Fluid Updates: Beyond Strong vs. Weak Updates*

Isil Dillig**, Thomas Dillig* * *, and Alex Aiken

Department of Computer Science, Stanford University
{isil,tdillig,aiken}@cs.stanford.edu

Abstract. We describe a symbolic heap abstraction that unifies reason-
ing about arrays, pointers, and scalars, and we define a fluid update
operation on this symbolic heap that relaxes the dichotomy between
strong and weak updates. Our technique is fully automatic, does not
suffer from the kind of state-space explosion problem partition-based
approaches are prone to, and can naturally express properties that hold
for non-contiguous array elements. We demonstrate the effectiveness of
this technique by evaluating it on challenging array benchmarks and
by automatically verifying buffer accesses and dereferences in five Unix
Coreutils applications with no annotations or false alarms.

1 Introduction

In existing work on pointer and shape analysis, there is a fundamental distinction
between two kinds of updates to memory locations: weak updates and strong
updates ﬂ@] A strong update overwrites the old content of an abstract memory
location [with a new value, whereas a weak update adds new values to the
existing set of values associated with [. Whenever safe, it is preferable to apply
strong updates to achieve better precision.

Applying strong updates to abstract location [requires that [correspond to ex-
actly one concrete location. This requirement poses a difficulty for applying strong
updates to (potentially) unbounded data structures, such as arrays and lists, since
the number of elements may be unknown at analysis time. Many techniques com-
bine all elements of an unbounded data structure into a single summary location
and only allow weak updates 7@] More sophisticated techniques, such as anal-
yses based on 3-valued logic 3], first isolate individual elements of an unbounded
data structure via a focus operation to apply a strong update, and the isolated el-
ement is folded back into the summary location via a dual blur operation to avoid
creating an unbounded number of locations. While such an approach allows pre-
cise reasoning about unbounded data structures, finding the right focus and blur
strategies can be challenging and hard to automate B]

* This work was supported by grants from NSF (CNS-050955 and CCF-0430378)
with additional support from DARPA.
** Supported by a Stanford Graduate Fellowship.
*** Supported by a Siebel Fellowship.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 246 2010.
© Springer-Verlag Berlin Heidelberg 2010

Fluid Updates: Beyond Strong vs. Weak Updates 247

In this paper, we propose a way of relaxing the dichotomy between applying
weak vs. strong updates to a particular kind of unbounded data structure, arrays,
by introducing fluid updates. Fluid updates can always be safely applied regard-
less of whether a given abstract memory location represents a single concrete
location or an array. Three key ideas underpin fluid updates:

1. Arrays are modeled as abstract locations qualified by index variables; con-
straints on index variables specify which concrete elements are referred to
by a points-to edge.

2. In general, we may not know the exact subset of concrete elements updated
by a statement. To deal with this uncertainty, each points-to edge is qualified
by a pair of constraints (¢ ¢, dsc), called bracketing constraints, over- and
underapproximating the subset of concrete elements selected by this edge.

3. To apply a fluid update, we compute a bracketing constraint (¢ ¢, psc) repre-
senting over- and underapproximations for the set of concrete elements
updated by a statement. A fluid update preserves all existing points-to edges
under the negation of the update condition, i.e., = (¢ nc, dsc) = (—Psc, "PNC),
while applying the update under (¢ ¢, dsc)-

An important property of bracketing constraints is that the intersection of a
bracketing constraint B and its negation =B is not necessarily empty (see Section
21)). For array elements in the intersection, both the new value is added and the
old values are retained—i.e., a weak update is performed. Because fluid updates
rely on negation, having both over- and underapproximations (or equivalently,
necessary and sufficient conditions) is crucial for the correctness of our approach.

If the concrete elements updated by a statement s are known exactly, i.e.,
¢nc and ¢go are the same, the fluid update represents a strong update to some
set of elements in the array. On the other hand, if nothing is known about the
update condition, i.e., (¢ nc, dsc) = (true, false), the fluid update is equivalent to
a weak update to all elements in the array. Otherwise, if only partial information
is available about the concrete elements modified by s, the fluid update encodes
this partial information soundly and precisely. Consider the following example:

void send_packets(struct packet** buf, int c, int size) {
assert(2*xc <= size);
for(int j=0; j< 2%c; j+=2)
if (transmit_packet (buf [j]) == SUCCESS) {free(buf[jl); bufl[j]l = NULL;}
}

The function send packets takes an array buf of packets’s, an integer c rep-
resenting the number of high-priority packets to be sent, and an integer size,
denoting the number of elements in buf. All even indices in buf correspond to
high-priority packets whereas all odd indices are low—priorityﬁl This function sub-
mits one high-priority packet at a time; if the transfer is successful (which may

! The distinction between even and odd-numbered elements in a network buffer arises
in many real network applications, for example in packet scheduling ﬂ] and p2p
video streaming [g] .

248 I. Dillig, T. Dillig, and A. Aiken

depend on network traffic), it sets the corresponding element in buf to NULL to
indicate the packet has been processed.

buf A (*buf)jll =i * (xbuf);

The figure above shows the symbolic heap abstraction at the entry of send packets.
Here, nodes represent abstract locations named by access paths NQ], and edges de-
note points-to relations. Because either the source or target of an edge may be a
set, we write constraints on edges to indicate which elements of the source point
to which elements of the target. In the figure, the dereference of buf is an array,
hence, it is qualified by an index variable i; the location named (xbuf); represents
all elements of array *buf. By convention, primed index variables on an edge qual-
ify the edge’s target, and unprimed index variables qualify the source. If the over-
and underapproximations on an edge are the same, we write a single constraint
instead of a pair. In this graph, the edge from buf to (xbuf); is qualified by i =0
because buf points to the first element of array (xbuf);. The constraint i =4’ on
the edge from (xbuf); to *(xbuf); indicates that the i’th element of array xbuf
points to some corresponding target called x(xbuf);.

The concrete elements modified by the statement buf[j] = NULL cannot be
specified exactly at analysis time since the success of transmit packet depends
on an environment choice (i.e., network state). The loop may, but does not
have to, set all even elements between 0 and 2c¢ to NULL. Hence, the best over-
approximation of the indices of xbuf modified by this statement is 0 < i <
2¢ A i%2 = 0. On the other hand, the best underapproximation of the set of
indices updated in the loop is the empty set (indicated by the constraint false)
since no element is guaranteed to be updated by the statement buf[j] = NULL.

Figureshows the symbolic heap abstraction at the end of send packets. Since
the set of concrete elements that may be updated by buf[j] = NULL is given by
(0 <i<2cNi%2 =0, false), the fluid update adds an edge from (xbuf); to *NULL
under this bracketing constraint. The existing edge from (xbuf); to *(xbuf); is
preserved under —(0 < i < 2¢ Ai%2 = 0, false). Now, the complement (negation)
of an overapproximation is an underapproximation of the complement; similarly
the complement of an underapproximation is an overapproximation of the com-
plement. Thus, assuming i > 0, this is equivalent to (true, i > 2¢Vi%2 # 0). Since
the initial constraint on the edge stipulates i = i’, the edge constraint after the
fluid update becomes (i = 7', (i > 2¢V i%2 # 0) A = i'). The new edge condi-
tion correctly and precisely states that any element of *buf may still point to
its original target when the function exits, but only those elements whose index
satisfies the constraint i > 2¢ or i%2 # 0 must point to their original target. As
this example illustrates, fluid updates have the following characteristics:

— Fluid updates do not require concretizing individual elements of an array to
perform updates, making operations such as focus and blur unnecessary.

