order Framing with First Order Assertions

David A. Naumann'* and Anindya Banerjee>**

' Stevens Institute of Technology, Hoboken NJ, USA
2 IMDEA Software, Madrid, Spain

Abstract. The hiding of internal invariants creates a mismatch between proce-
dure specifications in an interface and proof obligations on the implementations
of those procedures. The mismatch is sound if the invariants depend only on en-
capsulated state, but encapsulation is problematic in contemporary software due
to the many uses of shared mutable objects. The mismatch is formalized here
in a proof rule that achieves flexibility via explicit restrictions on client effects,
expressed using ghost state and ordinary first order assertions.

1 Introduction

From the simplest collection class to the most complex application framework, software
modules provide useful abstractions by hiding the complexity of efficient implementa-
tions. Many abstractions and most representations involve state, so the information to
be hidden includes invariants on internal data structures. Hoare described the hiding of
invariants as a mismatch between the procedure specifications in a module interface,
used for reasoning about client code, and the specifications with respect to which im-
plementations of those procedures are verified. The latter assume the invariant and are
obliged to maintain it [17]]. The justification is simple: A hidden invariant should de-
pend only on encapsulated state, in which case it is necessarily maintained by client
code. Hoare’s formalization was set in a high level object-oriented language (Simula
67), which is remarkable because for such languages the encapsulation problem has far
too many recent published solutions to be considered definitively solved.

For reasoning about shared, dynamically allocated objects, the last decade has seen
major advances, especially the emergence of Separation Logic, which helped reduce
what O’Hearn et al. aptly called a “mismatch between the simple intuitions about the
way pointer operations work and the complexity of their axiomatic treatments”
Sect. 1]. For encapsulation, there remains a gap between the simple idea of hiding an
invariant and the profusion of complex encapsulation techniques and methodologies.
The profusion is a result of tensions between

— The need to prevent violations of encapsulation due to misuse of shared references.

— The need to encompass useful designs including overlapping and non-regular data
structures, callbacks, and the deliberate use of shared references that cross encap-
sulation boundaries. Illustrative examples are the topic of Sect.

* Partially supported by US NSF awards CNS-0627338, CRI-0708330, CCF-0915611.
** Partially supported by US NSF awards CNS-0627748.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 2{22{2010.
(© Springer-Verlag Berlin Heidelberg 2010

Dynamic Boundaries 3

— The need for effective, modular reasoning on both sides of an interface: for clients
and for the module implementation.

— The hope to achieve high automation through mature techniques including types
and static analyses as well as theorem proving.

— The need to encompass language features such as parametric polymorphism and
code pointers for which semantics is difficult.

This paper seeks to reconcile all but the last of these and to bridge the gap using a simple
but flexible idea that complements scope-based encapsulation. The idea is to include in
an interface specification an explicit description of the key intuition, the internal state
or “heap footprint” on which an invariant rests. This set of locations, called the dynamic
boundary, is designated by an expression that may depend on ordinary and ghost state.

We formalize the idea using first order assertions in a Hoare logic for object based
programs called Region Logic (Sect.[3)); it is adapted from a previous paper in which we
briefly sketched the idea and approach [2]. Our approach is based on correctness judge-
ments with hypotheses, to account for linking of client code to the modules used, and a
frame rule to capture hiding. These two ingredients data back to the 1970’s (e.g., [13])
but we build directly on their novel combination in the second order frame rule of sep-
aration logic [30]]. Our version of the rule is the topic of Sect. Al

Owing to the explicit expression of footprints, region logic for first order programs
and specifications has an elementary semantics and is amenable to automation with
SMT solvers [21]]. One price to pay is verbosity, but the foundation explored in this
paper supports syntactic sugars for common cases while avoiding the need to hard-code
those cases. Another price is an additional proof obligation on clients, to respect the
dynamic boundaries of modules used. In many cases this can be discharged by type
checking. But our main goal is to account for hiding in a way that is sufficiently flexible
to encompass ad hoc disciplines for encapsulation; even more, to let the formalization
of such a discipline be a matter of program annotation, with its adequacy checked by a
verification tool, rather than being fodder for research papers.

The main result is soundness of our second order frame and boundary introduction
rules, whose range of applicability is indicated by application, in Sect. [to the exam-
ples in Sect.[2l For lack of space, technical details are only skimmed, as is related work
(Sect.[6). An appendix with the soundness proof can be found online.

2 The Challenge of Hiding Invariants on Shared Mutable Objects

2.1 A Collection Implemented by a List

We begin with a textbook example of encapsulation and information hiding, the toy
program in Fig. @ Annotations include method postconditions that refer to a global
variable, pool, marked as ghost state. Ghost variables and fields are auxiliary state used

! The programming notation is similar to sequential Java. A value of a class type like Node is
either null or a reference to an allocated object with the fields declared in its class. Methods
have an implicit parameter, self, which may be elided in field updates; e.g., the assignment
Ist:= null in the body of the Set constructor is short for self.lst: = null.

4 D.A. Naumann and A. Banerjee

ghost pool :rgn;
class Set { Ist: Node; ghost rep:rgn;

model elements = elts(lst)
where elts(n: Node) = (if n = null then & else {n.val} U elts(n.nzt))

Set() ensures elements = @ A pool = old(pool) U {self }

{ Ist:=null; rep:= &; pool:= pool U{self}; }

add(i:int) ensures elements = old(elements) U {i}

{if =contains(i) then var n: Node:= new Node; n.val:=i; n.nzt:= Ist; Ist:=n;
n.own:=self; rep:=repU{n}; endif }

contains(i:int):boolean ensures result = (i € elements) { “linear search for ;" }

remove(i:int) ensures elements = old(elements) — {i} { “remove first 7, if any” } }

class Node { val:int; nzt: Node; ghost own:Object; } //library code, not part of SET

Fig. 1. Module SET, together with class Node. Variable result is the returned result.

in reasoning, but not mentioned in branch conditions or expressions assigned to ordi-
nary state. Assignments to ghost state can be removed from a program without altering
its observable behavior, so ghosts support reasoning about that behavior. A region is
a set of object references (which may include the improper reference, null). Type rgn,
which denotes regions, is used only for ghost state.

The specifications are expressed in terms of an integer set, elements. Abstraction
of this sort is commonplace and plays a role in Hoare’s paper [[17], but it is included
here only to flesh out the example. Our concern is with other aspects so we content
ourselves with a recursive definition (of elts) that may seem naive in not addressing the
possibility of cyclic references.

Suppose the implementation of remove only removes the first occurrence of i, if
any. That is, it relies on the invariant that no integer value is duplicated in the singly
linked list rooted at st. To cater for effective automated verification, especially using
SMT solvers, we want to avoid using reachability or other recursively defined notions
in the invariant. The ghost field rep is intended to refer to the set of nodes reachable
from field /st via nzt. The invariant is expressed using elementary set theoretic notions
including the image of a region under a field. The expression s.rep*nzt denotes the
region consisting of nzt values of objects in region s.rep. It is used in this definitionfl

Setl(s:Set): (Vn,m:Node € s.rep | n =mV n.val # m.val)
A s.lst € s.rep A s.repnat C s.rep A s.reptown C {s}

The first conjunct says there are no duplicates among elements of s.rep. The next says
that s.rep contains the first node, if any (or else null). The inclusion s.rep*nzt C s.rep

2 The range condition “n € s.rep” is false in case s is null, because n € s.rep is shorthand for
n € {s}*rep and {null}“rep is empty. Our assertion logic is 2-valued and avoids undefined
expressions. We do not use sets of regions. The image operator flattens, for region fields: For
any region expression G, the image region GG “rep is the union of rep images whereas GG “nat
is the set of nat images, because rep has type rgn and nzt has class type.

