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Abstract. We propose a formal definition for (valid) speculative com-
putations, which is independent of any implementation technique. By
speculative computations we mean optimization mechanisms that rely
on relaxing the flow of execution in a given program, and on guessing
the values read from pointers in the memory. Our framework for formal-
izing these computations is the standard operational one that is used
to describe the semantics of programming languages. In particular, we
introduce speculation contexts, that generalize classical evaluation con-
texts, and allow us to deal with out of order computations. Regarding
concurrent programs, we show that the standard DRF guarantee, assert-
ing that data race free programs are correctly implemented in a relaxed
semantics, fails with speculative computations, but that a similar guar-
antee holds for programs that are free of data races in the speculative
semantics.

1 Introduction

Speculative computation [B/I6] is an implementation technique that aims at
speeding up the execution of programs, by computing pieces of code in ad-
vance, possibly in parallel with the rest of the program, without being sure that
these computations are actually needed. We shall actually use the terminology
“speculative computation” in a very broad sense here: we try to capture the op-
timization techniques that rely on executing the code as it is, but relaxing the
flow of control, not necessarily following the order prescribed by the reference
operational semantics. Some keywords here are: pipelining, instruction level par-
allelism, out-of-order execution, branch prediction, thread level speculation, etc.
— we shall not cite any particular paper from the huge literature on these classi-
cal topics. By considering parallel composition of speculations, we also include
relaxed memory models [I] into this picture — though not those that try to cap-
ture compiler optimizations, that transform the code on the basis of semantical
reasoning (see [A20/24]).

Let us see some examples of speculative computations. In these examples, we
use ML’s notation !p for dereferencing a pointer, and () to mean termination,
and we present the speculation as a sequence of transitions, each labelled by
an action to be performed. More specifically, rd, ,, is the action of reading the
value v for pointer p, wry,, means the action of writing the value v for p in the
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memory, and .~ is taking the first branch in a conditional branching. In our first
example, the write to pointer ¢ is reordered with respect to the read of p, which
predicts the value ¢t — regardless of the actual value found in the memory, which
is ignored at this stage:

(r=1p)ila =) "5 (ri=1p)3) 5 (ri= t)50 (1)
In our second example
(if !'p then g := &t else () Mot (if !p then () else ()
o, (if tt then () else () (2)

=0

the assignment in the first branch is issued speculatively, and the value t¢ is
guessed for p. In both cases, the write to ¢ could be issued to run in parallel
with the rest of the code.

The idea of optimizing by computing in parallel is quite old, but the work
that has been done so far on this topic is almost exclusively concerned with
implementation techniques, either from the hardware or the software point of
view, optimizing the execution of sequential code. These implementations are
quite often complex, as speculations are not always correct, and need to be
aborted or undone is some cases. For instance, the two speculations above are
intuitively correct, provided that the predicted values coincide with the actual
ones, but it would be wrong, in Example (), to perform the write for ¢ if
the value eventually read for !'p is ff. Due to the complexity of implementing
speculations perhaps, the notion of a wvalid speculation does not seem to have
been formally defined before, except in some particular cases that we will mention
below. Nevertheless, the various implementations of speculative techniques are
generally considered correct, as regards the semantics of sequential programs.

Our first and main aim in this work is to design a semantical framework to
formalize in a comprehensive manner the notion of a speculative computation,
and to characterize the ones that are valid for sequential programs. We adopt and
extend the approach presented in [7], that is, we define, using a pretty standard
operational style, the speculative semantics of an expressive language, namely
a call-by-value A-calculus with mutable state and threads. Our formalization
relies on extending the usual notion of an evaluation context [9], and using value
prediction [I1I19] as regards the values read from the memory. By introducing
speculation contexts, we are able to formalize out of order executions, as in
relaxed memory models, and also branch prediction [26], allowing to compute in
the alternatives of a conditional branching construct. A particular case of out
of order computation is provided by the future construct of Multilisp [14]. Our
model therefore encompasses many speculative techniques.

The central definition in this paper is the one of a walid speculative com-
putation. Roughly speaking, a thread’s speculation is valid if it can be proved
equivalent to a normal order computation. Our criterion here is that a thread’s
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speculation is only valid if it preserves the sequential semantics. The equivalence
of computations we use is the permutation of transitions equivalence introduced,
for a purely functional language, by Berry and Lévy in [B], stating that inde-
pendent steps can be performed in any order (or in parallel) without essentially
changing the computation. One can see, for instance, that the two speculations
(@) and @) above are valid, by executing the same operations in normal order.
In an implementation setting we would say that a speculation is allowed to com-
mat in the case it is valid, but one should notice that our formulation is fully
independent from any implementation mechanism. One could therefore use our
formal model to assess the correctness of an implementation, showing that the
latter only allows valid speculations to be performed.

As we shall see, valid speculations indeed preserve the semantics of sequen-
tial programs. This is no longer the case for multithreaded applications running
on multiprocessor architectures. This is not surprising, since most optimizations
found in relaxed memory models do not preserve the standard interleaving se-
mantics — also known as “sequential consistency” [I7] in the area of memory
models —, see the survey [I]. For instance, continuing with Example (), one can
see that with the thread system

(r:=1p)i(g:=tt) || (' :="q);(p:=tt)

and starting with a state where !p = ff = !q, one can get a state where
'r = ¢t = !7/ as an outcome of a valid speculative computation, that first
issues the writes to ¢ and p. This cannot be obtained by a standard interleav-
ing execution, but is allowed in memory models where reads can be reordered
with respect to subsequent memory operations, a property symbolically called
R—RW, according to the terminology of [I]. One could check that most of the
allowed behaviors (the so called “litmus tests”) in weak memory models can also
be obtained by speculative computations, thus stressing the generality of our
framework, which offers a very relaxed semantical model.