— Fluid updates never construct explicit partitions of an array, making this
approach less vulnerable to the kind of state space explosion problem that
partition-based approaches, such as E], are prone to.

Fluid Updates: Beyond Strong vs. Weak Updates 249

Fig. 1. The points-to graph at the end of function send packets

— Fluid updates preserve partial information despite imprecision and uncer-
tainty. In the above example, although the result of transmit packet is un-
known, the analysis can still determine that no odd packet is set to NULL.

— Fluid updates separate the problem of determining which concrete elements
are updated from how the update is performed. Fluid updates are oblivious
to the precision of the over- and underapproximations, and retain the best
possible information with respect to these approximations. In the above ex-
ample, a less precise overapproximation, such as 0 < i < 2¢, would not affect
the way updates are performed.

This paper is organized as follows: Section 2] defines a simple language and in-
troduces basic concepts. Section [formalizes the symbolic heap abstraction,
Section Ml presents the basic pointer and value analysis based on fluid updates,
and Section [l discusses treatment of loops. Section [(] discusses a prototype im-
plementation, Section [presents our experimental results, and Section [§ surveys
related work. To summarize, this paper makes the following key contributions:

— We introduce fluid updates as a viable alternative to the dichotomy be-
tween weak vs. strong updates, and we describe an expressive memory anal-
ysis based on symbolic heap abstraction that unifies reasoning about arrays,
pointers, and scalars. (We do not, however, address recursive pointer-based
data structures in this paper.)

— We propose bracketing constraints to allow a sound negation operation when
performing updates in the presence of imprecision and uncertainty.

— We demonstrate our technique is precise and efficient for reasoning about
values and points-to targets of array elements. Furthermore, our technique
is fully automatic, requiring no annotations or user-provided predicates.

— We show the effectiveness of our approach by verifying the safety of buffer
accesses and dereferences fully automatically in five Unix Coreutils applica-
tions that manipulate arrays and pointers in intricate ways.

2 Language and Preliminaries

We first define a small imperative language in which we formalize our technique:

Program P := F*

Function F = define f(vi,...,vn) =S

Statement S := S1;S2 | vi = v2 |v1 = ¢ | v1 = alloc(vz) |v1 = va[vs] | v2[vs] = vy
| V1 = V2 (&) U3 |’Ul = V2 intop U3 | V1 = V2 predop VU3 |
if v# 0 then S1 else So | whilev # 0 do S end

250 I. Dillig, T. Dillig, and A. Aiken

In this grammar, v is a variable, and ¢ is an integer constant. Types are defined by
the grammar 7 := int | pointer(array(7)). Load (vi = vs[vs]) and store (va[vs] = v1)
statements are defined on pointers vo and integers vs, and we assume programs
are well-typed. v[i] first dereferences v and then selects the i’th element of the
array pointed to by v. Pointer arithmetic v1 = ve ® vs makes v; point to offset
v3 in the array pointed to by vs. Integer operations (intop) include +, —, and
x. Predicate operators (predop) are =,# and <, and predicates evaluate to 0
(false) or 1 (true). The alloc(vz) statement allocates an array with vy elements.

An operational semantics for this language is given in the extended version
of this paper @] In the concrete semantics, a concrete location [. is a pair
(s,i) where s is a start address for a block of memory and ¢ is an offset from s.
An environment F maps program variables to concrete locations, and a store S
maps locations to other locations or integer values. Due to space limitations, we
omit function calls from our formal discussion; Section [discusses how we treat
function calls in the implementation.

2.1 Constraint Language

The constraints used in the analysis are defined by:

Term T :=c | v | T intop Tb |select(Ty,Ts) | deref(T)
Literal L := true | false |T1 predop T | T%c =0
Atom A ::L|—\A|A1/\A2|A1\/Az

Constraint C:= (Anc, Asc)

Terms are constants, variables, arithmetic terms, and the uninterpreted function
terms select(Ty,Ts), and deref(T'). Terms are used to represent scalars, pointers,
and arrays; the uninterpreted function term select(Th,Ts) represents the result
of selecting element at index Th of array Tp, and the term deref(T) represents
the result of dereferencing 7T'.

Literals are true, false, comparisons (=, #, <) between two terms, and divisi-
bility checks on terms. Atomic constraints A are arbitrary boolean combinations
of literals. Satisfiability and validity of atomic constraints are decided over the
combined theory of uninterpreted functions and linear integer arithmetic ex-
tended with divisibility (mod) predicates. Bracketing constraints C' are pairs of
atomic constraints of the form (Aync, Agc) representing necessary and sufficient
conditions for some fact. A bracketing constraint is well-formed if and only if
Asc = Anc. We write [¢] to denote the necessary condition of a bracketing
constraint ¢ and |¢] to denote the sufficient condition of ¢.

Ezample 1. Consider an edge from location (xa); to +NULL qualified by (0 < i <
size,0 < i < size).This constraint expresses that all elements of the array with
indices between 0 and size are NULL. Since it is sufficient that ¢ is between 0 and
size for (xa); to point to *NULL, it follows that all elements in this range are NULL.
On the other hand, if the constraint on the edge is (0 < @ < size, false), any
element in the array may be NULL, but no element must be NULL.

Fluid Updates: Beyond Strong vs. Weak Updates 251

Boolean operators —, A, and V on bracketing constraints are defined as:

—(Anc, Asc) = (mAsc, ~Anc)
(Anci, Asci) * (Ance, Asce) = (Anci x Ance, Ascr * Ascz) (x € {\,V})

Since the negation of the overapproximation for some set S is an underapproxi-
mation for the complement of S, necessary and sufficient conditions are swapped
under negation. The following lemma is easy to show:

Lemma 1. Bracketing constraints preserve the well-formedness property Asc =
Anc under boolean operations.

Satisfiability and validity are defined in the following natural way:

SAT((ANC, Asc>) = SAT(ANc) VAL[D((ANC', Asc>) = VAL]D(Asc)

Lemma 2. Bracketing constraints do not obey the law of the excluded middle
and non-contradiction, but they satisfy the following weaker properties:

VALID(RANC, Asc> Vv ﬂ(ANc, Ascﬂ) UNSAT(|_<ANC, Asc> AN _‘<ANC, AscH)

P?”OOf. [(ANC, Asc> \Y ﬂ(ANc, Ascﬂ is (ANC \Y —\Asc) =4 (Asc = ANC) & true, where
the last equivalence follows from well-formedness. Similarly, | (Anc, Asc)A—(Anc, Asc) |
is (AscA—Anc) < false, where the last step follows from the well-formedness property.

3 Symbolic Heap Abstraction

Abstract locations are named by access paths [@] and defined by the grammar:

Access Path w:= £y | allocig | ()i | *7 | ¢ | 71 intop w2 | T

Here, £, denotes the abstract location corresponding to variable v, and alloc;q
denotes locations allocated at program point ¢d. Any array location is represented
by an access path (r);, where 7 represents the array and ¢ is an index variable
ranging over the indices of 7 (similar to [22]). The location #m represents the
dereference of 7. The access path ¢ denotes constants, 71 intop 7o represents the
result of performing intop on m; and 72, and T denotes any possible value.

