

L.M. Camarinha-Matos, P. Pereira, and L. Ribeiro (Eds.): DoCEIS 2010, IFIP AICT 314, pp. 241–250, 2010.
© IFIP International Federation for Information Processing 2010

Properties Preservation in Distributed Execution of
Petri Nets Models

Anikó Costa1, Paulo Barbosa2, Luís Gomes1, Franklin Ramalho2,
Jorge Figueiredo2, and Antônio Junior2

1 Universidade Nova de Lisboa, Portugal
{akc,lugo}@uninova.pt

2 Universidade Federal de Campina Grande, Brasil
{paulo,franklin,abrantes,antonio}@dsc.ufcg.edu.br

Abstract. Model-based development for embedded system design has been
used to support the increase of system’s complexity. Several modeling formal-
isms are well matched for usage within this area. One of the goals of this work
is to contribute to the usage of Petri nets as system specification language
within model-based development of embedded systems having MDA proposals
as a reference for the development flow. Distributed execution of the Petri net
model is achieved through model partitioning into sub-modules. System de-
composition is obtained through net splitting operation. Two types of imple-
mentation platforms were considered: compliant and non-compliant with zero
time delay for communication between modules. Using model-checking tech-
niques, properties associated with the execution of the distributed models in
both types of platforms were compared with the execution of the initial (central-
ized) Petri net model.

Keywords: Petri net, model decomposition, distributed execution, model
checking.

1 Introduction

The sustained growing of system’s complexity has not been followed by the increase
of the designer’s productivity due to the lack of adequate methods and tools. The
Model-based development approach can adequately support improvements in this
area. In the past few years the research on embedded system design has been increas-
ing. Most of the works use UML (Unified Modeling Language) as system design
language. However, UML can be used for system specification, but not for analysis
and syntheses. For that purposes is need to add specific profiles and included them
into the tools which uses UML for system development. For example in [1] is pro-
posed an UML profile for Modeling and Analysis of Real-Time and Embedded. An-
other work [2] is based on high-level UML design of system components and use
SystemC for system behavior’s validation.

Using Petri nets [3] [4] as system specification language for modeling the control
part of the embedded system, the development process can be improved. Petri nets are

242 A. Costa et al.

an adequate formalism for modeling concurrency, parallelism and synchronization.
These characteristics are commonly found when dealing with complex systems.

When one faces a complex system model, it is natural to want to decompose it into
several sub-models due to the growing role that distributed systems are playing
nowadays. The net splitting operation was introduced for this purpose [3], allowing to
divide a Petri net model into several sub-nets. By using formal verification techniques
we can obtain a reliable way to ensure that the execution of the original model and the
parallel execution of the several sub-nets that were produced by the net splitting op-
eration produce the same behavior, considering a selected set of properties (examples
of selected properties include liveness, boundness, and relevant traces). In this way,
we should get distributed models that can be implemented using different approaches:

• Implementing the global system model as a centralized controller;
• Using model decomposition to obtain several components, considered as in-

dependent controllers and implementing them in the same platform using
synchronous communication channels for the communication between the
components with zero time delay in the communication;

• Implementing the above referred components on different platforms where
considering zero time delay for the communication becomes unfeasible (as
they are in regions having different time domains, for instance).

This paper intends to prove that a specific set of properties associated with different
distributed implementation models are preserved after the referred splitting transfor-
mations be implemented according to the Model Driven Architecture (MDA) ap-
proach [6] [7] [8]. The selected set of properties (liveness, boundness, and relevant
traces) will be evaluated considering the execution behavior when different types of
implementation platforms are considered.

The structure of the paper is the following. Section 2 discusses the main contribu-
tions on technological innovation issues. In the Section 3, the methodology overview
of the MDA approach is presented. In Section 4, a running example is used to illus-
trate the usability of the proposed methodology. In Section 5, verification issues are
addressed, concluding that all the proposed implementation models have the same
behavior. Finally, in Section 6 conclusions are presented.

2 Contribution to Technological Innovation

The ultimate goal of the works where the presented one is included is to contribute to
the usage of Petri nets as a system level specification language for embedded system
design. In particular, the innovative contribution is to use the net splitting operation to
formally support a technique to start from global system Petri net model and be able
to obtain parallel components, which would be executed in heterogeneous platforms.
As will be shown in the following sections, a set of properties of the global system
model will be preserved after the described transformation, even when different types
of platforms are considered for implementation.

