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Abstract. Enterprise-system upgrades are unreliable and often produce down-
time or data-loss. Errors in the upgrade procedure, such as broken dependencies,
constitute the leading cause of upgrade failures. We propose a novel upgrade-
centric fault model, based on data from three independent sources, which focuses
on the impact of procedural errors rather than software defects. We show that cur-
rent approaches for upgrading enterprise systems, such as rolling upgrades, are
vulnerable to these faults because the upgrade is not an atomic operation and it
risks breaking hidden dependencies among the distributed system-components.
We also present a mechanism for tolerating complex procedural errors during an
upgrade. Our system, called Imago, improves availability in the fault-free case, by
performing an online upgrade, and in the faulty case, by reducing the risk of fail-
ure due to breaking hidden dependencies. Imago performs an end-to-end upgrade
atomically and dependably by dedicating separate resources to the new version
and by isolating the old version from the upgrade procedure. Through fault in-
jection, we show that Imago is more reliable than online-upgrade approaches that
rely on dependency-tracking and that create system states with mixed versions.

1 Introduction

Software upgrades are unavoidable in enterprise systems. For example, business reasons
sometimes mandate switching vendors; responding to customer expectations and con-
forming with government regulations can require new functionality. Moreover, many
enterprises can no longer afford to incur the high cost of downtime and must perform
such upgrades online, without stopping their systems. While fault-tolerance mecha-
nisms focus almost entirely on responding to, avoiding, or tolerating unexpected faults
or security violations, system unavailability is usually the result of planned events, such
as upgrades. A 2007 survey of 50 system administrators from multiple countries (82%
of whom had more than five years of experience) concluded that, on average, 8.6% of
upgrades fail, with some administrators reporting failure rates up to 50% [1]. The sur-
vey identified broken dependencies and altered system-behavior as the leading causes
of upgrade failure, followed by bugs in the new version and incompatibility with legacy
configurations. This suggests that most upgrade failures are not due to software defects,
but to faults that affect the upgrade procedure.

For instance, in August 1996, an upgrade in the main data center of AOL—the world’s
largest Internet Service Provider at the time—was followed by a 19-hour outage. The
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system behavior did not improve even after the upgrade was rolled back, because the
routing tables had been corrupted during the upgrade [2]. In November 2003, the up-
grade of a customer relationship management (CRM) system at AT&T Wireless created
a ripple effect that disabled several key systems, affecting 50,000 customers per week.
The complexity of dependencies on 15 legacy back-end systems was unmanageable, the
integration could not be tested in advance in a realistic environment, and rollback became
impossible because enough of the old version had not been preserved. The negative ef-
fects lasted for 3 months with a loss of $100 M in revenue, which had dire consequences
for the future of the company [3]. In 2006, in the emergency room of a major hospital, an
automated drug dispenser went offline, after the upgrade of a separate system, preventing
a patient in critical condition from receiving the appropriate medication [4].

Existing upgrade techniques rely on tracking the complex dependencies among the
distributed system components. When the old and new versions of the system-under-
upgrade share dependencies (e.g., they rely on the same third-party component but re-
quire different versions of its API), the upgrade procedure must avoid breaking these
dependencies in order to prevent unavailability or data-loss. Because dependencies can-
not always be inferred automatically, upgrade techniques rely on metadata that is par-
tially maintained by teams of developers and quality-assurance engineers through a
time-intensive and error-prone manual process. Moreover, the problem of resolving
the dependencies of a component is NP-complete [5], which suggests that the size of
dependency-repositories will determine the point at which ensuring the correctness of
upgrades by tracking dependencies becomes computationally infeasible.

Because the benefits of dependency-tracking are reaching their limit, industry best-
practices recommend “rolling upgrades,” which upgrade-and-reboot one node at a time,
in a wave rolling through the cluster. Rolling upgrades cannot perform incompatible
upgrades (e.g., changing a component’s API). However, this approach is believed to
reduce the risks of upgrading because failures are localized and might not affect the
entire distributed system [6, 7].