Dynamic Boundaries 5

says that s.rep is nxt-closed; this is equivalent to Vo | 0 € s.rep = o.nzt € s.repEl
One can show by induction that these conditions imply there are no duplicates; so the
invariant says what we want, though not itself using induction. However, s.rep could
be nzt-closed even if s.rep contained extraneous objects, in particular nodes reached
from other instances of Set. This is prevented by the inclusion s.rep‘own C{s}; or
rather, by requiring the inclusion for every instance of Set. So we adopt an invariant to
be associated with module SET":

Liet: null & pool AVs: Set € pool | SetI(s)

As used here, variable pool is superfluous, but we are hinting at examples where an
invariant is not maintained for all instances of a class but, e.g., only those created by a
factory method. The need for null ¢ pool is minor and discussed later. A bigger concern
is the global nature of I,.;, which is addressed in Sect.

Consider this client code, acting on boolean variable b, under precondition true:

var s:Set:= new Set; var n: Node:= new Node;)
s.add(1l); s.add(2); n.val:=1; s.remove(l); b:= s.contains(1);

The implementation of remove relies on the invariant SetI(s), but this is not included
as a precondition in Fig.[Tland the client is thus not responsible to establish it before the
invocation of remove. As articulated by Hoare [17]], the justification is that the invariant
appears as both pre- and post-condition for verification of the methods add, remove,
contains, and should be established by the Set constructor. And the invariant should
depend only on state that is encapsulated. So it is not falsified by the initialization of
n and still holds following s.add(2); again by encapsulation it is not falsified by the
update n.val:= 1 so it holds as assumed by s.remouve.

We call this Hoare’s mismatch: the specifications used in reasoning about invocations
in client code, i.e. code outside the encapsulation boundary, differ from those used to
verify the implementations of the invoked methods. By contrast, ordinary procedure call
rules in program logic use the same specification at the call site and to verify the proce-
dure implementation. Automated, modular verifiers are often based on an intermediate
language using assert and assume statements: At a call site the method precondition is
asserted and this same precondition is assumed for the method’s implementation; so the
assumption is justified by the semantics of assert and assume. Hoare’s mismatch asserts
the public precondition but assumes an added conjunct, the invariant.

The mismatch is unsound if encapsulation is faulty, which can easily happen due
to shared references, e.g., if in place of n.val:= 1 the client code had s.lst.val:= 1.
Lexical scope and typing can provide encapsulation, e.g., field Ist should have module
scope. (We gloss over scope in the examples.) However, scope does not prevent that
references can be leaked to clients, e.g., via a global variable of type Object. Moreover,
code within the module, acting on one instance of Set, could violate the invariant of
another instance. Besides scope and typing, a popular technique to deal with encap-
sulation in the presence of pointers is “ownership” (e.g., [911]]). Ownership systems
restrict the form of invariants and the use of references, to support modular reasoning

3 Quantified variables range over non-null, allocated references.

6 D.A. Naumann and A. Banerjee

ghost freed :rgn;
var flist: Node; count :int;
alloc(): Node

ensures result # null A freed = old(freed) — {result} A (result € old(freed) V fresh(result))
{if count = 0 then result:= new Node;

else result: = flist; flist:= flist.nat; count:= count —1; freed := freed — {result}; endif}
free(n: Node) requires n # null A n ¢ freed ensures freed = old(freed)U{n}
{ n.nzt:= flist; flist:=n; count:= count —1; freed:= freed U{n}; }

Fig. 2. Module MM

at the granularity of a single instance and its representation. Ownership works well for
Setl and indeed for invariants in many programs.

2.2 A Toy Memory Manager

It is difficult to find a single notion of ownership that is sufficiently flexible yet sound
for invariant hiding. Fig. 2 presents a module that is static in the sense that there is
a single memory manager, not a class of them. Instances of class Node (from Fig. [T
are treated as a resource. The instances currently “owned” by the module are tracked
using variable freed. The hidden invariant, ,,,,, is defined to be FC'(flist, freed, count)
where FC(f : Node,r:rgn, c:int) is defined, by induction on the size of r, as

(f=null=r=8Ac=0)A(f#null=ferAc>0ANFC(f.nzt,r—{f},c—1))

The invariant says freed is the nodes reached from flist and count is the size. The
implementation of alloc relies on accuracy of count. It relies directly on count # 0 =
flist # null, as otherwise the dereference flist.nzt could fault, but for this to hold on
subsequent calls the stronger condition /,,,,, needs to be maintained as invariant.

Consider this strange client that both reads and writes data in the free list —but not
in a way that interferes with the module.

var z,y: Node; x:=new Node; y:= alloc(); free(z); free(y);
while y # null do y.val:=7; y:= y.nzt; od

The loop updates val fields of freed objects, but it does not write the nxt fields, on
which the invariant depends; the client never causes a fault. Suppose we replaced the
loop by the assignment y.nzt : = null. This falsifies the invariant I,,,,,, if initially count
is sufficiently high, and then subsequent invocations of alloc break.

The strange client is rejected by most ownership systems. But there is an encapsu-
lation boundary here: clients must not write the nxt field of objects in freed (nor write
variables flist and count). The strange client respects this boundary.

Sharing of references across encapsulation boundaries is common in system code, at
the C level of abstraction. But it also occurs with notional resources such as database
connections in programs at the level of abstraction we consider here, where references
are abstract values susceptible only to equality test and field dereference.

Dynamic Boundaries 7

class Subject { obs: Observer; val:int; ghost O :rgn;
Subject() { obs:=null; val:=0; O:=o; }

update(n :int) ensures Vb: Observer € O | Obs(b,self, n)
{ val:= n; var b: Observer : = obs; while b # null do b.notify(); b:= b.nzto; od }

get():int { result:= val; }
register(b: Observer) { b.nazto:= obs;0bs:=b;0:= OU{b};b.notify(); } }
class Observer { sub: Subject; cache:int; nxto: Observer;

Observer(s: Subject) requires Vb: Observer € s.0 | Obs(b, s, s.val)

ensures self € 5.0 AVb: Observer € s.0 | Obs(b, s, s.val)
{ sub:=s; s.register(self); }
notify() { cache:= sub.get(); } }

Fig. 3. Module OB. We define Obs(b,s,v) as b.sub = s A b.cache = v.