A memory access path, denoted 7y,em, is any access path that does not in-
volve ¢, 71 intop 72, and T. We differentiate memory access paths because only
locations that are identified by memory access paths may be written to; other
kinds of access paths are only used for encoding values of scalars.

Given a concrete store S and an environment F mapping program variables
to concrete locations, a function 7 maps abstract memory locations to a set of
concrete locations (s1,41) ... (Sk,ik):

Y(E,S L) ={E(v)}

v(E, S, allocig) = {(1,0) | I is the result of allocation at program point id }
Y(E, S, (m)i) = {(l,index;)| (I, index;) € S A (I,0) € v(E, S, 7))}

Y(E, S, xm) = Uzigy(}z,s,ﬂ) S(l:)

252 I. Dillig, T. Dillig, and A. Aiken

Since we will concretize abstract memory locations under a certain assumption
about their index variables, we define another function ~., similar to v but
qualified by constraint ¢. The only interesting modification is for (r);:

Ye(E, S, ()i,) ={(, index;)| (I, index;) € SA(I,0) € v.(E, S, 7, p) N SAT(¢[index; /i])}

As is standard in points-to graphs, we enforce that for any two memory access
paths, either Tpem = T em OT Y(E, S, Tmem) N Y(E, S, Them) = 0.

A symbolic heap abstraction is a directed graph where nodes denote abstract
locations identified by access paths and edges qualified by bracketing constraints
denote points-to relations. Since we want to uniformly encode points-to and value
information, we extend the notion of points-to relations to scalars. For example,
if an integer a has value 3, the symbolic heap abstraction contains a “points-to”
edge from a’s location to some location named *3, thereby encoding that the
value of a is 3. Hence, the symbolic heap encodes the value of each scalar.

Formally, a symbolic heap abstraction is defined by

T e — 9(m,9)

mapping a source location to a set of (target location, constraint) pairs. The
edge constraint ¢ may constrain program variables to encode the condition un-
der which this points-to relation holds. More interestingly, ¢ may also qualify
the source and the target location’s index variables, thereby specifying which
elements of the source may (and must) point to which elements of the target.
The combination of indexed locations and edge constraints parametric over
these index variables makes the symbolic heap abstraction both very expressive
but also non-trivial to interpret. In particular, if the source location is an array,
we might want to determine the points-to targets of a specific element (or some
of the elements) in this array. However, the symbolic heap abstraction does not
directly provide this information since edge constraints are parametric over the
source and the target’s index variables. Consider the following points-to relation:

0<q 5Aih =1 1
(ra) } e * ((#D)s,)

Suppose we want to know which location(s) the fourth element of array (xa);,
points to. Intuitively, we can determine the target of the fourth element of (xa);,
by substituting the index variable ¢; by value 3 in the edge constraint 0 < ¢; <
5 A iy = i3 + 1. This would yield i, = 4, indicating that the fourth element of
(xa); points to the target of the fifth element of (xb);,.

While a simple substitution allows us to determine the target of a specific
array element as in the above example, in general, we need to determine the
targets of those array elements whose indices satisfy a certain constraint. Since
this constraint may not limit the index variable to a single value, determining
points-to targets from an indexed symbolic heap abstraction requires existential
quantifier elimination in general. In the above example, we can determine the
possible targets of elements of (xa);, whose indices are in the range [0, 3] (i.e.,
satisfy the constraint 0 < iy < 3) by eliminating i1 from the following formula:

Ji1.(0 <in <3A(0< it <5 Ady=i1+ 1))

Fluid Updates: Beyond Strong vs. Weak Updates 253

This yields 1 < i) < 4, indicating that the target’s index must lie in the range
[1,4]. To formalize this intuition, we define an operation ¢1 |1 ¢2, which yields
the result of restricting constraint ¢; to only those values of the index variables
I that are consistent with ¢o.

Definition 1. (¢1 |1 ¢2) Let ¢1 be a constraint qualifying a points-to edge and
let ¢2 be a constraint restricting the values of index variables I. Then,

&1 L1 @2 = Eliminate(3I. ¢1 A ¢2)

where the function Eliminate performs existential quantifier elimination.

The quantifier elimination performed in this definition is exact because index
variables qualifying the source or the target never appear in uninterpreted func-
tions in a valid symbolic heap abstraction; thus the elimination can be performed
using [10)].

4 Pointer and Value Analysis Using Fluid Updates

In this section, we give deductive rules describing the basic pointer and value
analysis using fluid updates. An invariant mapping X : Var — mmem maps
program variables to abstract locations, and the environment I' defining the
symbolic heap abstraction maps memory access paths to a set of (access path,
constraint) pairs. Judgments X' a : £, indicate that variable a has abstract
location £4, and judgments I" - 7y @ (m, ;) state that (m;,,¢;) € I'(ms). Note
that there may be many (7, ¢;) pairs in I'(7), and this form of judgment is
used in the rules to refer to each of them without needing to use sets.

We first explain some notation used in Figure 2l The function U(¢) replaces
the primed index variables in constraint ¢ with their unprimed counterparts, e.g.,
U(iy = 2) is (i1 = 2); this is necessary when traversing the points-to graph because
the target location of an incoming edge becomes the source of the outgoing edge
from this location. We use the notation I' A ¢ as shorthand for:

I'(m) = {(m, ¢ A) | {mi, 1) € T'(m)}

A union operation I' = I'" U I on symbolic heap abstractions is defined as:
(', ' ve")e(n) & (x',¢) e I'(m) A (x',¢") € I (7).

We write J(7) to denote the set of all index variables used in 7, and we say “i
is index of 7" if 7 is the outermost index variable in 7.

The basic rules of the pointer and value analysis using fluid updates are pre-
sented in Figure 2l We focus mainly on the inference rules involving arrays,
since these rules either directly perform fluid updates (Array Store) or rely on
the constraint and index-based representation that is key for fluid updates.

We start by explaining the Array Load rule. In this inference rule, each o,
represents one possible points-to target of vo under constraint ¢z;. Because
is an array, the constraint ¢o, qualifies mo,’s index variables. Each 73, repre-
sents one possible (scalar) value of vs. Since we want to access the element

254

Assign

Y Fu :Evl, vyt 21,2
I =Ty, — I'(£4,)]
X, 'k vy =wg & IV

Array Load

Yhwvr Ly, v2i Log,vz Loy

I'kj Ly, <772j,¢$2].> (i index of m3)

I i Loyt (x7m3,, ¢3,)

F/"l T <7Tt]l'; d’t‘7l> .

b5, = Ulde;[i" — 73, /i'])

¢;sz = o1y lﬁ(wzj) ¢§Jk

I'"="Tr[g,, «— (U;kl(ﬂtquﬁﬁjkl A ¢3,))]

I. Dillig, T. Dillig, and A.

2, ' vy =wafvg] :+ I

Pointer Arithmetic

Yhwvr Ly ,v2: Lyy,v3: £
Ihj Loy o (w2, d2;)

I Log 1 (xT3,, ¢3,,)

qs’?jk = ¢2,[(i" = 73,)/i'] (i index of 2;)
T =Ty — (U (m2;5 65, A b3y.))]

v3

Aiken

Alloc

Y Eov Svl
I = I'[Ly, « (allocia)i] A i’ =0 (i fresh)
2, I't vy = alloc(ve) : I

Array Store (Fluid Update)

