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Abstract. A greedy drawing is a graph drawing containing a distance-decreasing
path for every pair of nodes. A path (v0, v1, . . . , vm) is distance-decreasing if
d(vi, vm) < d(vi−1, vm), for i = 1, . . . , m. Greedy drawings easily support
geographic greedy routing. Hence, a natural and practical problem is the one of
constructing greedy drawings in the plane using few bits for representing vertex
Cartesian coordinates and using the Euclidean distance as a metric. We show
that there exist greedy-drawable graphs that do not admit any greedy drawing in
which the Cartesian coordinates have less than a polynomial number of bits.

1 Introduction

In geographic routing nodes forward packets based on their geographic locations. A
very simple geographic routing protocol is greedy routing, in which each node knows
its location, the location of its neighbors, and the location of the packet’s destination.
Based on this information, a node forwards the packet to a neighbor that is closer than
itself to the destination’s geographic location.

Unfortunately, greedy routing has two weaknesses. First, GPS devices, typically used
to determine coordinates, are expensive and increase the energy consumption of the
nodes. Second, a bad interaction between the network topology and the node locations
can lead to situations in which the communication fails because a void has been reached,
i.e., a packet has reached a node whose neighbors are all farther from the destination
than the node itself.

A brilliant solution to the greedy routing weaknesses has been proposed by Rao et
al., who in [13] proposed a protocol in which nodes are assigned virtual coordinates and
the standard greedy routing algorithm is applied relying on such virtual locations rather
than on the geographic coordinates. Clearly, virtual coordinates need not to reflect the
nodes actual positions and, hence, they can be suitably chosen to guarantee that the
greedy routing algorithm succeeds in delivering packets.

After the publication of [13], intense research efforts have been devoted to deter-
mine: (i) Which network topologies admit a virtual coordinates assignment such that
greedy routing is guaranteed to work. (ii) Which distance metrics, which systems of
coordinates, and how many dimensions are suitable for virtual coordinates. (iii) How
many bits are needed to represent the vertex coordinates.

From a graph-theoretical point of view, Problem (i) can be stated as follows: Which
are the graphs that admit a greedy drawing, i.e., a drawing such that, for every two nodes
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u and v, there exists a distance-decreasing path from u to v? A path (v0, v1, . . . , vm) is
distance-decreasing if d(vi, vm) < d(vi−1, vm), for i = 1, . . . , m. This formulation of
the problem gives a clear perception of how greedy routing can be seen as a “bridge”
problem between the theory of routing and Graph Drawing, thus explaining why it
attracted attention in both areas.

Concerning drawings in the plane adopting the Euclidean distance, Papadimitriou
and Ratajczak [11] showed that Kk,5k+1 has no greedy drawing, for k ≥ 1. Further,
they observed that, if a graph G has a greedy drawing, then any graph containing G as
a spanning subgraph has a greedy drawing. Dhandapani [2] showed, with an existential
proof based on an application of the Knaster-Kuratowski-Mazurkievicz Theorem [8]
to the Schnyder’s methodology [14], that every triangulation admits a greedy drawing.
Algorithms for constructing greedy drawings of triangulations and triconnected planar
graphs have been proposed in [1,9]. In [9] it is also proved that there exist trees not
admitting any greedy drawing.

Concerning Problem (ii), it has been shown that virtual coordinates guarantee greedy
routing to work for every tree, and hence for every connected topology, when they can
be chosen in the hyperbolic plane [7].

Unfortunately, the above mentioned algorithms construct greedy drawings that are
not succinct, i.e., in the worst case they require Ω(n log n) bits for representing the ver-
tex coordinates (Problem (iii)). This makes them unsuitable for the motivating applica-
tion of greedy routing. For solving this drawback, Eppstein and Goodrich [5] proposed
an elegant algorithm for greedy routing in the hyperbolic plane representing vertex co-
ordinates with O(log n) bits. However, the perhaps most natural question of whether
greedy drawings can be constructed in the plane using O(log n) bits for representing
vertex Cartesian coordinates and using the Euclidean distance as a metric was, up to
now, open. This paper gives a negative answer to the above question.