The contribution of this paper is to introduce a MDA based methodology for em-
bedded system design, when distributed execution of the model is a concern and

 Properties Preservation in Distributed Execution of Petri Nets Models 243

where Petri nets are used as system specification language. The main focus is given to
the properties verification of the transformed models.

3 Methodology Overview and Objectives

Our reference methodology for embedded system design using hardware-software co-
design techniques starts with the description of the system’s functionalities through
UML (Unified Modeling Language) use cases. Afterwards, these use cases are manu-
ally translated into a set of operational formal models, where Petri nets are considered
as the reference model formalism. These models are amenable to support property
verification and to be automatically translated into code, after being partitioned into
components and mapped into specific implementation platforms.

Our intention is to improve that methodology introducing the MDA philosophy of
development. In this approach, the effort is focused on models, metamodels, and
model transformations. In MDA, an application can be characterized by several mod-
els at different levels of abstraction. The relations between those models are defined
as transformations between models.

The highest considered abstraction level is the Platform Independent Model (PIM).
In such level, the models represent the system requirements and are independent of
any specific implementation platform. The MDA approach emphasizes that a correct
model at the PIM level should maintain its correctness independently of selecting
different technology mappings afterwards.

The next level of abstraction is the Platform Specific Model (PSM). At this level,
the models reflect the specific system characteristics. In this level, specific constructs
of each platform are considered, although, as emphasized before, the behavior of the
original PIM model must be preserved.

Finally, as the lowest level of abstraction, we are considering the implementation
code, reflecting the concrete syntax of a specific implementation platform. This arti-
fact does not insert any specific abstraction to the models, just being a straightforward
representation of the PSM concepts.

In this work, the emphasis is on the PSM level. To illustrate these different abstrac-
tion levels and the model transformations between them, we use Petri nets (see
Fig. 1), as we want to emphasize the usage of Petri nets as a system level specification
formalism. However, from the point of view of the proposed methodology flow, Petri
nets can be replaced by any other behavioral formalism with similar characteristics,
without loss of generality of the proposed methodology flow.

Using Petri net as system level specification language, in the first level of abstrac-
tion we apply a transformation in order to decompose the model into several sub-nets
using the net splitting operation [5]. These operations are introduced in our MDA
approach by transformation rules that define how to transform a global Petri net
model into partitioned Petri net sub-models (subnets). Afterwards, PSMs are gener-
ated from these subnets. In the case of a decomposed PIM model, we can consider
two types of PSMs to be generated. One of them is where the communication between

244 A. Costa et al.

Fig. 1. From PIMs to code: an MDA-based approach

the models is made using synchronous communication channels [9] and the zero de-
lay time paradigm can be applied. On the other hand, it is also possible to consider the
case where the zero delay time paradigm does not hold and the communication be-
tween the models is made using a random time delay on the communication channels.

As the lowest level of abstraction those models are mapped into implementation
code for a specific platform. Two types of implementation platforms for the distrib-
uted model are considered: those having a global clock/tick and where a synchronous
communication between the components is possible according with the zero delay
time paradigm, and those having different time regions (heterogeneous platforms) and
where the synchrony paradigm does not apply and the communication is modeled
using a delay between the components.

The objective of this paper is to present the way to demonstrate that the generated
PSM models associated with different platforms have the same execution behavior.

The expected benefits of using an MDA approach for generating the models and
respective code of the partitioned components are twofold: The first one is to lower
the cost of deploying a given component and corresponding code on multiple plat-
forms through reuse; The second one is to reach a higher level of automation in the
code generation process, through the specification of transformations among those
models.

In the next section we will present a running example to illustrate the application of
the proposed methodology.

 Properties Preservation in Distributed Execution of Petri Nets Models 245

4 Running Example

We consider a simple example of application introduced by [10] with two cars going
back and forth, as shown on the Fig. 2

Fig. 2. Application example

Their movements are synchronized at the end points (in A[i] and B[i], respec-
tively). The cars start moving when both are in the initial position (in A1 and A2) and
the button GO is activated. They stop when reach the end point B1 and B2, respec-
tively. To go back to the initial position both cars have to be in the respective posi-
tions B[i] and the button BACK has to be activated. A possible Petri net PIM model
for this simple control problem is presented in Fig. 3 a). As PIM2PIM model trans-
formation we can use the net splitting operation [5] to decompose the Petri net and
obtain a set of distributed controllers (to be deployed one for each car). This can be
done by choosing a set of nodes (transitions GO and BACK for the example) from

Fig. 3. Petri net models for two cars system: a) global controller; b) distributed controllers

246 A. Costa et al.

where the net will be splitted. As the result of this operation we obtain four sub-nets,
corresponding to the control of the movement in each direction of the cars. To obtain
the model of the controller for each car we have to map two sub-nets to each control-
ler (which are combined using the net addition operation [11]). The resulted models
are shown in the Fig. 3 b).