In this paper, we challenge this conventional wisdom by showing that atomic, end-to-
end upgrades provide more dependability and flexibility. Piecewise, gradual upgrades
can cause global system failures by breaking hidden dependencies—dependencies that
cannot be detected automatically or that are overlooked because of their complexity.
Moreover, completely eliminating software defects would not guarantee the reliabil-
ity of enterprise upgrades because faults in the upgrade procedure can lead to broken
dependencies. We make three contributions:

– We establish a rigorous, upgrade-centric fault model, with four distinct categories:
(1) simple configuration errors (e.g., typos); (2) semantic configuration errors (e.g.,
misunderstood effects of parameters); (3) broken environmental dependencies (e.g.,
library or port conflicts); and (4) data-access errors, which render the persistent data
partially-unavailable. §2

– We present Imago1 (Fig. 1), a system aiming to reduce the planned downtime,
by performing an online upgrade, and to remove the leading cause of upgrade
failures—broken dependencies [1]—by presenting an alternative to tracking depen-

1 The imago is the final stage of an insect or animal that undergoes a metamorphosis, e.g., a
butterfly after emerging from the chrysalis [8].
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dencies. While relying on the knowledge of the planned changes in data-formats in
the new version, Imago treats the system-under-upgrade as a black box. We avoid
breaking dependencies by installing the new version in a parallel universe—a log-
ically distinct collection of resources, realized either using different hardware or
through virtualization—and by transferring the persistent data, opportunistically,
into the new version. Imago accesses the universe of the old version in a read-only
manner, isolating the production system from the upgrade operations. When the
data transfer is complete, Imago performs the switchover to the new version, com-
pleting the end-to-end upgrade as an atomic operation. Imago also enables the in-
tegration of long-running data conversions in an online upgrade and the live testing
of the new version. §3

– We evaluate the benefits of Imago’s mechanisms (e.g., atomic upgrades, depen-
dency isolation) through a systematic fault-injection approach, using our upgrade-
centric fault model. Imago provides a better availability in the presence of upgrade
faults than two alternative approaches, rolling upgrade and big flip [9] (result sig-
nificant at the p = 0.01 level). §4
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Fig. 1. Dependable upgrades with Imago

Compared with the existing strate-
gies for online upgrades, Imago trades
off the need for additional resources
for an improved dependability of
the online upgrade. While it can-
not prevent latent configuration er-
rors, Imago eliminates the internal
single-points-of-failure for upgrade
faults and the risk of breaking hid-
den dependencies by overwriting an
existing system. Additionally, Imago
avoids creating system states with
mixed versions, which are difficult to
test and to validate. Our results suggest that an atomic, dependency-agnostic approach,
such as Imago, can improve the dependability of online software-upgrades despite hid-
den dependencies.

2 Fault Model for Enterprise Upgrades

Several classifications of upgrade faults have been proposed [10,11,12,13], but the fault
categories are not disjoint, the criteria for establishing these categories remain unclear,
or the classifications are relevant only for subsets of the upgrade faults. Moreover, data
on upgrade-faults in the industry is scarce and hard to obtain due to the sensitivity of
this subject. We analyze 55 upgrade faults from the best available sources, and, through
statistical cluster-analysis, we establish four categories of upgrade faults.2

We combine data from three independent sources, which use different methodolo-
gies: a 2004 user study of system-administration tasks in an e-commerce system [12], a

2 We discuss the statistical techniques in more detail in [14]. This technical report and the
annotated fault data are available at http://www.ece.cmu.edu/~tdumitra/upgrade_faults.

http://www.ece.cmu.edu/~tdumitra/upgrade_faults
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Table 1. Examples of hidden dependencies (sorted by frequency)

Hidden dependency Procedure violation Impact
Service location:
– File path
– Network address Omission

Components unavailable,
latent errors

Dynamic linking:
– Library conflicts
– Defective 3rd party components

Components unavailable

Database schema:
– Application/database mismatch Omission Data unavailable
– Missing indexes Omission Performance degradation