Theorem 1. For infinitely many n, there exists a (3n + 3)-node greedy-drawable tree
that requires Ω(bn) area in any greedy drawing in the plane using the Euclidean dis-
tance as a metric, under any finite resolution rule, for some constant b > 1.

Observe the equivalence between stating the theorem in terms of area requirement of the
drawing and in terms of number of bits required for the vertex Cartesian coordinates.
Theorem 1 is one of the few results (e.g., [4]) showing that certain families of graph
drawings require exponential area. Notice that greedy drawings are a kind of proxim-
ity drawings [3], a class of graph drawings, including Euclidean Minimum Spanning
Trees [10,6], for which very little is known about the area requirement [12].

The paper is organized as follows. In Sect. 2 we introduce some definitions and
preliminaries; in Sect. 3 we prove that there exists a tree Tn requiring exponential area in
any greedy drawing; in Sect. 4 we show an algorithm for constructing a greedy drawing
of Tn; finally, in Sect. 5 we conclude and present some open problems.

2 Definitions and Preliminaries

A tree is a connected acyclic graph. The degree of a node is the number of edges incident
to it. A leaf is a node with degree 1. A leaf edge is an edge incident to a leaf. A path
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is a tree in which every node other than the leaves has degree 2. A caterpillar is a tree
in which the removal of all the leaves and of all the leaf edges yields a path, called
spine of the caterpillar, whose nodes and edges are called spine nodes and spine edges,
respectively.

A drawing of a graph is a mapping of each node to a distinct point of the plane and of
each edge to a Jordan curve between its endpoints. A planar drawing is such that no two
edges intersect except, possibly, at common endpoints. A straight-line drawing is such
that all the edges are straight-line segments. A planar drawing determines a circular
ordering of the edges incident to each node. Two drawings of the same graph are equiv-
alent if they determine the same circular ordering around each node. An embedding is
an equivalence class of planar drawings.

The area of a straight-line drawing is the area of its convex hull. The concept of
area of a drawing only makes sense for a fixed resolution rule, i.e., a rule that does
not allow, e.g., vertices to be arbitrarily close (vertex resolution rule) or edges to be
arbitrarily short (edge resolution rule). In fact, without any of such rules, one could
construct arbitrarily small drawings with arbitrarily small area. In the following, we
derive a lower bound valid under any of such rules. Namely, we prove that, in any
greedy drawing of an n-node tree Tn, the ratio between the length of the longest edge
and the length of the shortest edge is exponential in n, which implies that such a drawing
requires exponential area when any resolution rule has been fixed.

We now state some basic properties of the greedy drawings of trees.
The cell of a node v in a drawing is the set of all the points in the plane that are closer

to v than to any of its neighbors.

Lemma 1. (Papadimitriou and Ratajczak [11]) A drawing is greedy if and only if the
cell of each node v contains no node other than v.

We remark that the cell of a leaf node v with parent u is the half-plane containing
v and delimited by the axis of segment uv, where the axis of a segment is the line
perpendicular to the segment through its median point.

Lemma 2. Given a greedy drawing Γ of a tree T , any subtree of T is represented in Γ
by a greedy drawing.

Proof: Suppose, for a contradiction, that a subtree T ′ of T exists not represented in Γ
by a greedy drawing. Then, there exist two nodes u and v such that the only path from
u to v in T ′ is not distance-decreasing. However, such a path is also the only path from
u to v in T , a contradiction. �

Lemma 3. Given a greedy drawing Γ of a tree T and given any edge (u, v) of T , the
subtree T ′ of T that contains u and that is obtained by removing edge (u, v) from T
completely lies in Γ in the half-plane containing u and delimited by the axis of segment
uv.