2.3 Observer Pattern: Cluster Invariants

Fig.Blis a simple version of the Observer design pattern in which an observer only tracks
a single subject. Parkinson used the example to argue against instance-oriented
notions of invariant. We address that issue using a single invariant predicate that in
effect quantifies over clusters of client-visible objects. Classes Subject and Observer
are together in a module, in which methods register and notify should have module
scope. The implementation maintains the elements of O in the nzto-linked list threaded
through the observers themselves, and it relies on the hidden invariant

Ip: (Vs:Subject | List(s.obs,s.0)) A (Vo: Observer | 0.sub # null= o € 0.sub.O)

where List(o, 1) says the list beginning at o lies in region r (compare FC in Sect. 2.2).
The second conjunct of 1,; says that any observer tracking a subject lies in that subject’s
O region. As with ., the instantiations of I,,; are local in that they depend on nearby
objects, but here a subject and its observers form a cooperating cluster of objects not in
an ownership relation. Clients may rely on separation between clusters. As an example,
consider a state in which there are two subjects s, ¢ with s.val =0 and ¢.val = 5. Con-
sider this client: 0:= new Observer(s);p:= new Observer(t);s.update(2). Owing to
separation, t.val = 5 holds in the final state.

2.4 Overlapping Data Structures and Nested Modules

One feature of the preceding example is that there is an overlapping data structure be-
cause a list structure is threaded through observer objects that are client visible. We
now consider another example which further illustrates overlapping data structures and
also hiding in the presence of nested modules. The module in Fig.d consists of a class,
ObsSet, that extends Observer. Instances of ObsSet are in two overlapping data struc-
tures. First, these objects are arranged in a cyclic doubly-linked list, traversed using
next and prev pointers, whose elements may be observing the same or different sub-
jects. Second, each ObsSet is in the nato-linked list of observers of its subject.

8 D.A. Naumann and A. Banerjee

class ObsSet extends Observer { next: ObsSet; prev: ObsSet;

ObsSet(s: Subject, 0s: ObsSet)
requires Vb: Observer € 5.0 | Obs(b, s, s.val)
ensures self € s.0 AVb: Observer € 5.0 | Obs(b, s, s.val)
{ super(s);
if os = null then prev:= self; next : = self;
else next:= os; prev:= os.prev; os.prev.next: = self; os.prev:=self; endif } }

Fig.4. Module OS

The constructor of ObsSet first calls the superclass constructor, Observer, with sub-
ject s. This call adds the newly allocated object to the front of the list of observers of s.
The newly allocated object is then added to the cyclic doubly-linked list by manipulat-
ing next and prev pointers.

Module OS is defined in the context of module OB, because ObsSet is a subclass
of Observer. The verification of the implementation of ObsSet will require its module
invariant, but not /,;. The invariant /,s; expresses a simple property of cyclic doubly-
linked lists: 0s.prev.next = os A os.next.prev = os for all allocated os of type ObsSet.
Despite the overlapping structure, there is no interference between the code and invari-
ants of modules OB and OS because different locations are involved.

Interesting variations on the example include observers that track multiple subjects,
and observers that are also in the role of subject (cf. [19]). Of particular interest are
callbacks between modules (as opposed to the notify/ get callback within module OB),
which are within reach of our approach but not formalized in this paper.

3 Region Logic Background: Effects and First Order Framing

3.1 Preliminaries: Programming Language, States, Assertions

Our formal results are given for an idealized object-based language with syntax
sketched in Fig.[3l Programs are considered in the context of a fixed collection of class
declarations, of the form class K { f: T }, where field types may make mutually re-
cursive reference to other classes. We write Fields(K) for f: T and for simplicity let
names in the list f have global scope. Ordinary expressions do not depend on the heap:
y.f is not an expression but rather part of the command z:= y.f for reading a field,
as in separation logic. Instead of methods associated with classes, we formalize simple

T == int| K |rgn where K is in DeclaredClassName data types
E =2z|c|null| EGE where cisinZ, & in{=,+,>,...} ordinary expressions
G:u=z|{E}|@| G| GG where®isin{U,N,—} region expressions
F::=F|G expressions
C:=m(x)|z:=F|z:=new K |z:=z.f |z.f:=F primitive commands

| let m(z:T)be Cin C|varz:Tin Cend| C;C|... binding, control struct.

Fig. 5. Program syntax, where z € VarName, f € FieldName, m € ProcName

Dynamic Boundaries 9

procedures without an implicit self parameter. The typing judgement for commands is
written as IT ! C where I is a variable context and IT is a list of procedure signatures
of the form m(z: T'). The form “let m(x: T') be B in C'” is typable in context IT and
rif ,m:(z:T) 1% Band M,m:(x: T) T C. The generalization to multiple
parameters and mutually recursive procedures is straightforward and left to the reader.
Typing rules enforce that type int is separated from reference types: there is no pointer
arithmetic, but pointers can be tested for equality. The variable alloc, being of type rgn,
cannot occur in non-ghost code.

The semantics is based on conventional program states. We assume given a set Ref of
reference values including a distinguished value, null. A I"-state has a global heap and a
store. The store assigns values to the variables in I" and to the variable alloc:rgn which
is special in that its updates are built in to the semantics of the language: newly allocated
references are added and there are no other updates, so it holds the set of allocated
references. The heap maps each allocated reference to its type (which is immutable)
and field values. The values of a class type K are null and allocated references of type
K. We assume the usual operations are available for a state ¢. For example, o(z) is
the value of variable z, o(F) is the value of expression ', Type(o,0) is the type of
an allocated reference o, Update(o, o0.f,v) overrides ¢ to map field f of o to v (for
o € o(alloc)), Extend(o, x, v) extends 0 to map z to value v (for z ¢ Dom(c)). Heaps
have no dangling references; we do not model garbage collection or deallocation.

In a given state the region expression G*‘f (read “G’s image under f”) denotes one
of two things. If f has class type then G*f is the set of values o.f where o ranges over
(non-null) elements of G that have field f. If f has region type, like rep in our example,
then G*f is the union of the values of f.

Assertions are interpreted with respect to a single state, e.g., the semantics of the
primitive z.f = E that reads a field is defined: ¢ = z.f = E iff o(z) # null and
o(z.f) = o(E). The operator “old” used in specifications can be desugared using aux-
iliaries quantified over specifications (omitted from this version of the paper). We do not
use quantified variables of type rgn. Quantified variables of class type range over non-
null, currently allocated references: ¢ = (Vz: K | P) iff Extend(o,z,0) =*K P
for all o € o(alloc) such that Type(o,0) = K. In a richer language with subclassing,
this would be < K.

3.2 Effect Specifications and the Framing of Commands and Formulas

Let us augment the specifications in Fig.[[lwith the effect specifications in Fig.[6l Effects
are given by the grammar € ::=wrz | rdz |wr G*f | rd G*f | fr G. We omit tags wr and
rd in lists of effects of the same kind. In this paper, read effects are used for formulas and
write effects as frame conditions for commands and methods; commands are allowed to
read anything. Freshness effect fr G is used for commands; it says that the value of G in

Set() wr pool
add(i:int) wralloc, self.any, self.rep‘any
remove(i:int) wrself.any, self.repany

Fig. 6. Effect specifications for methods in Fig.[Tl For contains the specification has no effects.