Thvr: Ly, vai Lyy,v3: L
F’_j Evl : <7T1]v,¢1]>

= Loyt {(m2y,¢2)) .. (M2, 2,,)} (ik index of 2,)
Iy Loy <*7"31x¢3l>

7w D(n) if © ¢ {may, ... 72, }

= {(m), &% A2V (U2, [if, — 73, /i3]) A ¢3,)
| (ks 0k) € T(may)} if m = w2y € {may,... 72, }

v3

I =

{71’21 = (Ujimy, Uz, [if — w3, /i) A ¢3, A ¢ay)
1—1// —

wan — (Ui (e, Ulday [il, — w3, /34]) A da, A 1))

X2, I'F wvfvgl =wvy + TVUTY
Predop
Yh v Lyg,v2t Loy, 031 Loy
I'kj £y, <*7r2j ,¢2,) (rename all index variables to fresh fz)

I'Fi Loy ¢ (¥73, , ¢3;,) (rename all index variables to fresh f3)
¢k = (72; predop T3) A b2, A sy
¢;r,f”' = Eliminate(3f2, f3. djr)

I'=T[€y, — (U (x1, $55) U (x0, =6 1))]

X, I'Fvy =vy Doz I

If Statement ‘While Loop

Yrov:g,
' £y {(*1, drrue), (%0, Praise) }
X, r+8,:1’
X, r+8y:1"
Ir =T A Girue
I'p =TI" A base
X, I'tifv#0 then Sy else Sy : I't U

YEFov: Ly

X, IrpkS: 1"
A=T" —Tp

I'p = £, {(x1, ¢y

X, '+ vy =wvg predop wvs : I

I'p = Parametrize(I")

m/a/)/, <*Ov/(]§falsc>}
r
A, = fiz(A)

Agen = Generalize(Ay,)

Ifipat = I' 0 Ayen (Generalized Fluid Update)

=TI" N btrue

X, I' - while v # 0 do S end : I'fina

Fig. 2. Rules describing the basic analysis

at offset vs of vy’s target, we select the element at offset vs by substituting i’
with ¢/ — 73, in the constraint ¢, which effectively increments the value of ¢/
by 73, . Now, we need to determine the targets of those elements of 72, whose
indices are consistent with ¢>’2jk; hence, we compute ¢, lg(ﬂzj) (;S’ij (recall Sec-

tion [3) for each target T, of ma,. The following example illustrates this rule.

e)
L3, falsu
0<is
il — <i< se
N i =9 (*b>i (0 <i <3, false) *5 l

$<icyy

Fig. 3. Here, a points to the third element of an
array of size 10, whose first three elements have the
value 3 or 5, and the remaining elements are 0

Ezxample 2. Consider perform-
ing t = a[1] on the symbolic heap
abstraction shown in Figure
Here, £,, is the memory loca-
tion labeled a, the only target
ma, of £,, is (+b):, and the only
73, is 1. The constraint ¢ is
U@ = 2)[¢'/i" — 1]), which is
1 = 3. Thus, we need to deter-
mine the target(s) of the fourth

Fluid Updates: Beyond Strong vs. Weak Updates 255

element in array (b);. There are three targets m;,, of (xb)i: *3,5,%0; hence,
we compute ¢}~ once for each 7. The only satisfiable edge under constraint
1 = 3 is the edge to *0 and we compute Eliminate(Ji. 3 <i < 10 Ai = 3), which is
true. Thus, the value of t is guaranteed to be 0 after this statement.

The Array Store rule performs a fluid update on an abstract memory location
associated with an array. In this rule, each mo, € {mo, ... 72, } represents an
array location, a subset of whose elements may be written to as a result of this
store. I'"” represents the symbolic heap abstraction after removing the points-to
edges from array elements that are written to by this store while preserving all
other edges, and I'” represents all edges added by this store. Hence, I'" and
I'" are unioned to obtain the symbolic heap abstraction after the store. Note
that I'” preserves the existing targets of any access path m & {ma, ... 72, }. The
points-to targets of those elements of my,,...mo, that are not affected by this
store are also preserved in IV while elements that are written to by the store are
killed in I"". This is because elements that are updated by the store must satisfy
Uz, [ir, — 3, /i%]) A ¢3, for some k, [such that the edge to 7}, is effectively killed
for those elements updated by the store. On the other hand, elements that are
not affected by the store are guaranteed not to satisfy U(es, [it, — 73, /i%]) A ¢3,for
any k, [, i.e., =\, (U(¢2, ik, — 73, /i%]) A ¢3,) = false, and the existing edge to m,
is therefore preserved. Note that negation is only used in the Fluid Update rule;
the soundness of negation, and therefore the correctness of fluid updates, relies
on using bracketing constraints.

Example 3. Consider the effect of the following store instructions
alk] = 7; alm] = 3;

on FigureBl Suppose k and m are symbolic, i.e., their values are unknown. When
processing the statement afk] = 7, the only location stored into, i.e., ma, , is (*b);.
The only 73, is k under ¢rue, and the only 71, is *7 under true. The elements of
(xb); updated by the store are determined from U((i' = 2)[i' —k/i']) = (i = k +2).
Thus, a new edge is added from (xb); to x7 under ¢ = k 4+ 2 but all outgoing
edges from (xb); are preserved under the constraint ¢ # k + 2. Thus, after this
statement, the edge from (xb); to *3 and x5 are qualified by the constraint (0 <
i <3Ni# k+2, false), and the edge to %0 is qualified by 3 <i < 10A7 # k+ 2.
The instruction a[m] = 3 is processed similarly; Figure @l shows the resulting

35 {0} [8} {7

~— 0<i<3 — ~— 3<i<10 —

m+2<k+2<3
m=kAm+2<3
k+2<m+2<3
m+2<3A3<k
k+2<3A3<m
3<m+2<k+2
3<k+2<m+2
3<k+2=m+2

Fig.4. Graph after processing the Fig.5. Colored rectangles illustrates the
statements in Example [3] partitions in Example B} equations on the
left describe the ordering between variables

256 I. Dillig, T. Dillig, and A. Aiken

symbolic heap abstraction after these store instructions. Note that if &k = m, the
graph correctly reflects afk] must be 3. This is because if £ = m, the constraint
on the edge from (xb); to *7 is unsatisfiable. Since the only other feasible edge
under the constraint ¢ = k + 2 is the one to %3, £ = m implies alk] must be 3.

As Example[Jillustrates, fluid updates do not construct explicit partitions of the
heap when different symbolic values are used to store into an array. Instead, all
“partitions” are implicitly encoded in the constraints, and while the constraint
solver may eventually need to analyze all of the cases, in many cases it will not
because a query is more easily shown satisfiable or unsatisfiable for other rea-
sons. As a comparison, in Example Bl approaches that eagerly construct explicit
partitions may be forced to enumerate all partitions created due to stores using
symbolic indices. Figure [l shows that eight different heap configurations arise
after performing the updates in Example[3l In fact, only one more store using a
symbolic index could create over 50 different heap configurations.