Proof: Suppose, for a contradiction, that there exists a node w of T ′ that lies in Γ in
the half-plane containing v and delimited by the axis of uv. Then, d(v, w) < d(u, w).
The only path from v to w in T passes through u, hence it is not distance-decreasing, a
contradiction. �



174 P. Angelini, G. Di Battista, and F. Frati

Lemma 4. Any straight-line greedy drawing of a tree is planar.

Proof: Suppose, for a contradiction, that there exists a tree T admitting a non-planar
straight-line greedy drawing Γ . Let e1 = (u, v) and e2 = (w, z) be two edges that cross
in Γ . Edges e1 and e2 are not adjacent, otherwise they would overlap and Γ would not
be greedy. Then, there exists an edge e3 �= e1, e2 in the only path connecting u to w.
Lemma 3 implies that e1 and e2 lie in distinct half-planes delimited by the axis of the
segment representing e3, hence they do not cross, a contradiction. �

Corollary 1. Consider a greedy drawing Γ of a tree T . For each edge, remove its
drawing from Γ and substitute it with a straight-line segment connecting its endpoints.
The resulting drawing is a straight-line planar greedy drawing of T .

Because of Lemma 4 and of Corollary 1, in order to prove Theorem 1, we can restrict
the attention to planar straight-line greedy drawings. In the following, all considered
drawings will be planar and straight-line.

Lemma 5. In any greedy drawing of a tree T , the angle between two adjacent segments
is strictly greater than 60◦.

Proof: Consider any greedy drawing of T in which the angle between two adjacent
segments w1w2 and w2w3 is no more than 60◦. Then, |w1w3| ≤ |w1w2| or |w1w3| ≤
|w2w3|, say |w1w3| ≤ |w2w3|. Since d(w1, w3) ≤ d(w2, w3), the unique path
(w1, w2, w3) from w1 to w3 in T is not distance-decreasing. �
In the following we define a family of trees with 3n + 3 nodes, for every n ≥ 2, that
will be exploited in order to prove Theorem 1. Refer to Fig. 1.

Definition 1. Let Tn be a caterpillar with spine (v1, v2, . . . , vn) such that v1 has degree
5 and vi has degree 4, for each i = 2, 3, . . . , n. Let a1, b1, c1, and d1 be the leaves of Tn

adjacent to v1, let ai and bi be the leaves of Tn adjacent to vi, for i = 2, 3, . . . , n − 1,
and let an, bn, and cn be the leaves of Tn adjacent to vn.

Distinct embeddings of Tn differ for the order of the edges incident to the spine nodes.
More precisely, the clockwise order of the edges incident to each node vi is one of
the following: 1) (vi−1, vi), then a leaf edge, then (vi, vi+1), then a leaf edge: vi is a
central node (node vn in Fig. 1.b); 2) (vi−1, vi), then two leaf edges, then (vi, vi+1):
vi is a bottom node (node v2 in Fig. 1.b); or 3) (vi−1, vi), then (vi, vi+1), then two leaf
edges: vi is a top node (node v3 in Fig. 1.b). Node v1 is considered as a central node.
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Fig. 1. Two embeddings of caterpillar Tn. In (a) all the spine nodes are central nodes. In (b) node
v2 is a bottom node and node v3 is a top node.
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3 The Lower Bound

In this section we prove that any greedy drawing of Tn requires exponential area.
The proof is based on the following intuitions: (i) For any central node vi there

exists a “small” convex region containing all the spine nodes vj , with j > i, and their
adjacent leaves (Lemma 6). (ii) Almost all the spine nodes are central nodes (Lemma 8).
(iii) The slopes of edges (vi, ai), (vi, vi+1), and (vi, bi) incident to a central node vi

are in a certain range, which is more restricted for the edges incident to vi+1 than for
those incident to vi (Lemma 6). (iv) If the angle between (vi, ai) and (vi, bi) is too
small, then vj , aj , and bj , with j ≥ i + 2, can not be drawn (Lemma 10). (v) If both
the angles between (vi, ai) and (vi, bi), and between (vi+1, ai+1) and (vi+1, bi+1) are
large enough, then the ratio between the length of the edges incident to vi and the length
of the edges incident to vi+1 is constant (Lemma 9).