Since the interleaving semantics of thread systems is not preserved by opti-
mizing platforms, such as parallelized hardware, and since the latter are unlikely
to be changed for the purpose of running concurrent programs, some conditions
must be found for multithreaded applications to be executed correctly on these
platforms. For instance, most memory models support the well-known “DRF
guarantee,” that asserts that programs free of data races, with respect to the in-
terleaving semantics, are correctly executed in the optimized semantics [2[T2120].
However, with speculative computations, this guarantee fails. For instance, ex-
tending the second example given above, one can see that with the thread system

p=1f; | 4 =1
(if !'p then g := tt else ()) " (if !¢ then p := it else ()

one can get the outcome !p = tt = !¢, by speculatively performing, after the
initial assignments, the two assignments ¢ := ¢t and p := ¢t, thus justifying the
branch prediction made in the other thread (see [13] Section 17.4.8, and [6] for
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similar examples). This example, though not very interesting from a program-
ming point of view, exhibits the failure of the DRF guarantee. Let us see an-
other example, which looks more like a standard idiom, for a producer-consumer
scenario. In this example, we use a construct (with ¢ do e) to ensure mutual
exclusion, by acquiring a lock ¢, computing e and, upon termination, releasing
£. Then with the two threads

data:=1; H while not (with ¢ do ! flag) do skip;
(with ¢ do flag := ¢t) !l r :=!data

if initially !data = 0 and !flag = ff, we can speculate that !data in the sec-
ond thread returns 0, and therefore get an unexpected value for r (the other
instructions being processed in the normal way). Since speculating ahead of
synchronization (unlock) is permitted in our model, this is, according to our
definition, a valid speculation, and this provides another example of the failure
of the DRF guarantee in the speculative semantics.

Now a question is: what kind of property should concurrent programs possess
to be “robust” against aggressive optimizations — and more precisely: specula-
tions — found in optimized execution platforms, and how to ensure such robust-
ness? In this paper we address the first part of this questiorEl. We have seen that
data race free concurrent programs are not necessarily robust — where “robust”
means that the speculative semantics does not introduce unexpected behaviors
(w.r.t. the normal order semantics) for the program under consideration. In this
paper we show that speculatively data race free programs are robust — this is
our main technical result. Here speculatively DRF means that there is no data
race occurring in the speculative semantics, where a data race is, as usual, the
possibility of performing — according to the speculative semantics — concurrent
accesses, one of them being a write, to the same memory location. Then se-
quential programs in particular are robust, that is, speculative computation is a
correct implementation for these programs.

Related work

To the best of our knowledge, the notion of a (valid) speculation has not been
previously stated in a formal way. In this respect, the work that is the closest
to ours is the one on the mathematical semantics of Multilisp’s future construct,
starting with the work [I0] of Flanagan and Felleisen. This was later extended
by Moreau in [22] to deal with mutable state and continuations (extending the
work in [15] as regards the latter). A similar work regarding JAVA has been done
by Jagannathan and colleagues, dealing with mutable state [27] and exceptions
[23]. However, all these works on the future construct aim at preserving the se-
quential semantics, but they are not concerned with shared memory concurrency.
Moreover, they do not include branch prediction and value prediction.

! For an answer to the second part we refer to the forthcoming extended version of
this paper.
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2 The Language

The language supporting speculative computations is an imperative call-by-value
A-calculus, with boolean values and conditional branching, enriched with thread
creation and a construct for ensuring mutual exclusion. The syntax is:

ex=uv | (eoe1) | (if e then eg else e1) | (refe) expressions
| (Ye) | (eo:=e1) | (threade) | (with £ do e)
ve=ax | Aze | | ff | () values

where £ is a lock, that is a name from a given infinite set Locks. As usual, A is
a binder for the variable x in Aze, and we shall consider expressions up to a-
conversion, that is up to the renaming of bound variables. The capture-avoiding
substitution of ey for the free occurrences of x in ey is denoted {z+eg}e;. We
shall use some standard abbreviations like (let z = eq in e;) for (Azejeg), which
is also denoted eq ; e; whenever x does not occur free in e;.

To state the operational semantics of the language, we have to extend it with
run-time constructs, in two ways. First, we introduce references (sometimes also
referred to as memory locations, memory addresses, or pointers) p, g, ... that are
names from a given infinite set Ref. These are (run-time) values. Then we use
the construct (e\f) to hold a lock for e. As it is standard with languages involving
concurrency with shared variables, we follow a small-step style to describe the
operational semantics, where an atomic transition consists in reducing a redex
(reducible expression) within an evaluation context, while possibly performing a
side effect. The syntax is then extended and enriched as follows:

Dy, q... € Ref references
vi=--- | p run-time values
ex=---| (e\f) run-time expressions
u == (Azev) | (if tt then eg else e1) | (if ff then eq else e1) redexes

| (refv) | ('p) | (p:=wv) | (threade) | (with £doe) | (v\f)
E:=] | E[F] evaluation contexts
F = ([Jle) | (w[]) | (if [] then eq else e1) frames
| (ref) | D) [ (Mi=e) | (v:=0) | I\

As usual, we denote by E[e] the expression resulting from filling the hole in E
by e. Every expression of the (run-time) language is either a value, or a redex in
a position to be reduced, or faulty. More precisely, let us say that an expression
is faulty if it has one of the following forms:

e (ve) where the value v is not a function Axe’;
e (if v then ¢y else e1) where the value v is not a boolean value, ¢t or ff;
e (!v) or v := v’ where the value v is not a reference.