As PSM model of the global system for the controller of our system is shown on
Fig. 4 where the input and the output signals of the system are represented (dependen-
cies on output signals are not explicitly represented, but they are associated with
“Cari_move” places of the Petri net model).

When we consider a distributed model instead of a centralized model, as shown on
Fig. 3 b) we can consider different behaviors associated with the PIM2PSM transfor-
mation. One of them is when the communication between the components is repre-
sented by synchronous communication channels. This means that pairs of transitions
belonging to different sub-nets (one with attribute master and other one with attribute
slave, as presented in Fig. 3b)) are synchronized through a synchronous communica-
tion channel and will fire at the same time, considering the same tick. The corre-
sponding model is represented in Fig. 5. This model is composed of two sub-models.
The sub-model where the transition with the attribute master is included generates an
output event which is read by the other sub-model where a transition with the same
name and attribute slave is included. Execution of both sub-models will satisfy the
synchrony paradigm.

Fig. 4. Global system model

Another possible modeling attitude in the case of the PIM2PSM transformation is
to consider firing in different instants for transitions involved in the same communica-
tion channel, resulting in a non-zero time delay associated with the communication
between the two components. Considering that our communication channel, even
when considering synchronous firing, is directed (which means that an output event is

 Properties Preservation in Distributed Execution of Petri Nets Models 247

Fig. 5. Distributed system model implementation considering zero time delay

Delta1

Delta2

Delta3

Delta4

Fig. 6. Distributed system model including the communication between the components

generated by the master transition firing, which is read as an input event by the slave
transition), it is possible to explicitly include this dependency as a delay δ into the
model, and represent the delay as a place between the transition master and transition
slave, as in the Petri net model of Fig. 6. It is easy to verify that, for this new model,
those places are safe (limited to only one token).

The model of Fig. 6 corresponds to the system implementation where each sub-
model is in execution in a different platform with different execution ticks (different
time regions). In this way, we can not guarantee the synchronous firing of transitions
belonging to different components. In this case the component with the master transi-
tion generates an output event which will be connected to the component to which the
respective slave transition belongs as an input signal associated to that transition. This
view of the model is represented in Fig. 7.

248 A. Costa et al.

Fig. 7. Distributed system model implementation considering different platforms

5 Verification

For verification purposes, we are using rewriting logic and model checking techniques,
supported by the Maude framework [12] [13] and Linear Temporal Logic (LTL) lan-
guage [14], relying on its specification patterns to define properties verification.

Due to space restriction we choose to include here analysis on the verification only
on the following question goals: if an event P happens between two events Q and R.
The choice for this class of properties allows us to show that two models involved in
proposed transformations can preserve, at least the partial order, the same behavior P
bounded by the limits of the events Q and R.

For each Petri net presented in the figures Fig. 3 a), Fig. 3 b), and Fig. 5, the equa-
tions associated with the events Q, R and P are defined in a way that Q is equivalent
to firing of transition GO, P is equivalent to firing of transition BACK , and P is
equivalent to firing of transitions B[i] or A[i].

By applying the specification patterns in this scenario, we used the following tem-
poral logic formula:

[](Q and !R -> (!R W (P and !R)))

In this sense, our objective is to demonstrate that a specific firing sequence associ-
ated with the initial model of the global system is verified for all cases of the different
implementation models. One possible trace is the following:

Go → (B1 and B2) → Back → (A1 and A2) → Go

The semantics of this trace states that the order of firing of B1 and B2 is indiffer-
ent, the same way as the order of firing of A1 and A2. The important constraint to be
checked is the firing of those transitions before firing transitions BACK and Go re-
spectively.

By using the Maude 2.4 toolset, where we have defined the Petri nets presented in
the figures Fig. 3 a) and b) and Fig. 5 and the equations needed for the verification
purposes, the result in the above presented case is TRUE for all execution models as
was defined in the previous section.