First, we discuss some properties of the slopes of the edges in the drawing. Second,
we argue about the exponential decrease of the edge lengths.

3.1 Slopes

Consider any drawing of v1 and of its adjacent leaves; rename such leaves so that the
counter-clockwise order of the vertices around v1 is a1, c1, d1, b1, and v2.

In the following, when we refer to an angle v̂1v2v3, we mean the angle that brings
the half-line from v2 through v1 to coincide with the half-line from v2 through v3 by a
counter-clockwise rotation.

Property 1. ̂b1v1a1 < 180◦.

Proof: By Lemma 5, â1v1c1 > 60◦, ̂c1v1d1 > 60◦, and ̂d1v1b1 > 60◦. �
Now we argue that, for any central node vi, there exists a “small” convex region that
contains all the spine nodes vj , with j > i, and their adjacent leaves.

Let vi be a central node and suppose that ̂biviai < 180◦. Denote by Ri the convex
region delimited by viai, by vibi, and by the axes of such segments (see Fig. 2.b).
Denote by pi the intersection between the axes of viai and vibi, and by ha

i (hb
i ) the

midpoint of viai (resp. vibi).
Assume that x(ai) = x(bi), x(vi) < x(ai), and y(ai) > y(bi). Such a setting can

be achieved without loss of generality up to a rotation/mirroring of the drawing and a
renaming of the leaves. In the following, whenever a central node vi is considered, the
drawing is rotated/mirrored and the leaves adjacent to vi are renamed so that x(ai) =
x(bi), x(vi) < x(ai), and y(ai) > y(bi).

Let slope(u, v) be the angle bringing the half-line from u directed downward to co-
incide with the half-line from u through v by a counter-clockwise rotation (see Fig. 2.a).
Further, let slope⊥(u, v) be equal to slope(u, v) − 90◦. We observe the following:

Property 2. slope(vi, bi) < slope⊥(bi, pi) < slope⊥(pi, ai) < slope(vi, ai).

Proof: Inequality slope(vi, bi) < slope⊥(bi, pi) (and analogously slope⊥(pi, ai) <
slope(vi, ai)) holds since slope(hb

i , pi) < slope(bi, pi). Inequality slope⊥(bi, pi) <
slope⊥(pi, ai) holds by assumption. �
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Fig. 2. (a) Region R1 contains the drawing of Tn \ {a1, b1, c1, d1, v1}. The slopes of a1p1 and
b1p1 are shown. (b) Region Ri contains the drawing of path (vi+1, vi+2, . . . , vn) and of its
adjacent leaves.

Lemma 6. Suppose that vi is a central node. Then, the following properties hold: (i)
̂biviai < 180◦; (ii) the drawing of path (vi+1, vi+2, . . . , vn) and of its adjacent leaves
lies in Ri; and (iii) any edge (vj , x), where x ∈ {aj, bj , vj+1} with j > i, is such that
slope⊥(bi, pi) < slope(vj, x) < slope⊥(pi, ai). See Fig. 3.a.

Proof: When i = 1, Property 1 ensures property (i). Further, Lemma 1 ensures property
(ii), that is, the drawing of Tn \ {a1, b1, c1, d1, v1} lies in R1 (see Fig. 2.a). In order to
prove property (iii), suppose, for a contradiction, that an edge (vj , x) exists, where x ∈
{aj, bj , vj+1} with j > 1, such that slope⊥(b1, p1) < slope(vj, x) < slope⊥(p1, a1)
does not hold. Then, it is easy to see that the half-plane delimited by the axis of vjx and
containing x also contains at least one out of a1, v1, and b1, thus providing a contradic-
tion to the greediness of the drawing, by Lemma 3.