Then we have:

LEMMA 2.1. For any expression e of the run-time language, either e is a value,
or there is a unique evaluation context E and a unique expression €’ which either
is a redex, or is faulty, such that e = E[¢/].
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To define speculative computations, we extend the class of standard evaluation
contexts by introducing speculation contexts, defined as follows:

Y= | [P speculation contexts
®:=F | (e]) | (Az[]e) | (if e then [] else e1) speculation frames
| (if e then eg else []) | (e:=1])

Let us comment briefly on the speculation contexts. With frames of the shape
(Az[] ), one can for instance compute e; in the expression (Axejey) — hence
in (let x = eg in e1) and ep;e; in particular —, whereas in a normal order
computation one has to compute eg first. This is similar to a future expression
(let = future e in eq) [10], where e; is computed in advance, or in parallel
with eg. With the frames (if e then [] else e1) and (if e then e else []), one is
allowed to compute in a branch (or in both branches) of a conditional construct,
without knowing the value of the condition, again computing in advance (or in
parallel) with respect to the normal order. This is known as “branch prediction”
[26]. Notice that, by contrast, the construct (with £ do e) acts as a “speculation
barrier,” that is, (with ¢ do []) is not a speculation frame. Indeed, the purpose
of acquiring a lock is to separate side-effecting operations. We could allow pure
(i.e. without side effect) speculations inside such a constructE7 but this would
complicate the technical developments, with no added value, since, as we shall
see, we can always speculatively acquire a lock (but not speculatively release it).

To define the semantics of locking, which allows for reentrant locks, we shall
use the set, denoted [X], of locks held in the context 3, defined as follows:

M=o {e}if @ = ([\0)
where [®@] =
[E[®]] = [E]U[®] () otherwise
Speculative computations are defined in two stages: first we define speculations,
that are abstract computations of a given thread — abstract in the sense that the
state, made of a memory, a set of busy locks, and a multiset of threads, is ignored
at this stage. We can regard these as attempts to perform some computation,
with no real side effect. Then we shall compose such speculations by interleaving
them, now taking at this stage the global state into account. In order to do so,
it is convenient to formalize speculations as labeled transitions, explicitly indi-
cating what reduction occurs, that is what is the action performed at each step.
There are several kinds of actions, namely performing a B-reduction, denoted (3,
choosing a branch in a conditional construct (~ and ), creating a new reference
p in the store with some initial (closed) value (v,,,), reading (rd, ) or writing
m

(wrp ) a reference, spawning a new thread (spw,), acquiring (¢ ) or releasing

(£) alock £. Then the syntax of actions is as follows:

Ia%
az=0 | < [ N | vpo | rdpo | wrpe | | €] b
N\

b :=spw, | ¢

2 By enriching the conflict relation, see below.
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where v and e are closed. The action p stands for taking a lock that is already
held. We denote by Act the set of actions, and by B the subset of b actions.

In order to define valid speculations, we shall also need to explicitly indicate in
the semantics where actions are performed. To this end, we introduce the notion
of an occurrence, which is a sequence over a set of symbols, each associated with
a frame, denoting a path from the root of the expression to the redex that is
evaluated at some step. In the case of a frame (e []), it is convenient to distinguish
the case where this is a “normal” frame, that is, when e is a value, from the case
where this is a true speculation frame. Then an occurrence is a sequence o over
the set SOcc below:

Oce = {([] ), (o]]) (if [ then else ), (ref []), (*[]), ([ := ), (v:=[)), (I\O)}
SOcc = Occ U{( [}), (A\z[] ), (if then [] else ),(if then else[]),( =)}

The occurrences o € Occ* are called normal. Notice that we do not consider
Az[] as an occurrence. This corresponds to the fact that speculating inside a
value is forbidden, except in the case of a function applied to an argument,
that is (Azejeg) where speculatively computing e; is allowed (again we could
relax this as regards pure speculations, but this would involve heavy technical
complications). One then defines the occurrence @3, as the sequence of frames
that points to the hole in 3, that is:

where
afle)=(0)
(ef]) if e € Val
Qel]) =
(el {( [)) otherwise
(

o J@=Dife=veva
(e:=1)) { ( :=1]]) otherwise

and so on. We denote by o - o’ the concatenation of the two sequences o and o',
and we say that o is a prefix of o/, denoted o < o', if o' = 00" for some o”. If
o £ 0 and o £ o then we say that o and o’ are disjoint occurrences.

We can now define the “local” speculations, for a given (sequential) thread.
This is determined independently of any context (memory or other threads), and
without any real side effect. Speculations are defined as a small step semantics,
namely labeled transitions

e — e
o

where a is the action performed at this step and o is the occurrence at which
the action is performed (in the given thread). These are defined in Figure 1.
Speculating here means not only computing “in advance” (or “out-of-order”),
but also guessing the values from the global context (the memory and the lock
context). More precisely, the speculative character of this semantics is twofold.
On the one hand, some computations are allowed to occur in speculation contexts
3, like with future computations or branch prediction. On the other hand, the
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2[(zev)] —= S[{wvke  Bl(pi=v)] 25 B[]

S[(if ¢ then eq else e1)] é S[eo] E[(thread )] < E[()]
S[(if fF then eo else e1)] é Slei] ((with £do¢)] Lo B[] £e[F]
S{(refv)] 22 S S{(with ¢ do )] —— B{(e\0)] £ ]