In the Pointer Arithmetic rule, the index variable ¢’ is replaced by i’ — 73, in
the index constraint ¢y, effectively incrementing the value of i’ by v3. We also
discuss the Predop rule, since some complications arise when array elements are
used in predicates. In this rule, we make use of an operation m which converts
an access path to a term in the constraint language:

mr=7r it ™ € {c, Ly, allociq} *«m = deref(m)
<7T>Z. = select(ﬂ, ’L) 71 intop T2 = 71 intop 72

In this rule, notice that index variables used in the targets of £,, and £,,
are first renamed to fresh variables fs and fs to avoid naming conflicts and
are then existentially quantified and eliminated similar to computing ¢ |1 ¢2.
The renaming of index variables is necessary since naming conflicts arise when
(¥2,, ¢2,) and (xms, , @3,) refer to different elements of the same array.

In the If Statement rule, observe that the constraint under which v # 0
evaluates to true (resp. false) is conjoined with all the edge constraints in I’
(resp. I'"); hence, the analysis is path-sensitive. We defer discussion of the While
Loop rule until Section

4.1 Soundness of the Memory Abstraction

We now state the soundness theorem for our memory abstraction. For a concrete
store S, we use the notation S(ls,l;) = true if S(ls) = l; and S(ls,l;) = false
otherwise. Similarly, we write I'(7s,) = ¢ to denote that the bracketing con-
straint associated with the edge from 74 to m; is ¢, and ¢ is false if there is no
edge between 7 and ;. Recall that J(m) denotes the set of index variables in
7, and we write 03(,) to denote some concrete assignment to the index variables

2 Quantifier elimination performed here may not be exact; but since we use brack-
eting constraints, we compute quantifier-free over- and underapproximations. For
instance,] presents a technique for computing covers of existentially quantified
formulas in combined theories involving uninterpreted functions. Another alterna-
tive is to allow quantification in our constraint language.

Fluid Updates: Beyond Strong vs. Weak Updates 257

in J(m); 0%, is an assignment to J(m) with all index variables primed. The no-
tation o(¢) applies substitution o to ¢. Finally, we use a function eval*(¢, E, S)
for » € {4, —} which evaluates the truth value of the necessary and sufficient
conditions of constraint ¢ for some concrete environment F and concrete store
S; this function is precisely defined in [@]

Definition 2 (Agreement). We say a concrete environment and concrete store
(E,S) agrees with abstract environment and abstract store (X, I") (written
(E,S) ~ (X,I) if and only if the following conditions hold:

1. F and X have the same domain
2. If S(ls, ;) = b and I'(ms, m) = (¢F,¢7), then for all substitutions oy(r,),
U’j(m) such that Iy € 7.(E, S, T, 05(x,)) and Iy € 7.(E, S, 7Tt,0'/j(m)), we have:
eval” (o' (0(¢7)), E,S) = b= eval (o' (c(¢T)), E, S)
Theorem 1 (Soundness). Let P be any program. If (E, S) ~ (X, '), then
E.SFP:S = (5, ['+P:T" A (E,S)~ (2,1)

We sketch the proof of Theorem [[lin the extended version @]

5 Fluid Updates in Loops

In loop-free code, a store modifies one array element, but stores inside a loop
often update many elements. In this section, we describe a technique to over-
and underapproximate the set of concrete elements updated in loops. The main
idea of our approach is to analyze the loop body and perform a fixed-point
computation parametric over an iteration counter. Once a fixed-point is reached,
we use quantifier elimination to infer elements that may and must be modified
by the loopﬁ

5.1 Parametrizing the Symbolic Heap Abstraction

When analyzing loops, our analysis first identifies the set of scalars modified by
the loop; we call such values loop-dependent scalars. We then infer equalities
relating each loop-dependent scalar to the unique iteration counter k for that
loop. The iteration counter k is assumed to be initialized to 0 at loop entry
and is incremented by one along the back edge of the loop. We say that a loop-
dependent value i is linear with respect to the loop if i —ig = ¢ % k for some
constant ¢ # 0. We compute a set of equalities relating loop-dependent scalars
to the iteration counter using standard linear invariant generation techniques
ﬂﬂ7 |E] At loop entry, we use these linear equalities to modify I" as follows:

3 In this section, we assume no pointer arithmetic occurs in loops; our implementation,
however, does not make this restriction.

258 I. Dillig, T. Dillig, and A. Aiken

— Let 7 be a linear loop-dependent scalar with the linear relation m = mg+cx*k,
and let (xmy, ¢;) € I'(w). Then, replace m; by m + ¢ * k.
— Let 7 be a loop-dependent value not linear in k. Then, I'(r) « {(T, true)}.

Thus, all loop-dependent scalars are expressed in terms of their value at iteration
k or T; analysis of the loop body proceeds as described in Section [

Ezample 4. Consider the send packets function from Section [Il Here, we infer
the equality j = jo + 2k, and I initially contains an edge from j to *(jo + 2k).

5.2 Fixed-Point Computation

Next, we perform a fixed-point computation (parametric on k) over the loop’s
net effect on the symbolic heap abstraction. This is necessary because there may
be loop carried dependencies through heap reads and writes. We define the net
effect of the loop on the symbolic heap abstraction during some iteration k as
the effect set:

Definition 3. (Effect Set A) Let IV be a symbolic heap obtained by perform-
ing fluid updates on I'. Let A = I'" — I be the set of edges such that if ¢ qualifies
edge e in I' and ¢’ qualifies e in IV, then A includes e under constraint ¢’ A —¢
(where ¢ = false if e & T'). We call A the effect set of I'" with respect to I.

Example 5. Figure [6 shows the effect set of the loop in send packets after an-
alyzing its body once. (Edges with false constraints are not shown.) Note that
the constraints qualifying edges in this figure are parametric over k.

We define I' o A as the generalized fluid update that applies A to I

Definition 4. (I' o A) Let 7 be a location in I" and let S, denote the edges in
A whose source is 7. Let §(S;) be the disjunction of constraints qualifying edges
in S, and let I be the set of index variables used in the target locations in S,
but not the source. Let Update(m) = Eliminate(31.6(Sz)). Then, for each w € I':

(I" o A)[w] = (I'(w) A ~Update(m)) U Sz

The above definition is a straightforward generalization of the fluid update op-
eration given in the Store rule of Figure 2 Instead of processing a single store,
it reflects the overall effect on I' of a set of updates defined by A. The fixed-
point computation is performed on A. We denote an edge from location 74 to
7 qualified by constraint ¢ as (ms, m¢)\¢p. Since we compute a least fixed point,
(ms, m)\(false, true) € L for all legal combinations (i.e., obeying type restrictions)

i = jo+2kA0<] : < 2¢, falsé [l
(*buf)i (i = jo + 2k N0 < jo + 2k < 2¢, false) NULL
N 0 < jo+2k <2¢c 4
i } = - (o + 2K+ 2)

Fig. 6. The effect set after analyzing the loop body once in function send packets

Fluid Updates: Beyond Strong vs. Weak Updates 259

of all (my,m) pairs. Note that the edge constraints in L are the inconsistent
bounds (false, true) representing the strongest over- and underapproximations.
We define a LI and C on effect sets as follows:

A1 £ A
<~
((¢7wl = ¢nc2 A ¢sc2 = (,bscl)
V<”s,”t>\<¢ncl7¢sc1> S Al A
V<7T57 7Tt>\<¢”(;27 ¢sc2> € AQ)