By induction, suppose that properties (i), (ii), and (iii) of the lemma hold for some i.
Let k be the smallest index greater than i such that vk is a central node. Then, by prop-
erty (iii) of the inductive hypothesis and by Property 2, slope(vi, bi) < slope⊥(bi, pi)
< slope(vk, bk) < slope(vk, ak) < slope⊥(pi, ai) < slope(vi, ai) holds, which im-

plies ̂bkvkak < ̂biviai < 180◦, and property (i) of the lemma follows for k.
By Lemma 4, the drawing is planar; by Lemma 1, the cells of ak and bk do not

contain any node other than ak and bk, respectively. Hence, if a node u is in Rk, then
no node of any subtree of Tn containing u and not containing vk lies outside Rk. Thus,
vk−1 does not lie in Rk (since a subtree of Tn exists containing vk−1, vi, and not
containing vk); since vk is a central node, then vk+1 lies on the opposite side of vk−1

with respect to the path composed of edges (vk, ak) and (vk, bk). Hence, vk+1 (and path
(vk+1, vk+2, . . . , vn) together with its adjacent leaves) lies inside Rk, and property (ii)
of the lemma follows for k.

Property (iii) can be proved analogously as in the base case, by implicitly exploiting
that properties (i) and (ii) hold for k. Namely, if slope⊥(bk, pk) < slope(vj , x) <
slope⊥(pk, ak) does not hold, for some edge (vj , x) with j > k, then the half-plane
delimited by the axis of vjx and containing x also contains at least one out of ak, vk,
and bk, thus implying that the drawing is not greedy, by Lemma 3. �
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Fig. 3. (a) Possible slopes for an edge (vj , x). (b) Illustration for the proof of Lemma 7.

Now we give a general property of a greedy drawing of a tree. Consider two edges
(u, v) and (w, z) such that the path from u to w does not contain v and z. Suppose
that v and z lie in the same half-plane delimited by the line through u and w. Suppose,
without loss of generality up to a rotation/mirroring of the drawing, that x(u) = x(w),
y(u) < y(w), and 0◦ < slope(u, v), slope(w, z) < 180◦. See Fig. 3.b.

Lemma 7. slope(u, v) < slope(w, z).

Proof: Suppose, for a contradiction, that slope(u, v) ≥ slope(w, z). Then, either v lies
in the half-plane delimited by the axis of wz and containing z, or z lies in the half-plane
delimited by the axis of uv and containing v. Hence, by Lemma 2, the drawing is not
greedy. �

3.2 Exponential Decreasing Edge Lengths

Now we are ready to go in the mainstream of the proof that any greedy drawing of Tn

requires exponential area. Such a proof is in fact based on the following three lemmata.
The first one states that a linear number of spine nodes are central nodes, in any greedy
drawing of Tn.

Lemma 8. Suppose that vi is a central node, for some i ≤ n−3. Then, vi+1 is a central
node.

Proof: Refer to Fig. 4. Suppose, for a contradiction, that vi+1 is not a central node.
Suppose that vi+1 is a top node, the case in which it is a bottom node being analo-
gous. Rename the leaves adjacent to vi+1 in such a way that the counter-clockwise
order of the neighbors of vi+1 is vi, bi+1, ai+1, and vi+2. By property (i) of Lemma 6,
̂biviai < 180◦. By property (iii) of Lemma 6, by Property 2, and by the assumption
that vi+1 is a top node, slope(vi, bi) < slope(vi+1, bi+1) < slope(vi+1, ai+1) <

slope(vi+1, vi+2) < slope(vi, ai). By Lemma 5, ̂bi+1vi+1ai+1 > 60◦. It follows that
̂ai+1vi+1vi+2 < 120◦.