10 D.A. Naumann and A. Banerjee

the final state contains only (but not necessarily all) references that were not allocated
in the initial state.

The effect specification for the constructor method, Set(), says variable pool may
be updated. For add, the effect wralloc means that new objects may be allocated. The
effect wrself.any says that any fields of self may be written. The effect wrself.rep“any
says that any field of any object in self.7ep may be written; in fact none are written in our
implementation, but this caters for other implementations. The effect wrself.rep®any is
state dependent, because rep is a mutable field.

In general, let G be a region expression and f be a field name. The effect wr G*f
refers to l-values: the locations of the f fields of objects in G —where G is interpreted
in the initial state. A location is merely a reference paired with a field name.

An effect of the form wr z.f abbreviates wr {z}‘f. In case z is null, this is well de-
fined and designates the empty set of locations. We also allow f to be a data group [26],
e.g., the built-in data group “any” that stands for all fields of an object.

We say effect list € allows transition from o to ¢, written ¢ ~ ¢’ = €, if and only
if 0’ succeedd] o and

(a) forevery y in Dom(I") u{alloc}, either 0(y) = o’(y) or wry isin €

(b) forevery o in o(alloc) and every f in Fields(Type(o, 0)), either o(o0.f) = 0'(0.f)
or there is G such that wr G*f is in € and o is in 0(G)

(c) foreach fr G in g, we have 6'(G) C o' (alloc) — o (alloc).

Formulas are framed by read effects. We aim to make explicit the footprint of I,
which will serve as a dynamic boundary expressing the state-dependent aspect of the
encapsulation that will allow I,.; to be hidden from clients. First we frame the object
invariant SetI(s), which will be used for “local reasoning” at the granularity of a
single instance of Set. We choose to frame it by

8o: rd s, s.(rep,lst), s.rep®(nat,val, own) (abbreviating s.rep, s.lst, etc.)

A read effect designates 1-values. Here, 8 allows to read variable s, fields rep and Ist
of the object currently referenced by s if any, and the fields nat, val, and own of any
objects in the current value of s.7ep.

We use a judgement for framing of formulas, e.g., true = d¢ frames Setl(s) says
that if two states agree on the locations designated by & then they agree on the value
of SetI(s). The judgement involves a formula, here true, because framing by state-
dependent effects may hold only under some conditions on that state. For example we
have s € pool I rd pool®(rep, Ist) frames s.lst € s.rep.

The semantics of judgement P |- § frames P’ is specified by the following: If ¢ = P
and Agree(o,0’,6) then 6 = P’ implies ¢’ = P’. Here Agree(o,0’,8) is defined to
mean: ¢’ succeeds o, o(z) = ¢'(z) for all rdz in 6, and o(o.f) = o’(0.f) for all
rd G*f in § and all 0 € 6(G) with f € Fields(o,0).

There are two ways to establish a framing judgement. One is to directly check the
semantics, which is straightforward but incomplete using an SMT prover, provided the

4 6/ succeeds o iff o(alloc) C ¢’ (alloc) and Type(o, o) = Type(o,c’) for all o € o(alloc).

5 The term “frame” traditionally refers to that which does not change, but frame conditions
specify what may change. To avoid confusion we refrain from using “frame” as a noun.

Dynamic Boundaries 11

heap model admits quantification over field names (to express agreement). The other
way is to use inference rules for the judgement [2]]. These include syntax-directed rules
together with first-order provability and subsumption. As an example, the rule for P I
n frames (Vz: K | z € G = P’) has antecedent of the form P Az € G I 1’ frames P’
and requires 1 to subsume the footprint of G. Our rules are proved to yield a stronger
property than the specification: o = P’ iff ¢’ = P/ when ¢ |= P and Agree(o,0’,1).
For I, we can use the specific judgements above to derive true = 0 s¢¢ frames Iseq,
where 8 5. is rd pool, pool®(rep, Ist), pool*rep®(nxzt,val, own). This is subsumed by

B.c:: rd pool, pool‘any, poolrep‘any

A frame rule. To verify the implementations in Fig.[[lwe would like to reason in terms
of a single instance of Set. Let B,qq be the body of method add. By ordinary means
we can verify that B4, satisfies the frame conditions wralloc,self.any and thus those
for add in Fig.l6l Moreover we can verify the following Hoare triple:

{Setl(self)} Boaa {Setl(self) A elements = old(elements)U{i}} (2)

From this local property we aim to derive that B, 44 preserves the global invariant Ig;. It
is for this reason that SetI(s) includes ownership conditions. These yield a confinement
property: Lie; = (Vs,t:Set € pool | s =tV s.rep# t.rep), because if n = null, and
n is in s.repNt.rep then n.own = s and n.own = t. Here # denotes disjointness of
sets; more precisely, G # G’ means GNG’ C {null}. Now I, is logically equivalent to
Setl (self) A lexcept, with d,, framing lexzcept, defined as

Texcept: null ¢ pool AVs € pool — {self} | Setl(s)
8.: rd self, pool, (pool — {self})*(rep, ist), (pool — {self})‘rep*(nat, val, own)

We aim to conjoin Iezcept to the pre and post conditions of (). To make this precise
we use an operator x, called the separator. If 6 is a set of read effects and € is a set
of write effects then 0 x € is a conjunction of disjointness formulas, describing states in
which writes allowed by € cannot affect the value of a formula with footprint §. The
formula & x € can be defined by induction on the syntax of effects [2]]. Its meaning is
specified by this property: If 6 ~ ¢’ =€ and 6 = 8 * € then Agree(o,0’,6).

It happens that 6, * (wrself.any,wralloc) is true. So, to complete the proof of
{Iset } Baaa{ elements = old(elements) U {i} A Iset } we can take @ to be lezcept and
8 to be §, in this rule which uses notations explained in Sect. 3.3

AF{P}C{P'}[e] PréframesQ P=08x*¢
FRAME
AF{PAQ} C{P'NQ}[e]

Similar reasoning verifies the implementation of remove. Note that its effects include
wrself.rep‘any. Moreover &, % wrself.rep‘any yields nontrivial disjointnesses:
self.rep # (pool — {self}) Aself.rep # (pool — {self})*rep. The first conjunct holds be-
cause elements of self.rep have type Node and those of pool — {self} have type Set
(details left to reader). The second conjunct is a consequence of the ownership con-
finement property mentioned earlier, which follows from I,.;. For verifying remove,
the precondition P in FRAME will be true A I;.; because true is the precondition of
remove in Fig.[Il

12 D.A. Naumann and A. Banerjee

(let m(z:T)be Bin C, 0, u)— {((C;end(m)), o, Extend(u, m, (Az: T.B))

u(m)=Az:T.B 7’ ¢ Dom(o) 1’ ¢ params(A) B'=BZ,
(m(2), o, u) — ((B';end(z)), Extend(c,2’,6(2)), u)

A contains {PYm(z: T){P'}[e]
o~0' =& Extend(o,z,0(2)) =P Extend(c’,z,0(2)) P’

(m(2), o, u) — (skip, o',)

A contains {Pym(z: T){P'}[e] Extend(o,z,0(z)) = P
(m(2), o, u) — (skip, o', 1) andalso (m(z), o, u) — fault

. . A . .
Fig. 7. The transition relation —. Here A is the same throughout and omitted.