Let I be the initial symbolic heap abstraction before the loop. We compute
I .. representing the symbolic heap on entry to the n’th iteration of the loop:

entry
n o Io Zf n=1
s = Lo o (Analk —1/K]) if n>1

<7TS7 7rt>\<(¢ncl \% ¢n62)7 (¢sc1 A ¢sc2)> S Al U AZ
—
(<7T577rt>\<¢ncly¢scl> S Al A
<7TS7 7rt>\<¢ncg, ¢sc2> S AZ)

I, is obtained by analyzing the body of the loop using I';;,,,,, at the entry point
of the loop. In the definition of I}, , the substitution [k — 1/k] normalizes the
effect set with respect to the iteration counter so that values of loop-dependent
scalars always remain in terms of their value at iteration k. We define A, rep-

resenting the total effect of the loop in n iterations as follows:

A = L ifn=20
" (gcit_F&try)UAnfl an>0

First, observe that A,,_1 C A,, by construction (monotonicity). Second, observe
the analysis cannot create an infinite number of abstract locations because (i)
arrays are represented as indexed locations, (ii) pointers can be dereferenced
only as many times as their types permit, (iii) all allocations are named by their
allocation site, and (iv) scalars are represented in terms of their linear relation to
k. However, our constraint domain does not have finite ascending chains, hence,
we define a widening operator on bracketing constraints (although widening was
never required in our experiments). Let 3 denote the unshared literals between
any constraint ¢1 and ¢o. Then, we widen bracketing constraints as follows:

((Tpr] Vv [g2])[true/BI v ([d1] V [¢2])[false/Bl,
([o1] A Lg2])[true/BI A (Lg1] A [$2])[false/B])

Ezample 6. The effect set obtained in Example [l does not change in the second
iteration; therefore the fixed-point computation terminates after two iterations.

D1V P2 =

5.3 Generalization

In this section, we describe how to generalize the final effect set after a fixed-point
is reached. This last step allows the analysis to extrapolate from the elements
modified in the £’th iteration to the set of elements modified across all iterations
and is based on existential quantifier elimination.

Definition 5. (Generalizable Location) We say a location identified by 7 is
generalizable in a loop if (i) 7 is an array, (ii) if 7; is used as an index in a store
to 7, then 7; must be a linear function of the iteration counter, and (iii) if two
distinct indices m; and 7; may be used to store into , then either only m;, or
only 7; (or neither) is used to index 7 across all iterations.

260 I. Dillig, T. Dillig, and A. Aiken

Intuitively, if a location 7 is generalizable, then all writes to 7 at different itera-
tions of the loop must refer to distinct concrete elements. Clearly, if 7 is not an
array, different iterations of the loop cannot refer to distinct concrete elements.
If an index used to store into 7 is not a linear function of &, then the loop may
update the same concrete element in different iterations. Furthermore, if two
values that do not have the same relation with respect to k are used to store
into 7, then they may update the same element in different iterations.

In order to generalize the effect set, we make use of a variable N unique
for each loop that represents the number of times the loop body executes. If
the value of N can be determined precisely, we use this exact value instead of
introducing N. For instance, if a loop increments ¢ by 1 until 7 > size, then it is
easy to determine that N = size — ip, assuming the loop executes at least oncel]
Finally, we generalize the effect set as follows:

— If an edge qualified by ¢ has a generalizable source whose target does not
mention k, the generalized constraint is ¢’ = Eliminate(3k. (¢ A0 < k < N)).

— If an edge qualified by ¢ does not have a generalizable source, the generalized
constraint is ¢’ = Eliminate(3k. ¢ AN 0< k< N, Vk.0<k< N = ¢)i.

— If w is a loop-dependent scalar, then A[r] — A[rx][N/k].

We now briefly explain these generalization rules. If the source of an edge is gen-
eralizable, for each iteration of the loop, there exists a corresponding concrete el-
ement of the array that is updated during this iteration; thus, k is existentially
quantified in both the over- and underapproximation. The constraint after the ex-
istential quantifier elimination specifies the set of concrete elements updated by
the loop. If the source is not generalizable, it is unsafe to existentially quantify k
in the underapproximation since the same concrete element may be overwritten
in future iterations. One way to obtain an underapproximation is to universally
quantify & because if the update happens in all iterations, then the update must
happen after the loop terminates. According to the last rule, loop-dependent scalar
values are assigned to their value on termination. Once the effect set is generalized,
we apply it to Iy to obtain the final symbolic heap abstraction after the loop.

Example 7. Consider the effect set given in Figure[6l In the send packets func-
tion, (xbuf); is generalizable since j is linear in k£ and no other value is used
to index (xbuf);. Furthermore, if the loop executes, it executes exactly ¢ times;
thus N = c¢. To generalize the edge from (xbuf); to *NULL, we perform quantifier
elimination on (Jk.i = jo + 2k A0 < jo + 2k < 2¢ A0 < k < ¢, false), which yields
(jo <iNi < Jo+2cA(i—jo)%2 =0, false). Since jg is 0 at loop entry, after applying
the generalized effect set to Iy , we obtain the graph from Figure [l

4 Even though it is often not possible to determine the exact value of N, our analysis
utilizes the constraint (Vk.0 < k < N = —¢ierm(k)) A Pterm(N) stating that
the termination condition ¢ierm does not hold on iterations before N but holds at
the N’th iteration. Our analysis takes this “background axiom” into account when
determining satisfiability and validity.

5 We can eliminate a universally quantified variable k from Vk.4 by eliminating exis-
tentially quantified k in the formula —3k.—¢.

Fluid Updates: Beyond Strong vs. Weak Updates 261
6 Implementation and Extensions

We have implemented the ideas presented in this paper in the Compass pro-
gram verification framework for analyzing C programs. For solving constraints,
Compass utilizes a custom SMT solver called Mistral ﬂﬂ], which also provides
support for simplifying constraints. Compass does not assume type safety and
handles casts soundly using a technique based on physical subtyping ﬂﬁ] Com-
pass supports most features of the C language, including structs, unions, multi-
dimensional arrays, dynamic memory allocation, and pointer arithmetic. To
check buffer overruns, Compass also tracks buffer and allocation sizes. For inter-
procedural analysis, Compass performs a path- and context-sensitive summary-
based analysis. Loop bodies are analyzed in isolation before the function or loop
in which they are defined; thus techniques from Section Bl extend to nested loops.

While the language defined in Section 2] only allows loops with a single exit
point, techniques described in this paper can be extended to loops with multiple
break points by introducing different iteration counters for each backedge, similar
to the technique used in ﬂﬁ] for complexity analysis.