Suppose that vi+2 is a central node (a top node; a bottom node). Rename the leaves
adjacent to vi+2 in such a way that the counter-clockwise order of the neighbors of vi+2

is vi+1, bi+2, vi+3, and ai+2 (resp. vi+1, bi+2, ai+2, and vi+3; vi+1, vi+3, bi+2, and
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Fig. 4. Illustration for the proof of Lemma 8

ai+2). Notice that node vi+3 exists since i ≤ n− 3. By Lemma 7, slope(vi+2, bi+2) >
slope(vi+1, ai+1) (resp. slope(vi+2, bi+2) > slope(vi+1, ai+1); slope(vi+2, vi+3) >
slope(vi+1, ai+1)). By property (iii) of Lemma 6, slope(vi+2, ai+2) < slope(vi, ai)
(resp. slope(vi+2, vi+3) < slope(vi, ai); slope(vi+2, ai+2) < slope(vi, ai)). It follows

that ̂bi+2vi+2ai+2 < 120◦ (resp. ̂bi+2vi+2vi+3 < 120◦; ̂vi+3vi+2ai+2 < 120◦), hence
at least one of ̂bi+2vi+2vi+3 and ̂vi+3vi+2ai+2 (resp. of ̂bi+2vi+2ai+2 and

̂ai+2vi+2vi+3; of ̂vi+3vi+2bi+2 and ̂bi+2vi+2ai+2) is less than 60◦. By Lemma 5, the
drawing is not greedy. �

The next lemma shows that, if the angles ̂biviai incident to each central node vi are
large enough, then the sum of the lengths of viai and vibi decreases exponentially in
the number of considered central nodes.

Lemma 9. Let vi be a central node, with i ≤ n − 3. Suppose that both the angles
̂biviai and ̂bi+1vi+1ai+1 are greater than 150◦. Then, the following inequality holds:
|vi+1ai+1| + |vi+1bi+1| ≤ (|viai| + |vibi|)/

√
3.

Proof: Refer to Fig. 5.a. By Lemma 8, vi+1 is a central node. Denote by l(vi+1) the
vertical line through vi+1 and denote by l(ha

i ) and l(hb
i) the horizontal lines through ha

i

and hb
i , respectively.

By property (iii) of Lemma 6, we have that slope⊥(bi, pi) < slope(vi+1, bi+1) <
slope(vi+1, ai+1) < slope⊥(pi, ai). Hence, by Property 2, we have slope(vi, bi) <
slope(vi+1, bi+1) < slope(vi+1, ai+1) < slope(vi, ai). It follows that both ai+1 and
bi+1 lie in the half-plane delimited by l(vi+1) and not containing vi. Denote by da

i+1

(db
i+1) the intersection point between l(vi+1) and l(ha

i ) (resp. and l(hb
i)). Observe that

|db
i+1d

a
i+1| < (|vibi| + |viai|)/2. Denote by fa

i+1 (by f b
i+1) the intersection point

between l(ha
i ) and the line through vi+1 and ai+1 (resp. between l(hb

i) and the line
through vi+1 and bi+1). Clearly, |vi+1ai+1| < |vi+1fa

i+1| and |vi+1bi+1| < |vi+1f b
i+1|.

Angles ̂db
i+1vi+1f b

i+1 and ̂fa
i+1vi+1da

i+1 are each less than 30◦, namely such angles

sum up to an angle which is 180◦ minus ̂f b
i+1vi+1fa

i+1, which by hypothesis is greater
than 150◦. Hence, |vi+1ai+1| < |vi+1fa

i+1| < |vi+1da
i+1|/ cos(30) and |vi+1bi+1| <

|vi+1f b
i+1| < |vi+1db

i+1|/ cos(30).
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Fig. 5. Illustrations for the proofs of Lemma 9 (a) and Lemma 10 (b)

It follows that |vi+1ai+1| + |vi+1bi+1| < (|vi+1da
i+1| + |vi+1db

i+1|)/ cos(30) <

2(|vibi| + |viai|)/2
√

3, thus proving the lemma. �
The next lemma shows that having large angles incident to central nodes is unavoidable
for almost all central nodes.

Lemma 10. No central node vi, with i ≤ n − 3, is incident to an angle ̂biviai that is
less than or equal to 150◦.