3.3 Correctness Judgements and Program Semantics

A procedure context, A, is a comma-separated list of specifications, each of the form
{@Q}m(z: T){Q'}[g]. For the specification to be well formed in a variable context I', all
of @, Q’, € should be well formed in I", z : T. Moreover the frame condition € must not
contain wr z, so the use of z in @’ and € refers to its initial value. A correctness judge-
ment takes roughly the form A FI' { P} C { P'} [¢] and is well formed if A, P, P’ e
are well formed in I" and signatures(A) T C. In Sect. @] we partition A into mod-
ules (see Def. [I). A correctness judgement is intended to mean that from any initial
state that satisfies P, C does not fault (due to null dereference) and if it terminates
then the final state satisfies P’. Moreover, any transition from initial state to final is
allowed by €.

The hypothesis A is taken into account as well. One semantics would quantify over
all implementations of A. Instead, we use a mixed-step semantics in which a call m(z)
for m in A takes a single step to an arbitrary outcome allowed by the specification of
ml A configuration has the form (C, o, i) where C is a command, o is a state, and
the procedure environment L is a partial function from procedure names to parameter-
ized commands of the form (Az:T.C). By assuming that in a well formed program
no procedure names are shadowed, we can use this simple representation, together with
a special command end(m) to mark the end of the scope of a let-bound procedure m.
Renaming is used for a parameter or local variable x, together with end marker end ().

The transition relation 2 is defined in Fig.[Zl The procedures in A are to be distinct
from those in the procedure environment. A terminating computation ends in a config-
uration of the form (skip, o, i), or else “fault” which results from null dereference.
The cases omitted from Fig. [7] are quite standard. We note only that the semantics of
new K, which updates alloc, is parameterized on a function which, given a state, re-
turns a non-empty set of fresh references. Thus our results encompass deterministic
allocators as well as the maximally nondeterministic one on which some separation
logics rely.

6 Such semantics is popular in work on program refinement; see also O’Hearn et al [30].

Dynamic Boundaries 13

4 Dynamic Boundaries and Second Order Framing

Rule FRAME is useful for reasoning about a predicate that a command is explicitly
responsible for preserving, like Iezcept and Bgqq in Sect.[3.2] For the client (1), we want
I5e; to be preserved; semantically, the rationale amounts to framing, but rule FRAME is
not helpful because our goal is to hide Is.; from clients. A client command in a context
A is second order in that the behavior of the command is a function of the procedures
provided by A, as is evident in the transition semantics (Fig.[Z). Second order framing
is about a rely-guarantee relationship: the module relies on good behavior by the client,
such that the client unwittingly preserves the hidden invariant, and in return the module
guarantees the behavior specified in A.

Our rely condition is list of read effects, called the dynamic boundary, that must be
respected by the client in the sense that it does not write the locations designated by
those effects. A dynamic boundary & is associated with a list A of procedure specifi-
cations using notation A (§). The general form for correctness judgement would have a
sequence A;(81);...; A, (8,) of hypotheses, for n modules, n > 0. In an attempt to
improve readability, we will state the rules for the case of just two modules, typically
using name O for A,,. So a correctness judgement has the form

A(8);0(0)F {P} C {P'}[e] 3)

where 0 and 6 are lists of read effects that are well formed in I'. The order of modules
is significant: the implementation of ® may use procedures from A and is obliged to
respect dynamic boundary §. For a dynamic boundary to be useful it should frame the
invariant to be hidden, e.g., 0 ., frames I,.;. That proof obligation is on the module.

The following derived rule embodies Hoare’s mismatch in the case where module ©
is a single procedure specification { @} m(z: T){Q"}[n].

A(8):0(0)F {P} C{P'}[e] I 0frames]
A8); (OO)F{QAI}B{Q AT}[n] Init=1
MISMATCH
A(8) - {PAInit} let mbe Bin C {P'}[g]

The client C'is obliged to respect 0 (and also §) but does not see the hidden invariant.
The implementation B is verified under additional precondition / and has additional
obligation to reestablish I. (In the general case there is a list of bodies B;, each ver-
ified in the same context against the specification for m;.) The context A is another
module that may be used both by C' and by the implementation B of m. So B must
respect 0, but note that it is not required (or likely) to respect 6. The obligation on
B refers to context ©@ ® I, not O; this is only relevant if B recursively invokes m
(or, in general, other methods of the same module). The operation ®I conjoins a for-
mula [to pre- and post-conditions of specifications: ({Q}m(z:T){Q'}[n]) I =
{@A1ym(z:T){Q A1}n].

Typical formalizations of data abstraction include a command for initialization, so a
closed client program takes the form let m be B in (init; C'). With dynamic allocation,
it is constructors that do much of the work to establish invariants. In order to avoid the
need to formalize constructors, we use an initial condition. For the Set example, take

14 D.A. Naumann and A. Banerjee

Initse; to be the condition pool = @ which is suitable to be declared in the module
interface. Note that Inits.; = L0 18 valid.

Remarkably, there is a simple interpretation of judgement (3) that captures the idea
that C' respects the boundaries 6 and 0: No step of C’s execution may write locations
designated by 6 —interpreted in the pre-state of that step— unless it is a step of a
procedure of A; mutatis mutandis for 6 and ©. Before turning to the formal details, we
discuss this proof obligation.

Verifying a client of SE'T. Using the public specifications of the four methods of Set,
it is straightforward to prove that the client (I)) establishes b = false. But there is an
additional obligation, that every step respects the dynamic boundary 6 .;. Consider the
assignment n.val:= 1 in (), which is critical because I,.; depends on field val. The
effect of n.val:=1is wrn.val and it must be shown to be outside the boundary 0 ;.
By definition of %, we have that 6., * wrn.val is {n}#pool A {n}# pool*rep, which
simplifies to n & pool A n & pool®rep. We have n ¢ pool because n is fresh and variable
pool is not updated by the client. The condition n ¢ pool‘rep is more interesting. Note
that /., implies

R: pool‘rep*own C pool Anull & pool

Unlike I, this is suitable to appear in the module interface, as a public invariant [23]] or
explicitly conjoined to the procedure specifications of SET'. The client does not update
the default value, null, of n.own. Together, R and n.own = null imply n ¢ pool “rep.

One point of this example is that “package confinement” [14]] applies here: references
to the instances of Node used by the Set implementation are never made available to
client code. Thus a lightweight, type-based confinement analysis of the module could
be used together with simple syntactic checks on the client to verify that the boundary
is respected. The results of an analysis could be expressed in first order assertions like
R and thus be checked rather than trusted by a verifier.

As in rule FRAME, the separator can be used to express that a primitive command
respects a dynamic boundary, allowing precise reasoning in cases like module MM
(Sect. [3)) that are not amenable to general purpose static analyses. A dynamic bound-
ary is expressed in terms of state potentially mutated by the module implementation,
e.g., the effect of add in Fig.[Il allows writing state on which 0 .; depends So inter-
face specifications need to provide clients with sufficient information to reason about
the boundary. For MM, it is not an invariant like R but rather the individual method
specifications that facilitate such reasoning (see Sect.).