Sl(tp)] 2 S Bl0\)] — Bl

Fig. 1. Speculations

value resulting from a dereference operation (! p), or the status of the lock in the
case of a locking construct (with £ do e), is “guessed”, or “predicted” — as regards
loads from the memory, this is known as value prediction, and was introduced in
[11UT9]. These guessed values may be written by other threads, which are ignored
at this stage. One should notice that the b actions are only allowed to occur from
within an evaluation context, not a speculation context. However, one should also
observe that an evaluation context can be modified by a speculation, while still
being an evaluation context. This is typically the case of ([Je) and (Azel]) —
hence in particular (let =[] in e) and [] ;e —, where one is allowed to speculate
the execution of e; this is also the case with (if [] then e else e;) where one can
speculate in a branch, that is in eg or ;. Then for instance with an expression of
the form (eg\f) ; e1, one can speculatively compute in e; before trying to release
the lock ¢ and proceed with e (a special case of this is the so-called “roach motel
semantics,” see [3]). The following is a standard property:

LEMMA 2.2. Ife % € then {x—v}e = {xv}e’ for any v.

DEFINITION (SPECULATIONS) 2.3. A speculation from an expression e to an

expression €' is a (possibly empty) sequence o = (ei 2 ei+1) of specula-
0;

0<i<n
tion steps such that eq = e and e,, = ¢’. This is written o : e — ¢’. The empty
speculation (with ¢’ = e) is denoted . The sequence o is normal iff for all i the
occurrence o; is normal. The concatenation o - ¢’ : e — €’ of o and ¢’ is only
defined (in the obvious way) if o ends on the expression e” where o’ originates.

Notice that a normal speculation proceeds in program order, evaluating redexes
inside evaluation contexts — not speculation contexts; still it may involve guessing
some values that have to be read from the memory. Let us see two examples of
speculations — omitting some labels, just mentioning the actions:

EXAMPLE 2.4

Wrp ¢t

P50 S 050 0

r:=Ip;q: =1t Mt = 'p;0) Dot
Here we speculate in two ways: first, the assignment ¢ := t¢¢, which would nor-
mally take place after reading p and updating r, is performed, or rather, issued,
out of order; second, we guess a value read from memory location p.
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EXAMPLE 2.5

Wrg, it

(if !'p then g := ¢t else ()) —— (if ! p then () else ()

rdp it
—

(if ¢t then () else () = 0

Here we speculate by predicting that we will have to compute in the first branch,
while guessing that the value pointed to by p is t¢. Obviously this guessed value
may not be the correct one, and in this case the computation made in the
“then” branch has to be invalidated. We shall define valid speculations in the
next section.

The concurrent speculative semantics is again a small step semantics, con-
sisting in transitions between configurations C = (S, L,T) where the store S,
also called here the memory, is a mapping from a finite set dom(S) of references
to values, the lock context L is a finite set of locks, those that are currently
held by some thread, and 7', the thread system, is a mapping from a finite set
dom(T) of thread names (or thread identifiers), subset of Names, to expressions.
If dom(T) = {t1,...,tn} and T'(t;) = e; we also write T as

(t1,en) |-+ - [[(tn, en)

As usual, we shall assume we consider only well-formed configurations, meaning
that any reference that occurs somewhere in the configuration belongs to the
domain of the store, that is, it is bound to a value in the memory — we shall
not define this property, which is preserved in the operational semantics, more
formally. For instance, if e is an expression of the source language, any initial
configuration (0, 0, (¢, e)) is well-formed. The speculative computations are made
of transitions that have the form
C % c’

indicating the action a that is performed, the thread ¢ that performs it, and
the occurrence o where it is performed in the thread (these labels are just an-
notations, introduced for technical convenience, but they do not entail any con-
straint on the semantics). At each step, a speculation attempted by one thread
is recorded, provided that the global state agrees with the action that is issued.
That is, the value guessed by a thread for a pointer must be the value of that
pointer in the memory (but notice that the store itself is speculative, being spec-
ulatively updated), and similarly acquiring a lock can only be done if the lock is
free. We distinguish two cases, depending on whether the action spawns a new
thread or not. The corresponding two rules are given in Figure 2, where

a=p,-pu=8S=S&L =L
a=vpy,=pgdom(S) & S =S U{p—uv}
& L' =1L
a=rdpy,=0v=80p) &S =S&L =L
a=wrp, =S =Sp:=0v]&L =L
a=0=8=S&tgL&L =LU{l}

a=0=8=S&L =L-{}
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e % e a # spw,,
(*)
(S, L, (t,e) | T) = (8", L', (t,€) | T)
’ t ¢ dom(T) U {t}
(S, L, (t,e) | T) = (S, L, (t,e") ||(t', ) | T)

Fig. 2. Speculative Computations

DEFINITION (COMPUTATIONS) 2.6. A speculative computation from a con-
ﬁguratjon C' to a configuration C' is a (possibly empty) sequence ~y of steps

(Ci == Cisa)

__ in the speculative operational semantics such that Cy = C'
ti,0i o<isn

and C,, = C". This is written v : C' = C’. The empty computation is denoted
e. The concatenation v -+’ : C = C’ is only defined (in the obvious way) if
v ends on the configuration C” where ~' originates, that is v : C' = C" and

IS U ’ . _ S ag ) . . .
7' : C" = C'. The computation v = (C; P C“rl)ogign is normal if for all i

the occurrence o; is normal.