Proof: Refer to Fig. 5.b. Suppose, for a contradiction, that there exists a central node vi,
with i ≤ n−3, that is incident to an angle ̂biviai ≤ 150◦. Denote by α and β the angles
p̂iviai and ̂bivipi, respectively. Since triangles (vi, pi, h

a
i ) and (ai, pi, h

a
i ) are congru-

ent, v̂iaipi = α. Analogously, ̂vibipi = β. Summing up the angles of quadrilateral
(vi, ai, pi, bi), we get ̂aipibi = 360◦ − 2(α + β).

By Lemma 8, vi+1 is a central node. Consider the line through vi+1 orthogonal to
aipi and denote by ga

i+1 the intersection point between such a line and aipi. Further,
consider the line through vi+1 orthogonal to bipi and denote by gb

i+1 the intersection
point between such a line and bipi. By property (iii) of Lemma 6, slope⊥(bi, pi) <

slope(vi+1, bi+1) < slope(vi+1, ai+1) < slope⊥(pi, ai). Hence, ̂bi+1vi+1ai+1 <
̂gb

i+1vi+1ga
i+1. Further, ̂gb

i+1vi+1ga
i+1 = 2α + 2β − 180◦, as can be derived by con-

sidering quadrilateral (gb
i+1, vi+1, g

a
i+1, pi). Since, by hypothesis, α + β ≤ 150◦, we

have ̂bi+1vi+1ai+1 < ̂gb
i+1vi+1ga

i+1 = 2α + 2β − 180◦ ≤ 120◦. However, since vi+1

is a central node, edge (vi+1vi+2), that exists since i ≤ n−3, cuts angle ̂bi+1vi+1ai+1.

It follows that at least one of angles ̂bi+1vi+1vi+2 and ̂vi+2vi+1ai+1 is less than 60◦.
By Lemma 5, the drawing is not greedy. �
The previous lemmata immediately imply an exponential lower bound between the ratio
of the lengths of the longest and the shortest edge of the drawing. Namely, node v1 is a
central node. By Lemma 8, vi is a central node, for i = 2, . . . , n−3. By Lemma 10, an-
gle ̂biviai > 150◦, for each i ≤ n− 3. Hence, by Lemma 9, |vi+1ai+1|+ |vi+1bi+1| ≤
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Fig. 6. Illustrations for the algorithm to construct a greedy drawing of Tn. (a) Base case. (b)
Inductive case.

(|viai| + |vibi|)/
√

3, for each i ≤ n − 4; it follows that |vn−3an−3| + |vn−3bn−3| ≤
(|v1a1|+|v1b1|)/(

√
3)n−4. Since one out of v1a1 and v1b1, say v1a1, has length at least

half of |v1a1| + |v1b1|, and since one out of vn−3an−3 and vn−3bn−3, say vn−3an−3,
has length at most half of |vn−3an−3| + |vn−3bn−3|, then |v1a1|/|vn−3an−3| ≥
1
9 (
√

3)n, thus implying the claimed lower bound.

4 Drawability of Tn

In Sect. 3 we have shown that any greedy drawing of Tn requires exponential area.
Since in [11,9] it has been shown that there exist trees that do not admit any greedy
drawing, one might ask whether the lower bound refers to a greedy-drawable tree or
not. Of course, if Tn were not drawable, then the lower bound would not make sense. In
this section we show that Tn admits a greedy drawing by providing a drawing algorithm,
using a supporting exponential-size grid.

Since the algorithm draws the spine nodes in the order they appear on the spine with
the degree-5 node as the last node, we revert the indices of the nodes with respect to
Sects. 2 and 3, that is, node vi of Tn is now node vn−i+1.

The algorithm constructs a drawing of Tn in which all the spine nodes vi are central
nodes lying on the horizontal line y = 0. Since each leaf node ai is drawn above line
y = 0 and bi is placed on the symmetrical point of ai with respect to such a line, we
only describe, for each i = 1, . . . , n, how to draw vi and ai.

In order to deal with drawings that lie on a grid, in this section we denote by Δy/Δx

the slope of a line (of a segment), meaning that whenever there is a horizontal dis-
tance Δx between two nodes of such a line (of such a segment), then their vertical
distance is Δy .