Formalization. The beauty of the second order frame rule, the form of which is due to
O’Hearn et al [29]], is that it distills the essence of Hoare’s mismatch. Rule MISMATCH
is derived in Fig[8 from our rule SOF together with two unsurprising rules which are
among those given in Fig.[9l Before turning to the rules we define the semantics.

The current command in a configuration can always be written as a sequence of one
or more commands that are not themselves sequences; the first is the active command,
the one that is rewritten in the next step. We define Active(C; C2) = Active(C) and
Active(C) = C if there are no Cy, G5 such that C'is Cy; C5.

7 State-dependent effects may interfere, which is handled by the sequence rule [2].

Dynamic Boundaries 15

A(8):0(0) F {P} C {P'}[e] o
A ©01)()F{Q-1} B{Q"-I}[n] A(S); (@ I)(0)F{P-1} C{P-1}¢]
A(8)F{P-T}let mbe Bin C {P'-I}[e]
A(8)F {P-Init} let m be Bin C {P'}[¢]

Fig. 8. Derivation of rule MISMATCH, where © is a single specification {Q}m(z: T){Q’}[n]
and we write - for A to save space. The side condition for SOF is I I (0, rdalloc) frames I. The
next step is by rule LINK, followed by CONSEQ with side condition Init = I.

SOF A(8);0(0){P} C{P'}[e] I+ (0,rdalloc) frames I Admiss(7,0)
A(8); (OO F{PAT} C{P NI}[e]
CTXINTRO ABYF{PYC{P }[e] C is primitive =~ P = 0*¢
A(8);0(0) - {P} C{P'}[e]
CALL {P}ym(z: T){P'}[e] isin O P{ = Sl
A(8):0(0) F{P7} m(z) { P'7}[eZ]
@ is {Q}m(z: T){Q"}n]
L A OO) T (PY O Pl AB):00F T (Q) B Q' In)
AS)FT {P}let m(z:T)be Bin C {P'}[e]

Fig. 9. Selected proof rules

Definition 1. A correctness judgement A(§);©(0) ' {P} C {P'}[e] is valid iff
the following holds. Let A’ be the catenated list (A,0), let Cy be C, and let Ly be
an arbitrary procedure environment disjoint from the procedures bound within C' or
present in A,0. Then for all T -states oy such that oy |= P

(i) It is not the case that {Cpy, 0o, Uo) A fault.

(ii) Every terminating computation { Cy, 0o, o) Aﬁ(skip7 O, Un) satisfies 6, = P’
and oy ~ O, E €.

/!

/
(iii) For any reachable computation step, i.e. {Cy, 0, o) bA—>*<C,»_1, Ci1, li—1) A
(Cy, 04y W), either Active(C;_1) is a call to some m in A (respectively, in ©) or
else Agree(o;_1,0;,0) (respectively, Agree(o;—_1,0;,0)).

Let us paraphrase (iii) in a way that makes clear the generalization to contexts with
more modules: Every dynamic encapsulation bound must be respected by every step of
computation (terminating or not), with the exception that a call of a context procedure
is exempt from the bound of its module.

Selected proof rules are given in Fig.[9l An implicit side condition on all proof rules
is that both the consequent and the antecedents are well formed. We omit standard
rules for control structures, and structural rules like consequence, which do not manip-
ulate the procedure context. Rule FRAME also leaves its context unchanged. For the

16 D.A. Naumann and A. Banerjee

assignment commands we can use “small axioms” inspired by [29]]. The axioms have
empty context; rule CTXINTRO is used to add hypotheses.

Rule CTXINTRO is restricted to primitive commands (Fig.[3), because the side con-
dition P = 0 x & only enforces the dynamic encapsulation boundary 6 for the initial
and final states —there are no intermediate steps in the semantics of these commands.
Note that CTXINTRO introduces a dynamic boundary 6 that will not be imposed on the
implementations of the procedures of the outer module A. This works because, due to
nesting, those implementations cannot invoke procedures of © at all. The implemen-
tation of a procedure m in ©@ may invoke a procedure p of enclosing module A. The
effect of that invocation might even violate the dynamic boundary 6, but there is no
harm —indeed, the implementation of m is likely to temporarily falsify the invariant
for O but is explicitly obliged to restore it.

The implementation of an inner module is required (by rule LINK) to respect the en-
capsulation boundaries of enclosing modules. That is why it is sound for procedure m
in rule CALL to be in the scope of the dynamic effect bound § with only the obligation
that the end-to-end effect €7 is separate from 0. The general form of CALL has n con-
texts and the called procedure is in the innermost. Additional context can subsequently
be introduced on the inside, e.g., CALL can be used for a procedure of © and then the
context extended to A{8); ©(6); Y'(v) using rule CTXINTRO. In case there is only a
single module, rule CALL can be used with A and 6 empty.

Rule SOF imposes an admissibility condition on I. In this paper, Admiss is defined
to say I must not be falsifiable by allocation (i.e. ¢ |= I implies ¢’ |= I, if ¢’ is just
o extended with a new object). The issue is that some useful invariants include alloc
in their footprint, especially if the footprint is derived using our rules for framing ﬁ
Typical clients do allocation, and thus write alloc, which would conflict with a dynamic
boundary containing rd alloc (cf. [33]]). The rule explicitly allows this conflict: by con-
dition P F (0,rdalloc) frames @, it appears that () depends on alloc, but by condition
Admiss(@, 0) it does not. We include © in the notation, even though it is not used in
the definition, because in a richer language with constructor methods there is a more
practical definition of Admiss that allows the conflict. We can allow a module invariant
I to have subformulas Vz : K € alloc | P(z) that do depend on alloc, and yet not include
alloc in the dynamic bound, because the constructor will be obliged to maintain /.

Theorem 1. Each of the rules is sound. Hence any derivable correctness judgement is
valid.

5 Specification and Verification of the Examples

For the toy memory manager of Sect. we specify the effects for procedure alloc
to be wrresult, freed, flist, count, alloc, freed*nat. For free(n: Node) the effects are
wr freed, flist, count, freed*nxt. Ordinary scoping could be used to hide effects on the
module variables flist and count, and the ghost freed could be “spec-public”, i.e.

8 An example such I is Vz: K € alloc | z.init = P(z) with init a boolean field, initially false.
Such a formula would be suitable as an invariant in a program where x.in:t only gets truthified
by procedures that also establish P(x).

Dynamic Boundaries 17

not writeable outside module MM . To frame [,,,, we choose as dynamic boundary
rd freed, flist, count, freed*nzt. The interesting part is freed*nzt, as flist and count
should be scoped within the module and freed should be spec-public. Using the spec-
ifications in Sect. together with these effect specifications, it is straightforward to
verify the client given there. The client writes freedval but it does not write freed ‘ nat,
nor variable freed itself, and thus it respects the dynamic boundary. So it can be linked
with alloc and free using rule MISMATCH. By contrast with the use of an invariant, R,
to verify that client (I respects the dynamic boundary 6., here it is the procedure
specifications themselves that support reasoning about the dynamic boundary. Suppose
we add the assignment y.nzt : = null just after y: = alloc(); although this writes a nat
field, the object is outside freed according to the specification of alloc.