Compass allows checking arbitrary assertions using a static assert(...) prim-
itive, which can be either manually or automatically inserted (e.g., for memory
safety properties). The static assert primitive also allows for checking quanti-
fied properties, such as “all elements of arrays a and b are equal” by writing:
static_assert(buffer_size(b) == buffer_size(a));
for(i=0; i<buffer_size(a); i++) static_assert(al[i] == b[i]);

7 Experiments

7.1 Case Study on Example Benchmarks

To demonstrate the expressiveness of our technique, we evaluate it on 28 chal-
lenging array benchmarks available at nttp://www.stanford.edu/~tdillig/array.tar.gz
and shown in Figure [The functions init and init noncost initialize all el-
ements of an array to a constant and an iteration-dependent value respectively.
init partial initializes part of the array, and init even initializes even positions.
2D array init initializes a 2-dimensional array using a nested loop. The programs
labeled buggy exhibit subtle bugs, such as off-by-one errors. Various versions of
copy copy all, some, or odd elements of an array to another array. reverse re-
verses elements, while swap (shown in FigureR]) swaps the contents of two arrays.
double swap invokes swap twice and checks that both arrays are back in their ini-
tial state. strcpy, strlen, and memcpy implement the functionality of the standard
C library functions and assert their correctness. find (resp. find first nonnull)
looks for a specified (resp. non-null) element and returns its index (or -1 if el-
ement is not found). append appends the contents of one array to another, and
merge interleave interleaves odd and even-numbered elements of two arrays into
a result array. The function alloc fixed size initializes all elements of a dou-
ble array to a freshly allocated array of fixed size, and then checks that buffer

262 I. Dillig, T. Dillig, and A. Aiken

Program Time Memory #Sat Solve
queries time

init 0.01s <1MB 172 O0s

init nonconst 0.02s <1MB 184 0.01s

init partial 0.01s < 1MB 166 0.01s void swap(int* a, int* b, int size) {

init partial buggy 0.02s < 1MB 168 0s for(int i=0; i<size; i++) {

init even 0.04s < 1 MB 146 0.04s N - i, i1 i, 27— 4.

init even buggy 0.04s < 1MB 166 0.03s int t = alil; alil = b[il; B[] = ¢ }

2D array init 0.04s < 1 MB 311 0.04s T

copy 0.01s < 1MB 209 0.0ls void check_swap(int size, int* a, int* b) {

copy partial 0.01s < 1MB 220 0.01s int* a_copy = malloc(sizeof (int)*size);

copy odd 0.04s < 1 MB 243 0.02s int* b _ 1loc(si £(int) *si y;

copy odd buggy 0.05s < 1MB 246 0.05s int* b_copy = mallocisizeollint)*size);

reverse 0.03s < 1MB 273 0.01s for(int i=0; i<size; i++) a_copyli] = alil;

reverse buggy 0.04s < 1 MB 281 0.02s for(int i=0; i<size; i++) b_copyl[i] = b[i];

swap 0.12s 2 MB 590 0.11s swap(a, b, size);

swap buggy 0.11s 2 MB 557 0.06s S T

double swap 0.16s 2 MB 601 0.1s for(1=0; i<size; 1Jf+) { .

strepy 0.07s <1 MB 355 0.04s static_assert(alil == b_copyl[il);

strlen 0.02s < 1MB 165 0.01s static_assert(b[i] == a_copyl[il);

strlen buggy 0.01s < 1 MB 89 0.01s ¥

memcpy 0.04s < 1MB 225 0.04s . .

find 0.02s <1MB 119 0.02s free(a_copy); free(b_copy);

find first nonnull 0.02s < 1MB 183 0.02s 1}

append 0.02s < 1MB 183 0.01s

merge interleave 0.09s < 1 MB 296 0.07s . . .

merge interleave Fig. 8. Swap Function from Figure [l The

buggy 0.11s < 1MB 305 0.09s . .

alloc fixed size 0.02s <1MB 176 o0.02s static assertions check that all elements of

alloc fixed size buggy 0.02s < 1 MB 172 0.02s .

alloc nonfixed size 0.03s < 1 MB 214 0.02 a and b are lndeed Swapped a’fter the Ca'll

to the swap function. Compass verifies these

Fig. 7. Case Study assertions automatically in 0.12 seconds.

accesses to the element arrays are safe. The function alloc nonfixed size initial-
izes elements of the double array a to freshly allocated arrays of different size,
encoded by the elements of another array b and checks that accessing indices
[0,b[i — 1]] of array a[i] is safe. Compass can automatically verify the full func-
tional correctness of all of the correct programs without any annotations and
reports all errors present in buggy programs. To check functional correctness,
we add static assertions as described in Section [and as shown in Figure Bl

Figure [0 reports for each program the total running time, memory usage
(including the constraint solver), number of queries to the SMT solver, and
constraint solving time. All experiments were performed on a 2.66 GHz Xeon
workstation. We believe these experiments demonstrate that Compass reasons
precisely and efficiently about array contents despite being fully automatic. As
a comparison, while Compass takes 0.01 seconds to verify the full correctness of
copy, the approach described in M} reports a running time of 338.1 seconds, and
the counterexample-guided abstraction refinement based approach described in
ﬂﬂ] takes 3.65 seconds. Furthermore, our technique is naturally able to verify
the correctness of programs that manipulate non-contiguous array elements (e.g.,
copy odd), as well as programs that require reasoning about arrays inside other
arrays (e.g., alloc nonfixed size). Figure[7] also shows that the analysis is mem-
ory efficient since none of the programs require more than 2 MB. We believe this
to be the case because fluid updates do not create explicit partitions.

Observe that the choice of benchmarks in Figure [sheds light on both what
our technique is good at and what it is not meant for. In particular, notice these
benchmarks do not include sorting routines. While sorting is an interesting prob-
lem for invariant generation techniques, the focus of this work is improving static
analysis of updates to aggregate data structures, such as arrays, through fluid

Fluid Updates: Beyond Strong vs. Weak Updates 263

Program Lines Total Time Memory #Sat queries Solve Time

hostname 304 0.13s 5 MB 1533 0.12s
chroot 371 0.13s 3 MB 1821 0.10s
rmdir 483 1.05s 12 MB 3461 1.02s
su 1047 1.86s 32 MB 6088 1.69s
mv 1151 0.70s 21 MB 7427 0.68s
Total 3356 3.87s 73 MB 20330 3.61

Fig. 9. Experimental results on Unix Coreutils applications

updates. As shown in Section [fluid updates can be combined with invariant
generation techniques to analyze loops, but we do not claim that this particular
invariant generation approach is the best possible. We leave as future work the
combination of fluid updates and more powerful invariant generation techniques.

7.2 Checking Memory Safety on Unix Coreutils Applications

To evaluate the usefulness of our technique on real programs, we also check for
memory safety errors on five Unix Coreutils applications M] that manipulate ar-
rays and pointers in complex ways. In particular, we verify the safety of buffer
accesses (both buffer overruns and underruns) and pointer dereferences. However,
since Compass treats integers as mathematical integers, the soundness of the
buffer analysis assumes lack of integer overflow errors, which can be verified by a
separate analysis. In the experiments, Compass reports zero false positives, only
requiring two annotations describing inputs to main: assume(buffer size(argv) ==
argc) and assume(argv! = NULL)). Compass is even able to discharge some arbitrary
assertions inserted by the original programmers. Some of the buffer accesses that
Compass can discharge rely on complex dependencies that are difficult even for
experienced programmers to track; an interesting example is given in @]

The chosen benchmarks are challenging for static analysis tools for multiple
reasons: First, these applications heavily use arrays and string buffers, mak-
ing them difficult for techniques that do not track array contents. Second, they
heavily rely on path conditions and correlations between scalars used to in-
dex buffers. Finally, the behavior of these applications depends on environment
choice, such as user input. Our technique is powerful enough to deal with these
challenges because it is capable of reasoning about array elements, is path-
sensitive, and uses bracketing constraints to capture uncertainty. To give the
reader some idea about the importance of these components, 85.4% of the as-
sertions fail if array contents are smashed and 98.2% fail if path-sensitivity is
disabled.