The drawing is constructed by means of an inductive algorithm. In the base case,
place v1 at (0, 0), ha

1 at (−1, 2), a1 at (−2, 4), and c1 at (−9/2, 0) (see Fig. 6.a). At
step i of the algorithm suppose, by inductive hypothesis, that: (i) The drawing of path
(v1, v2, . . . , vi) with its leaf nodes a1, a2, . . . , ai is greedy, and (ii) y(vi) = 0, y(ha

i ) =
22i, y(ai) = 22i+1, and x(vi) − x(ha

i ) = x(ha
i ) − x(ai) = 1.

From the above inductive hypothesis it follows that the slope of segment viai is
−22i/1 and the slope of its axis is 1/22i. We show step i + 1 of the algorithm.
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Place vi+1 at point (x(vi) + 24i+3 − 2, 0), ha
i+1 at point (x(vi) + 24i+3 − 3, 22i+2),

and ai+1 at point (x(vi) + 24i+3 − 4, 22i+3) (see Fig. 6.b). Such placements guarantee
that part (ii) of the hypothesis is verified. The slope of segment vi+1ai+1 is −22(i+1)/1.
Hence, the slope of its axis is 1/22(i+1). Such an axis passes through point qi ≡ (x(vi)−
3, 22i+1). Since 0 < 1/22(i+1) < 1/22i, it follows that path (v1, v2, . . . , vi), together
with nodes a1, a2, . . . , ai, lies below the axis of vi+1ai+1. Finally, the axis of viai

passes through point pi+1 ≡ (x(vi)+24i+3−4, 22i +22i+3−3/22i). Thus, y(pi+1) >
y(ai+1), since 22i + 22i+3 − 3/22i > 22i+3 as long as 24i > 3, which holds for each
i ≥ 1. This implies that part (i) of the hypothesis is verified.

When the algorithm has drawn vn and an (and symmetrically bn), cn and dn still
have to be drawn. However, this can be easily done by assigning to segments vncn and
vndn the same length as segment vnan and by placing them so that the angle ̂bnvnan,
which is strictly greater than 180◦, is split into three angles strictly greater than 60◦.

We remark that cn and dn are not placed at points with rational coordinates. However,
they still obey to any resolution rule, namely their distance from any node or edge of
the drawing is exponential with respect to the grid unit. Placing such nodes at grid
points is possible after a scaling of the whole drawing and some non-trivial calculations.
However, we preferred not to deal with such an issue since we just needed to prove that
a greedy drawing of Tn exists.

5 Conclusions

In this paper we have shown that constructing succinct greedy drawings in the plane,
when the Euclidean distance is adopted as a metric, may be unfeasible even for simple
classes of trees. In fact, we proved that there exist caterpillars requiring exponential
area in any greedy drawing, under any finite resolution rule. The proof uses a mixed
geometric-topological technique that allows us to analyze the combinatorial space of
the possible embeddings and to identify invariants of the slopes of the edges in any
greedy drawing of such caterpillars.

Many problems remain open in this area. By the results of Leighton and Moitra [9],
every triconnected planar graph admits a greedy drawing.

Problem 1. Which are the area requirements of greedy drawings of triconnected planar
graphs?

While every triconnected planar graph admits a greedy drawing, not all biconnected
planar graphs and not all trees admit a greedy drawing. For example, in [9] it is shown
that a complete binary tree with 31 nodes does not admit any greedy drawing. Hence,
the following problem is worth studying:

Problem 2. Characterize the class of trees (resp. of biconnected planar graphs) that
admit a greedy drawing.

In this paper we argued about the relationship among greedy drawings, planarity, and
straight-line drawability. We have shown, in Lemma 4, that every straight-line greedy
drawing of a tree is planar. It would be interesting to understand whether trees are the
only class of planar graphs with such a property.
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Problem 3. Characterize the class of planar graphs such that every straight-line greedy
drawing is planar.
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