Recall the example of Sect. For method wupdate we choose -effects
wrself.val,self.O¢cache. The effects for Observer(u) are wru.O*nato,u.(0,dg).
Here dg is a data group that abstracts the private field obs. These suffice to ver-
ify the client in Sect. which relies on separation between subjects. The dynamic
boundary, 8,5, is rd alloc(O, dg), alloc® O*nato. Region alloc is very coarse, but fields
0, dg, nato could be protected from clients by scoping; indeed, we might simply use
alloc*nzto[d Verification of the implementations uses rule FRAME to exploit per-subject
separation, similar to the Set example in Sect.[dl Then rule MISMATCH links the client.

Finally, recall the example of nested modules and overlapping data structures in
Sect. 24l Let the dynamic boundary be rdalloc, alloc®(next, prev), which frames I,s.
Consider a client that constructs a new ObsSet. The implementation of the ObsSet
constructor can be verified, assuming and maintaining /,, including the obligation to
respect the dynamic boundary &, of module OB. The client can be linked to OS using
rule MISMATCH and then that rule is used again to link with module OB.

6 Related Work

It is notoriously difficult to achieve encapsulation in the presence of shared, dynamically
allocated mutable objects [22I30]]. Current tools for automated software verification
either do not support hiding of invariants (e.g., Jahob [39], jStar [10], Krakatoa [12]),
do not treat object invariants soundly (e.g., ESC/Java [13]) or at best offer soundness
for restricted situations where a hierarchical structure can be imposed on the heap (e.g.
Spec# [3]). Some of these tools do achieve significant automation, especially by using
SMT solvers [21]].

The use of ghost state to encode inductive properties without induction has been
fruitful in verifications using SMT solvers (e.g., [8I16/39]). Our use of ghost state for
frame conditions and separation reasoning was directly inspired by the state-dependent
effects of Kassios (who calls them dynamic frames, whence our term “dynamic
boundary”). Variations on state-dependent effects have been explored in SMT-based
verifiers, e.g., Smans et al implemented a verifier that abstracts footprints using location
sets and pure method calls in assertions and in frame conditions [37]. Another verifier
uses novel assertions for an implicit encoding (inspired by separation logic) of frame

9 In fact nato should be abstracted by a data group, but we report here on the version for which
we did a detailed proof.

18 D.A. Naumann and A. Banerjee

conditions by preconditions [36]. Leino’s Dafny tool [24] features effects in the form
we write as G ‘any. The Boogie tool [3]] has been used for experiments with region logic
specifications of the Observer [[1] and Composite patterns.

Hiding is easy to encode in an axiomatic semantics —it is just Hoare’s mismatch,
phrased in terms of assert and assume statements. The verifiers above which provide
hiding enforce specific encapsulation disciplines through some combination of type
checking and extra verification conditions. For example, the Boogie methodology [23]
used by Spec# stipulates intermediate assertions (in all code) that guarantees an all-
states ownership invariant. Another version of Spec# generates verification con-
ditions at intermediate steps to approximate read footprints, in addition to the usual
end-to-end check for modifies specifications of methed bodies. One way to enforce our
requirement for respecting dynamic boundaries would be to generate verification con-
ditions for writes at intermediate steps, which could be optimized away in cases where
their validity is ensured by a static analysis.

A number of methodologies have been proposed for ownership-based hiding of in-
variants (e.g., [28]]). Drossopoulou et al. [11] introduce a general framework to describe
verification techniques for invariants. A number of ownership disciplines from the liter-
ature are studied as instances of the framework. The framework encompasses variations
on the idea that invariants hold exactly when control crosses module boundaries, e.g.,
visible state semantics requires all invariants to hold on all public method call/return
boundaries; other proposals require invariants to hold more often or less [38]]. The
difficulty of generalizing ownership to fit important design patterns led Parkinson and
Bierman [3I31] to pursue abstraction instead of hiding, via second order assertions in
separation logic; this has been implemented [[10].

Separation logic (SL) is a major influence on our work. Our SOF rule is adapted
from [30], as is the example in Sect. The SOF rule of SL relies on two critical
features: the separating conjunction and the tight interpretation of a correctness judge-
ment {P}C{Q} which requires that C' neither reads nor writes outside the footprint
of P. These features yield great economy of expression, but conflating read and write
has consequences. To get shared reads, the semantics of separating conjunction can
embody some notion of permissions [[7]] which adds complication but is useful for con-
current programs (and to our knowledge has not been combined with SOF). The SOF
rule of SL also hides effects on encapsulated state whereas our SOF rule hides only
the invariant. By disentangling the footprint from the state condition we enable shared
reads (retaining a simple semantics), but that means we cannot hide effects within the
dynamic encapsulation boundary —the effects can be visible to clients.

Both our FRAME rule and our SOF rule use ordinary conjunction to introduce an
invariant, together with side conditions that designate a footprint of the invariant which
is separated from the write effect of a command. In SL these rules use the separating
conjunction which expresses the existence of such footprints for the command’s precon-
dition and for the invariant. Reynolds gave a derivation using the rule of conjunctio@
that shows the SOF rule of SL is not sound without restriction to predicates that are

10 From {P}C{P'} and {Q}C{Q'} infer {P A Q}C{P'AQ'}.

Dynamic Boundaries 19

“precise” in the sense of determining a unique footprint [IEX]El The semantic analy-
sis in [30] shows that the need for a unique footprint applies to region logic as well.
However, region logic separates the footprint from the formula, allowing the invariant
formula to denote an imprecise predicate while framing the formula by effects that in a
given state determines a unique set of locations.

The restriction to precise predicates for SOF in SL can be dropped using a semantics
that does not validate the rule of conjunction [6]]. This was eschewed by the authors
of [30] because the rule is patently sound in ordinary readings of Hoare triples. Drop-
ping the rule facilitates the modeling of higher order framing rules that capture visible
state semantics for invariants even in programs using code pointers (e.g., [33]). The
metatheory underlying the Ynot tool for interactive verification uses a model that
does not validate the conjunction rule [32]]. Higher order separation logics offer elegant
means to achieve data abstraction and strong functional specifications of interesting de-
sign patterns [20/19127]). The ability to explicitly quantify over invariants would seem to
lessen the importance of hiding, but it requires considerable sophistication on the part
of the user and their reasoning tools.

7 Conclusion

In this paper we explore a novel interface specification feature: the dynamic boundary
which must be respected by clients. The dynamic boundary is designated by read ef-
fects that approximate, in a way suitable to appear in the interface, the footprint of an
invariant which is hidden, i.e. does not appear in the interface specifications. Explicit de-
scription of footprints is complementary to syntactic mechanisms that encapsulate state
named by identifiers. The expressions whose 1-values constitute the dynamic boundary
are state-dependent and thus denote different sets of locations over time.