As Figure @ illustrates, Compass is able to analyze all applications in under 2
seconds, and the maximum memory used both for the program verification and
constraint solving combined is less than 35 MB. We believe these running times
and memory requirements demonstrate that the current state of Compass is use-
ful and practical for verifying memory safety in real modest-sized C applications
manipulating arrays, pointers, and scalars in complex ways.

264 I. Dillig, T. Dillig, and A. Aiken

8 Related Work

Reasoning about unbounded data structures has a long history. Jones et al.
first propose summary nodes to finitely represent lists in LISP], and @]
extends this work to languages with updates and introduces strong and weak
updates. Representation of access paths qualified by indices is first introduced
in Deutsch ﬂﬁ], which uses a combination of symbolic access paths and numeric
abstract domains to represent may-alias pairs for recursive data structures. This
technique does not address arrays, and since it does not reason about updates,
negation is not a consideration. Deutsch’s technique does not allow disjunctive
constraints, is not path-sensitive, and does not address underapproximations.

The most basic technique for reasoning about array contents is array smash-
ing, which represents all elements with one summary node and only allows weak
updates @] Gopan et al. propose a 3-valued logic based framework to discover
relationships about values of array elements M] This technique isolates individ-
ual elements to perform strong updates and places elements that share a common
property into a partition (usually a contiguous range), and relevant partitions
are heuristically inferred. In contrast, our approach does not need to distin-
guish between strong and weak updates or concretize individual elements; it can
also naturally express invariants about non-contiguous array elements. Further-
more, our approach obviates the need for explicit partitioning, and effectively
delays decisions about partitions until constraint solving. While many factors
contribute to the overall performance of program analysis systems, we believe
our tool’s significantly better performance over M] is largely due to avoiding
the construction of explicit partitions. Jhala and McMillan propose a technique
similar to @] for reasoning about arrays, but their technique is based on coun-
terexample guided abstraction refinement and interpolation ﬂﬂ] This approach
also only reasons about contiguous ranges and constructs explicit partitions.
Furthermore, the predicates used in the abstraction belong to a finite language
to guarantee convergence.

Many techniques have been proposed for generating invariants about elements
of unbounded data structures HE, , @] Some of these techniques can reason
about complex data invariants, such as sortedness, which is orthogonal to the
ability to perform fluid updates. Unlike these approaches whose goal is to discover
complex invariants about array elements, our goal is to design an expressive
pointer and value analysis that unifies reasoning about pointers, scalars, and
arrays. However, we believe these techniques can be gainfully combined.

Concepts similar to the iteration counter from Section [0l have been previ-
ously proposed. For example, Gulwani et al. HE] use an iteration counter for
performing complexity analysis. The invariant generation technique described
in [19] also uses a combination of an iteration counter combined with quantifier
elimination.

Our technique uses bracketing constraints to represent both over- and under-
approximations to naturally handle imprecision and uncertainty. Furthermore,
bracketing constraints allow for a sound negation operation in the presence of
approximations. The idea of over- and underapproximations has been proposed

Fluid Updates: Beyond Strong vs. Weak Updates 265

previously in the context of abstract interpretation by Schmidt ﬂﬁ], however,
the techniques presented there are not concerned with negation. In this paper,
we share the goal of gracefully handling imprecision when analyzing unbounded
data structures with HE], which presents a compositional shape analysis based
on separation logic. In contrast to @] which focuses exclusively on recursive
pointer data structures, such as linked lists, this paper focuses on arrays. We
believe our approach can be extended to at least some useful recursive data
structures, such as lists, and we leave this extension as future work.

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:

PLDI, pp. 296-310. ACM, New York (1990)

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software (2002)

Reps, T.W., Sagiv, S., Wilhelm, R.: Static program analysis via 3-valued logic.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 15-30. Springer,
Heidelberg (2004)

. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-

tions. In: POPL, pp. 338-350. ACM, New York (2005)

Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the saturn project. In: PASTE, pp. 43-48. ACM, New York (2007)

Ball, T., Rajamani, S.: The slam project: debugging system software via static
analysis. In: POPL, NY, USA, pp. 1-3 (2002)

Lee, S., Cho, D.: Packet-scheduling algorithm based on priority of separate buffers
for unicast and multicast services. Electronics Letters 39(2), 259260 (2003)
Nguyen, K., Nguyen, T., Cheung, S.: P2p streaming with hierarchical network
coding (July 2007)

Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural aliasing.
SIGPLAN Not. 27(7), 235-248 (1992)

Cooper, D.: Theorem proving in arithmetic without multiplication. Machine Intel-
ligence 7, 91-100 (1972)

Gulwani, S., Musuvathi, M.: Cover algorithms. In: Drossopoulou, S. (ed.) ESOP
2008. LNCS, vol. 4960, pp. 193-207. Springer, Heidelberg (2008)

Karr, M.: Affine relationships among variables of a program. A.I., 133-151 (1976)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84-96. ACM, New York (1978)

Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: A complete and practical tech-
nique for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 233-247. Springer, Heidelberg (2009)

Chandra, S., Reps, T.: Physical type checking for c. SIGSOFT 24(5), 66-75 (1999)
Gulwani, S., Mehra, K., Chilimbi, T.: SPEED: precise and efficient static estima-
tion of program computational complexity. In: POPL, pp. 127-139 (2009)

Jhala, R., Mcmillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193-206. Springer, Heidelberg
(2007)

Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339-348. ACM, New York (2008)

266

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

I. Dillig, T. Dillig, and A. Aiken

Kovacs, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470-485. Springer, Heidelberg (2009)
http://www.gnu.org/software/coreutils/| Unix coreutils

Jones, N., Muchnick, S.: Flow analysis and optimization of LISP-like structures.
In: POPL, pp. 244-256. ACM, New York (1979)

Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In: PLDI, pp. 230-241. ACM, New York (1994)

Allamigeon, X.: Non-disjunctive numerical domain for array predicate abstraction.
In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 163-177. Springer,
Heidelberg (2008)

Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235-246. ACM, New York (2008)

Seghir, M., Podelski, A., Wies, T.: Abstraction Refinement for Quantified Array
Assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3-18.
Springer, Heidelberg (2009)

Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191-202. ACM, New York (2002)

Schmidt, D.A.: A calculus of logical relations for over- and underapproximating
static analyses. Sci. Comput. Program. 64(1), 29-53 (2007)

Calcagno, C., Distefano, D., O’'Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL, pp. 289-300. ACM, New York (2009)
Cousot, P.: Verification by abstract interpretation. In: Dershowitz, N. (ed.) Verifi-
cation: Theory and Practice. LNCS, vol. 2772, pp. 243-268. Springer, Heidelberg
(2004)

Dillig, 1., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates
(extended version), http://www.stanford.edu/~isil/esop-extended.pdf

http://www.gnu.org/software/coreutils/
http://www.stanford.edu/~isil/esop-extended.pdf

	Fluid Updates: Beyond Strong vs.Weak Updates
	Introduction
	Language and Preliminaries
	Constraint Language

	Symbolic Heap Abstraction
	Pointer and Value Analysis Using Fluid Updates
	Soundness of the Memory Abstraction

	Fluid Updates in Loops
	Parametrizing the Symbolic Heap Abstraction
	Fixed-Point Computation
	Generalization

	Implementation and Extensions
	Experiments
	Case Study on Example Benchmarks
	Checking Memory Safety on Unix Coreutils Applications

	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