One can see that normal computations correspond to computations in the stan-
dard interleaving semantics, that we regard as the reference semantics from the
programmer’s point of view. Even though our definition of speculative computa-
tions ensures that the values read from the memory are correctly guessed, some
speculation sequences are still wrong, like — omitting the occurrences

({p— ff},0,(t, (if ! p then p:= tt else ()))) ({p — tt}, 0, (t,(if !'p then () else ())))
et (fp e 1), 0, (4, (if ¢ then () else ())))

Here the normal data dependency between the read and write on p is broken,
and the branch prediction is therefore wrong. Similarly, the computation

({p— [} 0, (if ff then p := it else ()))) ({p — tt}, 0, (t, (if ff then () else ()))
2 ({p e 13,0, (£,0)

is wrong because it violates the normal control dependency between the predicate
and the branches of the conditional branching. In the next section we shall define
which are the correct speculative computations. To this end, we shall need the
following technical definition, which formalizes the contribution of each thread
to a speculative computation:

DEFINITION (PROJECTION) 2.7. Given a thread identifier t, the projection v|; of
a speculative computation «y on thread t is defined as follows, by induction on ~y:
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ele=c¢
eSe - (y)ift =t &
’ C=(S.L(te)|T) &
C'= (S, L' (t,e)||T)
v|¢ otherwise
It is easy to check that this is indeed well-defined, that is:

(Cﬁol'v)lt =

REMARK 2.8.  For any speculative computation ~ and name t, the projection
~|¢ is a speculation.

3 Valid Speculations

We shall qualify a speculative computation as valid in the case where each of its
projections is equivalent in some sense to a normal evaluation. That is, a specu-
lative computation is valid if it only involves thread speculations that correctly
guess the values read from the memory, and preserves, up to some equivalence,
the normal program order. In other words, the validity criterion is local to the
threads, namely, each thread’s speculation should be equivalent to a sequential
execution!] The equivalence we use is the permutation of transitions equivalence
introduced by Berry and Lévy [BIIg], that we also used in our previous work
on memory models [7]. Intuitively, this equivalence says that permuting inde-
pendent steps in a speculation results in “the same” speculation, and that such
independent steps could actually be performed in parallel. It is clear, for in-
stance, that actions performed at disjoint occurrences can be done in any order,
provided that they are not conflicting accesses to the same memory location (the
conflict relation will be defined below). This applies for instance to

d
r:=1p;q:=1tt RiLIEN r:=1p;( R ZUN r=1tt;()

from Example 2.4. Similarly, we can commute two steps such as

Wrg it

(if ¢t then q := tt else ()) ——— (if ¢t then () else () Z 4]

(see Example 2.5), although in this case we first need to say that the first step
in this sequence is indeed “the same” as the second one in

. P "
(if tt then q == tt else () > q:=tt —2% ()

. . . a .
To this end, given a speculation step e — €’ and an occurrence o’ in e, we define
o

the residual of o' after this step, that is the occurrence, if any, that points to the
same subterm (if any) as o’ pointed to in e. For instance, if the step is

. v
(if ¢t then eg else e1) — eo
£

then for o' = e or o/ = (if [] then else ) there is not residual, because the
occurrence has been consumed in reducing the expression. The residual of any

3 This appears to be the standard — though implicit — validity criterion in the literature
on speculative execution of sequential programs.
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occurrence pointing into eg, i.e. of the form (if then [] else ) - o, is o, whereas
an occurrence of the form (if then else []) - ¢, pointing into eq, has no resid-
ual, since the subexpression e; is discarded by reducing to the first branch of the
conditional expression. This is the way we deal with control dependencies. The
notion of a residual here is much simpler than in the A-calculus (see [18]), because
an occurrence is never duplicated, since we do not compute inside a value (except
in a function applied to an argument). Here the residual of an occurrence after
a speculation step will be either undefined, whenever it is discarded by a condi-
tional branching, or a single occurrence. We actually only need to know the action
a that is performed and the occurrence o where it is performed in order to define
the residual of o after such a step. We therefore define o’/(a, 0) as follows:

o' if o £ 0
0-0" ifo'=0-(\z]] )-0"&a=p
o'/(a,0) = oro =o-(if then[else )-0" &a=.

oro =o-(if then else(])- 0" & a="

undefined otherwise

In the following we write o’ /(a, 0) = 0” to mean that the residual of o’ after (a, o)
is defined, and is o”. Notice that if o'/(a,0) = o with o € Occ* then o’ = o
and o £ 0.

Speculation enjoys a partial confluence property, namely that if an occurrence
of an action has a residual after another one, then one can still perform the action
from the resulting expression. This property is known as the Diamond Lemma.
For lack of space, the proof of this Lemma is omitted (as well as the proofs of
other statements below).

LEMMA (D1aMoND LEMMA) 3.1. Ife 2% ¢y and e a—1> e1 with 01 /(ag,00) = 0

00
and og/(a1,01) = of, then there exists e’ such that ey —> ¢ and e; <% ¢'.
o} %

One should notice that the €', the existence of which is asserted in this lemma, is
actually unique, up to a-conversion. Let us see an example: with the expression
of Example 2.4, we have — recall that eg;e; stands for (Azejeg) where z is not
free in eq:

ro=! =t
Piq o P30

and
r:=1!p;q:=tt rdp—’“’w" = tt;q = tt
(o,[1)-(r:==[D)
Then we can close the diagram, ending up with the expression r := t¢;(). This
confluence property is the basis for the definition of the equivalence by permuta-
tion of computing steps: with the hypotheses of the Diamond Lemma, we shall

regard the two speculations

ao al / al ao /
e—e)—¢€ and e—e; —e
oo o’l o1 06

as equivalent. However, this cannot be so simple, because we have to ensure
that the program order is preserved as regards accesses to a given memory
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location (unless these accesses are all reads). For instance, the speculation —
again, omitting the occurrences:

rd Wi
pi=tt;ri="p 2L p=tt;r:=f RUEIIN O;r:=f

should not be considered as valid, because it breaks the data dependency between
the write and the read on p. To take this into account, we introduce the conflict
relation between actions, as followsd:

DEFINITION (CONFLICTING ACTIONS) 3.2. The conflict relation # between
actions is given by

# = U {(er,vv Wrp,w ), (Wrp,o, rdp.w), (rdp,o, er,w)}
pERef,v,weVal

We can now define the permutation equivalence, which is the congruence (with

respect to concatenation) on speculations generated by the conflict-free Diamond

property.