Hiding is formalized in a second order frame rule that is proved sound for a sim-
ple operational semantics of sequential programs. We show by examples that our SOF
handles not only invariants that pertain to several objects with a single owner but also
design patterns in which several client-reachable peers cooperate and in which data
structures may be overlapping or irregular. These are incompatible with ownership and
remain as challenge problems in the current literature [4122I27]. A program may link
together multiple modules, each with its own hidden invariant and dynamic bound-
ary. Our approach encompasses alias confinement disciplines that are enforceable by
static analysis [9] as well as less restrictive disciplines that impose proof obligations on
clients, e.g., ownership transfers that are “in the eye of the asserter” [30].

One of our aims is to provide a logical foundation that can justify the axiomatic se-
mantics used in automated verifiers. Even more, we want a framework in which encap-
sulation disciplines, both specialized and general-purpose, can be specified in program
annotations and perhaps “specification schemas” or aspects —so that soundness for hid-
ing becomes a verification condition rather than a meta-theorem. This could improve
usability and applicability of verifiers, e.g., by deploying disciplines on a per-module

1A predicate I is precise iff (I) distributes over A. In this paper our invariants are all precise,
but not all useful ones are, e.g., “there exists a non-full queue”.

20 D.A. Naumann and A. Banerjee

basis. It could also facilitate foundational program proofs, by factoring methodolog-
ical considerations apart from the underlying program model embodied in axiomatic
semantics. Our approach does not rely on inductive predicates, much less higher order
ones, but on the other hand it does not preclude the use of more expressive assertions
(such as the inductive F'C in the example in Sect.[2.2)).

It remains to be seen how the approach explored here extends to more advanced
programming features such as code pointers and concurrency. There are a number of
more immediate issues such as integration with a proper module system, inference of
ghost annotations based on static analysis, and full encapsulation for representation
independence and for hiding of effects.

Acknowledgements. Many people helped with advice and encouragement, including
Lennart Beringer, Lars Birkedal, Sophia Drossopoulou, Bart Jacobs, Gary Leavens,
Peter Miiller, Peter O’Hearn, Matthew Parkinson, Jan Smans, Stan Rosenberg, Jacob
Thamsborg, Hongseok Yang, organizers and participants of Dagstuhl seminars 08061
and 09301.

References

1. Banerjee, A., Barnett, M., Naumann, D.A.: Boogie meets regions: A verification experience
report. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 177-191.
Springer, Heidelberg (2008)

2. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning about global
invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 387—411. Springer, Heidel-
berg (2008); Draft journal version available at authors’ web sites

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49-69. Springer, Heidelberg (2005)

4. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178-192. Springer, Heidelberg (2007)

5. Bierman, G., Parkinson, M.: Separation logic and abstraction. In: POPL, pp. 247-258 (2005)

6. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and higher-
order frame rules for Algol-like languages. Logical Methods in Computer Science 2(5)
(2006)

7. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation
logic. In: POPL, pp. 259-270 (2005)

8. Cohen, E., Dahlweid, M., Hillebrand, M. A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: TPHOLS, pp. 23-42
(2009)

9. Dietl, W, Miiller, P.: Universes: Lightweight ownership for JML. Journal of Object Technol-
ogy 4, 5-32 (2005)

10. Distefano, D., Parkinson, M.J.: jStar: Towards practical verification for Java. In: OOPSLA,
pp- 213-226 (2008)

11. Drossopoulou, S., Francalanza, A., Miiller, P., Summers, A.J.: A unified framework for ver-
ification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 412-437. Springer, Heidelberg (2008)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Dynamic Boundaries 21

Filliatre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program
verification (tool paper). In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp- 173-177. Springer, Heidelberg (2007)

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI, pp. 234-245 (2002)

Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types. ACM
TOPLAS 29(6) (2007)

Harel, D., Pnueli, A., Stavi, J.: A complete axiomatic system for proving deductions about
recursive programs. In: STOC, pp. 249-260 (1977)

Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors. In: POPL,
pp. 441-453 (2009)

Hoare, C.A.R.: Proofs of correctness of data representations. Acta Inf. 1, 271-281 (1972)
Kassios, L.T.: Dynamic framing: Support for framing, dependencies and sharing without re-
striction. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
268-283. Springer, Heidelberg (2006)

Krishnaswami, N.R., Aldrich, J., Birkedal, L.: Verifying event-driven programs using rami-
fied frame properties. In: TLDI (2010)

Krishnaswami, N.R., Aldrich, J., Birkedal, L., Svendsen, K., Buisse, A.: Design patterns in
separation logic. In: TLDI (2009)

Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer,
Heidelberg (2008)

Leavens, G.T., Leino, K.R.M., Miiller, P.: Specification and verification challenges for se-
quential object-oriented programs. Formal Aspects of Computing 19(2), 159-189 (2007)
Leavens, G.T., Miiller, P.: Information hiding and visibility in interface specifications. In:
ICSE, pp. 385-395 (2007)

Leino, K.R.M.: Specification and verification in object-oriented software. Marktoberdorf lec-
ture notes (2008)

Rustan, K., Leino, M., Miiller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491-515. Springer, Heidelberg (2004)

Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and check side
effects. In: PLDI, pp. 246-257 (2002)

Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: POPL (2010)

Miiller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-
tures. Sci. Comput. Programming 62(3), 253-286 (2006)

O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 1-19.
Springer, Heidelberg (2001)

O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. ACM
TOPLAS 31(3), 1-50 (2009); Extended version of POPL 2004

Parkinson, M.: Class invariants: The end of the road. In: IWACO (2007)

Petersen, R.L., Birkedal, L., Nanevski, A., Morrisett, G.: A realizability model for impred-
icative Hoare type theory. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
337-352. Springer, Heidelberg (2008)

Pierik, C., Clarke, D., de Boer, E.S.: Controlling object allocation using creation guards.
In: Fitzgerald, J.S., Hayes, L.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 59-74.
Springer, Heidelberg (2005)

Rosenberg, S., Banerjee, A., Naumann, D.A.: Local reasoning and dynamic framing for the
composite pattern and its clients (submitted, 2009)

22

35.

36.

37.

38.

39.

D.A. Naumann and A. Banerjee

Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foundation
for hidden state. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 2-17. Springer,
Heidelberg (2010)

Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic frames and
separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 148-172.
Springer, Heidelberg (2009)

Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for Java-like programs
based on dynamic frames. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 261-275. Springer, Heidelberg (2008)

Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design pattern.
In: Barthe, G., Hermenegildo (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 328-344. Springer,
Heidelberg (2010)

Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
PLDI, pp. 349-361 (2008)

	Dynamic Boundaries: Information Hiding by Second Order Framing with First Order Assertions
	Introduction
	The Challenge of Hiding Invariants on Shared Mutable Objects
	A Collection Implemented by a List
	A Toy Memory Manager
	Observer Pattern: Cluster Invariants
	Overlapping Data Structures and Nested Modules

	Region Logic Background: Effects and First Order Framing
	Preliminaries: Programming Language, States, Assertions
	Effect Specifications and the Framing of Commands and Formulas
	Correctness Judgements and Program Semantics

	Dynamic Boundaries and Second Order Framing
	Specification and Verification of the Examples
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