 Properties Preservation in Distributed Execution of Petri Nets Models 249

In this sense, preservation of this trace propriety is preserved along presented trans-
formations.

On the other hand, in the case when the event P is defined as a non-observable se-
quence, the result of the verification is a counterexample. One of the non-observable
sequences is Go → (B1) → Back, (considering no occurrence of B2). For this case we
obtained for all our nets a result as a counterexample.

The associated codes and results are available in the institution’s web site at
http://www.uninova.pt/~mda-veritas.

6 Conclusions

The paper presents an MDA approach for verification of properties preservation of the
transformed models. As reference modeling formalism was used Petri net and the net
splitting operation for model decomposition. It was demonstrated using model check-
ing techniques that all models associated with our running example keep the same
behavior when mapped into implementations platforms with different constraints.

Complementary the different models were coded in VHDL and deployed into
Spartan 3 FPGA platforms. It was validated that the different physical implementa-
tions keep the same behavior for relevant situations.

Acknowledgments. The work presented was partially supported by the collaborative
project Verificação Semântica em Transformações MDA Envolvendo Modelos de
Redes de Petri (MDA-VERITAS - Semantic Verification in MDA Transformation
using Petri nets models), funded by FCT - Fundação para a Ciência e a Tecnologia
(Portugal) and CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (Brazil) (http://www.uninova.pt/~mda-veritas).

References

1. Brisolara, L.C.B., Kreutz, M.E., Carro, L.: UML as Front-End Language for Embedded
Systems Design. In: Gomes, L., Fernandes, J.M. (eds.) Behavioral Modeling for Embed-
ded Systems and Technologies: Application for Design and Implementation, pp. 1–23. In-
formation Science Reference, Hershey (2009)

2. Gargantini, A., Riccobene, E., Scandurra, P.: Model-Driven Design and ASM Validation
of Embedded Systems. In: Gomes, L., Fernandes, J.M. (eds.) Behavioral Modeling for
Embedded Systems and Technologies: Application for Design and Implementation, pp.
24–54. Information Science Reference, Hershey (2009)

3. Girault, C., Valk, R.: Petri nets for systems engineering: A Guide to Modeling. Verifica-
tion and Applicatons. Springer, Heidelberg (2003)

4. Reisig, W.: Petri nets: An Introduction. Springer, New York (1985)
5. Costa, A., Gomes, L.: Petri net Partitioning Using net Splitting Operation. In: 7th IEEE In-

ternational Conference on Industrial Informatics (2009)
6. OMG: Object Management Group (2009), http://www.omg.org
7. Miller, J., Mukerji, J.: Mda guide version 1.0.1. Object Management Group, OMG (2003)

250 A. Costa et al.

8. Barbosa, P., Ramalho, F., Figueiredo, J., Junior, A., Costa, A., Gomes, L.: Checking Se-
mantics Equivalence of MDA Transformations in Concurrent Systems. Journal of Univer-
sal Computer Science (JUCS) 15(11), 2196–2224 (2009),
http://www.jucs.org/jucs_15_11/checking_semantics_
equivalence_of

9. Christensen, S., Hansen, N.D.: Coloured Petri Nets Extended with Channels for Synchro-
nous Communication. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 159–178.
Springer, Heidelberg (1994)

10. Silva, M.: Las Redes de Petri: En la Automática y la Informática. Editorial AC, Madrid
(1985)

11. Barros, J.P., Gomes, L.: Net Model Composition and Modification by Net Operations: A
Pragmatic Approach. In: 2nd IEEE International Conference on Industrial Informatics,
Berlin, Germany, June 24-26 (2004)

12. Maude system and tools, http://maude.cs.uiuc.edu/maude1/tutorial/
13. Clavel, M., Durán, F., Eker, S., Lincoln, P.: Martí -Oliet, N., Meseguer, J., Quesada, J.F.:

Maude: Specification and programming in rewriting logic. Theoretical Computer Science
(2001)

14. Specification patterns for temporal logic model-checking. SAnTos Laboratories,
http://patterns.projects.cis.ksu.edu/documentation/patterns/
ltl.shtml

	Properties Preservation in Distributed Execution of Petri Nets Models
	Introduction
	Contribution to Technological Innovation
	Methodology Overview and Objectives
	Running Example
	Verification
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