DEFINITION (PERMUTATION EQUIVALENCE) 3.3. The equivalence by permuta-

tion of transitions is the least equivalence ~ on speculations such that if e Z—°> €o
0

and e “% e; with 01 /(ag, 00) = 0, and oy/(a1,01) = oy and —(ag # a1) then
o1

ao a ’ ai ao 1
ogp+€ —€yp — € 01 >X0p-€—€e1 — € 01
00 o} o1 o,

where €’ is determined as in the Diamond Lemma.

Notice that two equivalent speculations have the same length. Let us see some
examples. The speculation given in Example 2.4 is equivalent to the normal
speculation

r:=1p;q:=1tt Dot ro=1tt;q:=tt

W gt

0iqi=tt 5 q:=tt

Wrg, it O
Similarly, the speculation given in Example 2.5 is equivalent to the normal spec-
ulation

rdp it

(if !'p then g := tt else ()) —— (if t¢ then ¢ := it else ()
i) q:= it —)qu‘” O

We are now ready to give the definition that is central to our work, characterizing
what is a valid speculative computation.

DEFINITION (VALID SPECULATIVE COMPUTATION) 3.4. A speculation is valid
if it is equivalent by permutation to a normal speculation. A speculative com-
putation +y is valid if all its thread projections 7|, are valid speculations.

4 We notice that in some (extremely, or even excessively) relaxed memory model (such
as the one of the Alpha architecture, see [2I]) the data dependencies are not main-
tained. To deal with such models, we would adopt an empty conflict relation, and a
different notion of data race free program (see below).
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It is clear for instance that the speculations given above that do not preserve
the normal data dependencies are not valid. Similarly, regarding control depen-
dencies, one can see that the following speculation

rdp ¢t

—— (if tt then () else ()) L 0

Wrq ¢t
R —

(if ! p then () else ¢ := tt) (if ! p then () else ()
which is an example of wrong branch prediction, is invalid, since the occurrence
of the first action has no residual after the last one, and cannot therefore by
permuted with it. We have already seen that the speculations from Examples
2.4 and 2.5 are valid. (Notice that, obviously, any normal computation is valid.)
Then the reader can observe that from the thread system — where we omit the
thread identifiers
ri=Ip;qi=tt|r =lq;p:=tt

and an initial memory S such that S(p) = ff = S(gq), we can, by a valid specu-
lative computation, get as an outcome a state where the memory S’ is such that
S'(r) = tt = S’(r'), something that cannot be obtained with the standard, non-
speculative interleaving semantics. This is typical of a memory model where the
reads can be reordered with respect to subsequent memory operations — a prop-
erty symbolically called R—RW, according to the terminology of [, that was not
captured in our previous work [7] on write-buffering memory models. We conjec-
ture that our operational model of speculative computations is more general (for
static thread systems) than the weak memory model of [7], in the sense that for any
configuration, there are more outcomes following (valid) speculative computations
than with write buffering. We also believe, although this would have to be more for-
mally stated, that speculative computations are more general than most hardware
memory models, which deal with access memory, but do not transform programs
using some semantical reasoning as optimizing compilers do. For instance, let us
examine the case of the amd6 example (see [25]), that is

N V-
p=t = | 2T 02T

If we start from a configuration where the memory S is such that S(p) = ff =
S(q), we may speculate in the third thread that !q returns ff (which is indeed
the initial value of ¢), and similarly in the fourth thread that ! p returns ff, and
then proceed with the assignments p := t¢ and ¢ := tt, and so on. Then we can
reach, by a valid speculative computation, a state where the memory S’ is such
that S’(rg) = ¢t = S'(r2) and S'(r1) = ff = S'(r3), an outcome which cannot
be obtained with the interleaving semantics.

Another unusual example is based on Example 2.5. Let us consider the fol-
lowing system made of two threads

pi=If; | 9= s
(if !p then g :=tt else ()) "' (if !¢ then p := tt else ()

Then by a valid speculative computation we can reach, after having performed the
two initial assignments, a state where S(p) = tt = S(¢). What is unusual with this
example, with respect to what is generally expected from relaxed memory models
for instance [2[12], is that this is, with respect to the interleaving semantics, a data
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race free thread system, which still has an “unwanted” outcome in the optimizing
framework of speculative computations (see [6] for a similar example). This indi-
cates that we have to assume a stronger property than DRF (data-race freeness)
to ensure that a program is “robust” with respect to speculations.

DEFINITION (ROBUST PROGRAMS) 3.5. A closed expression e is robust iff for
any t and ~y such that v : (0,0, (t,e)) = (S,L,T) there exists a normal compu-
tation 7 such that 7 : (0,0, (t,e)) — (S,L,T).

In other words, for a robust expression the speculative and interleaving semantics
coincide, or: the robust programs are the ones for which the speculative semantics
is correct (with respect to the interleaving semantics).

4 Robustness

Our main result is that speculatively data-race free programs are robust.

DEFINITION (SPECULATIVELY DRF PROGRAM) 4.1. A configuration C has a

speculative data race iff there exist t;, 0;, a; and C; (i = 0,1) such that
c’ t“—°> Cy and C' t—> Cy, with to # t1 & ag # a1. A valid speculative
0,00 1,01

o<i<n is speculatively date race free iff for all i, C;

has no speculative data race. A configuration C' is speculatively date race free
(speculatively DRF, or SDRF) iff any valid speculative computation originating
in C' is data race free. An expression e is speculatively DRF iff for any t the
configuration (0,0, (t,e)) is speculatively DRF.

computation (CZ- ta—b> Ci+1)
1,04

It is obvious that this is a safety property, in the sense that if C' is speculatively
DRF and C’ is reachable from C' by a normal computation, then C’ is specula-
tively DRF. We could have formulated this property directly, without resorting
to the conflict relation, saying that there are no reachable concurrent accesses
to the same location in the memory. In this way we could deal with optimizing
architectures (such as the Alpha memory model, see [21]) that allow to reorder
such accesses, by including the case where these concurrent accesses can occur
(in the speculative semantics) from within the same thread, like for instance in
p:= ff;r := !p. We do not follow this way here, since such a model requires
unnatural synchronizations from the programmer.

In order to establish our main result, we need a number of preliminary lemmas,
regarding both speculations and speculative computations. First, we extend the
notion of residual by defining o/o where o is an occurrence and o a speculation.
This is defined by induction on the length of o, where the notation o’ = o/o
means that o/o is defined and is o’.

ole =o

of(e 2 ¢') -0 = (o/(a,0) /o

In the following we shall often omit the expressions in a speculation, writing
0o - % - o instead of 0g - (eg = e1) - o1. Indeed, eq is determined by o, and,
o o
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given eg, the expression e; is determined by the pair (a,0). Now we introduce

the notion of a step, called “redex-with-history” in [BII8], and of steps being in

the same family, a property introduced in [5].

DEFINITION (STEPS) 4.2. A step is a pair [0, (a,0)] of a speculation o : e — ¢

and an action a at occurrence o such that ¢/ = ¢’ for some expression €’. Given
o

a speculation o, the set Step(c) is the set of steps [s, (a, 0)] such that ¢ - < ¢.
o
The binary relation ~ on steps, meaning that two steps are in the same family,
is the equivalence relation generated by the rule
do". o' ~0-0" & o =o0/d”

[0 (a,0)] ~ [0”, (@, 0")]

Equivalent speculations have similar steps:

LEMMA 4.3. If [g,(a,0)] € Step(c) and ¢’ ~ o then there exists [¢', (a,0’)] €
Step(o’) such that [s, (a,0)] ~ [¢', (a,0")].

Proof: by induction on the definition of ¢/ ~ o.

A property that should be intuitively clear is that if a step in a speculation is in
the same family as the initial step of an equivalent speculation, then it can be
commuted with all the steps that precede it:

LEMMA 4.4. Let ¢ = 0 - — - 0y be such that ¢ ~ — - ¢ with [e, (a,0')] ~
o o’

"

00, (a,0)]. If 69 = g0 - (e = ¢') - ¢ then there exist o, ¢, o' and o, such that
- 1
(o]

- (e % e’ % €)-ol~0o Whereozo”/%-oi and o =0/ (a,0").
o o

Next, we can show that, in a speculation, the unlock actions, and also spawning
a new thread, act as barriers with respect to other actions that occur in an
evaluation context: these actions cannot be permuted with unlock (or spawn)
actions. This is expressed by the following lemma:

LEMMA 4.5. Let 0 = 0+ — -0q where a € B, and o ~ ¢’ with o’ = oy &40
o o

where [o9, (a,0)] ~ [0(, (a,0)]. If s, (a’,0")] € Step(og) with o' € Occ* then there
exist ¢’ and 0" such that [¢’, (a’,0")] € Step(o()) and [, (a’,0")] ~ [¢', (a,0")].
An immediate consequence of this property is:

COROLLARY 4.6. If o is a valid speculation, that is ¢ ~ & for some normal
speculation &, and if & = 6 - — - 61 with a € B, then ¢ = 0¢ - — - 01 with

o o
[00, (a,0)] ~ [d0, (a,0)], such that for any step [, (a’,0")] of oy there exists a

step [, (a’,0")] in the same family which is in og.

This is to say that, in order for a speculation to be valid, all the operations that
normally precede a B action, and in particular an unlocking action, must be
performed before this action in the speculation.
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From now on, we shall consider regular configurations, where at most one
thread can hold a given lock, and where a lock held by some thread is indeed in
the lock context. This is defined as follows:

DEFINITION (REGULAR CONFIGURATION) 4.7. A configuration C = (S, L,T)
is regular if and only if it satisfies

(1) if T = (t;,2:[(e,\O) || T; for i = 0,1 then tg = t1 & Xy = 31 & ¢ =
€1 & T() = T1

(i) T = [\ T = el

For instance, any configuration of the form (0,0, (¢,e)) where e is an expression
is regular. The following should be obvious:

REMARK 4.8. If C' is regular and C ti> C' then C' is regular.

The following lemma (for a different notion of computation) was called the
“Asynchrony Lemma” in [7]. There it was used as the basis to define the equiv-
alence by permutation of computations. We could also introduce such an equiva-
lence here, generalizing the one for speculations, but this is actually not
necessary.

LEMMA 4.9. Let C be a (well-formed) regular configuration. If C ta—°> Co ta—1>
0,00 1,01

') m
C' with tg # t1, —(ag # a1) and ag = £ = aj # {, then there exists C; such
that C - ¢ -2 ",
t1,01 to,00
We have a similar property regarding “local” computations, that occur in the
same thread:

LEMMA 4.10. Let C be a (well-formed) regular configuration. If C :—°>C’o BTN
;00

t,0}
C'" with C=(S, L, (t,e) || T), Co=(So, Lo, (t,e0) || To)=, C" = (S, L', (t, ') || T")
and
ap al / ay ao /
e — ey —e Xe—€ep — €
00 o’l o1 og

then C ta—l> (S1, Ly, (t,e1) || Th) -2 C for some Sy, Ly and Ty.
,01 t,0(

PrOPOSITION 4.11. Let C' be a well-formed, closed, regular configuration. If
v :C 5 C is a valid data race free speculative computation, then there exists
a normal computation 7 from C to C'.

Proof: by induction on the length of . This is trivial if v = . Otherwise, let
v = (C’i BN Ci+1)0<i<n with n > 0. Notice that for any 7, the configuration
ti,04 Xt

C; is well-formed, regular and has no data race. The set {¢ | 7|, # €} is non-
empty. For any ¢ there exists a normal speculation o? such that o ~ ~|;. Let j

be the first index (0 < j < n) such that v[;, = o9 - Y, oy and ot = 2o
0j o

with [e, (0,a;)] ~ [o0, (a;,0;)]. Now we proceed by induction on j. If j = 0
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then o = 0; € Occ*, and we use the induction hypothesis (on the length n) to
c;

tj—1,05-1 tj,0;

aj—1

conclude. Otherwise, we have C;_; Cj+1. We distinguish two

cases.

o If t;_1 #t; then we have =(a;_1 # a;) since + is speculatively data-race free.
We show that i < j = a; € B. Assume the contrary, that is a; € B for some

i < j. Then 7|y, = - Z—W -1, and by Lemma 4.3 we have ol = & - Z—j> - & with

[0, (0i,ai)] ~ [0, (0', a;)]. Then by Corollary 4.6 the first step of ¢ - Z—j> is in the

family of a step in ¢ - —, contradicting the minimality of j. We therefore have
04

A 4 —
aj—1 # € in particular. By Lemma 4.9 we can commute the two steps %—} and

OJ_
ﬂn and we conclude using the induction hypothesis (on 7).
0;
o Ift;_1 =t;, we have og = - aj—_l>, and by Lemma 4.4 there exist o', o” and
0j—1
o such that v|;; ~ ¢ - &, 8 ) with o = o' [(aj—1,0j—1). We conclude
OI O//

using Lemma 4.10 and the induction hypothesis (on j).

Notice that we proved a property that is actually more precise than stated in
the proposition, since the 4 that is constructed is equivalent, by permutations,
to 7 — but we decided not to introduce explicitly this equivalence as regards
speculative computations. An immediate consequence of this property is the
announced robustness result:

THEOREM (ROBUSTNESS) 4.12.  Any speculatively data race free closed expres-
sion is robust.

We observe that if an expression is purely sequential, that is, it does not spawn
any thread, then it is speculatively data race free, and therefore robust, that is,
all the valid speculations for it are correct with respect to its standard semantics.
Our result holds with synchronization mechanisms other than acquiring and
releasing locks. We could have considered simpler memory barrier operations
than the mutual exclusion construct (with ¢ do e), such as fence. This is a pro-
gramming constant (but not a value), the semantics of which is given by

Elfence] — EJ()]

with no side effect. Performing a fence should be categorized as a B action, so
that the Corollary 4.6 holds for such an action, since it is only performed from
within a normal evaluation context. Then our Theorem 4.12, which, as far as
the B actions are concerned, relies on this property 4.6, still holds with this
construct. However when speculation is allowed this construct is rather weak,
and in particular it does not help very much in preventing data races, or even
to separate the accesses to the memory from a given thread. We let the reader
check for instance that with the IRIW example (see [G]), that is
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pi=tt |l qg:=1t|ro:=1p;lr2:=1q;

fence; fence;

ri:=1q r3:=1!p
starting from a configuration where the memory S is such that S(p) = [f = S(q)
we may, as with the amd6 example above, get by a valid speculative computation
a state where the memory S’ is such that S'(rg) = tt = S'(r2) and S'(r) =
ff = S’(r3). This is because the assignments to 71 and r3 can be speculatively
performed first (after having read pointers p and ¢), and, in the projections over
their respective threads, be commuted with the assignments to 7o and r2 (since
there is no data dependency), and the fence, thus checking that local normal
order evaluations with the same actions is possible.

5 Conclusion

We have given a formal definition for speculative computations which, we be-
lieve, is quite general. We have, in particular, checked the classical “litmus tests”
that are considered when dealing with memory models, and we have seen that
most of these are correctly described in our setting (except in the cases relying
on code transformations, which are beyond the scope of our theory of specula-
tions). This means that our semantics is quite permissive as regards the allowed
optimizations, while being correct for sequential programs, but also that it is
very easy to use for justifying that a particular outcome is allowed or forbidden.
This is clearly a benefit from using a standard operational style. We think that
our model of speculative computation could be used to justify implementation
techniques, and to design formal analysis and verification methods for checking
concurrent programs, as well as developing programming styles for safe multi-
threading. Our model could also be made less permissive, either by resticting
the class of speculation contexts, or by extending the conflict relation, to forbid
some commutations (regarding synchronization actions in particular), in order
to capture more precisely actual optimized execution platforms. Obviously, our
robustness result still holds, but in some cases one could hope to get a more
liberal robustness property, like the DRF guarantee for instance. We plan to
explore the variety of such speculation scenarios in future work.
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