Access privileges to file system, database
objects, or URLs:
– Excessive Wrong action Vulnerability
– Insufficient Omission
– Unavailable (from directory service) Omission

Components/data
unavailable

Constraints among configuration
parameters

Outage, degraded perfor-
mance, vulnerability

Replication degree (e.g., number of front-
end servers online)

Omission, inversion,
spurious action

Outage, degraded
performance

Amount of storage space available Omission Transactions aborted
Client access to system-under-upgrade Wrong action Incorrect functionality
Cached data (e.g., SSL certificates, DNS
lookups, kernel buffer-cache)

Incorrect functionality

Listening ports Omission Components unavailable
Communication-protocol mismatch (e.g.,
middle-tier not HTTP-compliant)

Components unavailable

Entropy for random-number generation Deadlock
Request scheduling Access denied unexpectedly
Disk speed Wrong action Performance degradation

2006 survey of database administrators [13], and a previously unpublished field study of
bug reports filed in 2007 for the Apache web server [14]. While the administrators tar-
geted by these studies focus on different problems and handle different workloads, we
start from the premise that they use similar mental models during change-management
tasks, which yield comparable faults. This hypothesis is supported by the observation
that several faults have been reported in more than one study. Furthermore, as each of
the three methodologies is likely to emphasize certain kinds of faults over others, com-
bining these dissimilar data sets allows us to provide a better coverage of upgrade faults
than previous studies.

2.1 The Four Types of Upgrade Faults

We conduct a post-mortem analysis of each fault from the three studies in order to deter-
mine its root cause [10]—configuration error, procedural error, software defect, hard-
ware defect—and whether the fault has broken a hidden dependency, with repercussions
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for several components of the system-under-upgrade. Errors introduced while editing
configuration files can can be further subdivided in three categories [11]: typographical
errors (typos), structural errors (e.g. misplacing configuration directives), and semantic
errors (e.g. ignoring constraints among configuration parameters). Additionally, a small
number of configuration errors do not occur while editing configuration files (e.g., set-
ting incorrect access privileges). Operators can make procedural errors by performing
an incorrect action or by violating the sequence of actions in the procedure through an
omission, an order inversion, or the addition of a spurious action.

Most configuration and procedural errors break hidden dependencies (see Table 1).
Incorrect or omitted actions sometimes occur because the operators ignore, or are not
aware of, certain dependencies among the system components (e.g., the database
schema queried by the application servers and the schema materialized in the produc-
tion database). In 56% of cases, however, the operators break hidden dependencies (e.g.,
by introducing shared-library conflicts) despite correctly following the mandated pro-
cedure. This illustrates the fact that even well-planned upgrades can fail because the
complete set of dependencies is not always known in advance. We emphasize that the
list of hidden dependencies from Table 1, obtained through a post-mortem analysis of
upgrade faults, is not exhaustive and that other hidden dependencies might exist in dis-
tributed systems, posing a significant risk of failure for enterprise-system upgrades.

We perform statistical cluster-analysis, with five classification variables:3 (i) the root
cause of each fault; (ii) the hidden dependency that the fault breaks (where applicable);
(iii) the fault location—front-end, middle-tier, or back-end—; (iv) the original classifi-
cation, from the three studies; and (v) the cognitive level involved in the reported oper-
ator error. There are three cognitive levels at which humans solve problems and make
mistakes [11]: the skill-based level, used for simple, repetitive tasks, the rule-based
level, where problems are solved by pattern-matching, and the knowledge-based level,
where tasks are approached by reasoning from first principles. The high-level fault de-
scriptions from the three studies are sufficient for determining the values of the five
classification variables. We include all the faults reported in the three studies, except
for software defects, faults that did not occur during upgrades and client-side faults. If
a fault is reported in several sources, we include only one of its instances in the clus-
ter analysis. We exclude software defects4 from our taxonomy because they have been
rigorously classified before [16] and because they are orthogonal to the upgrading con-
cerns and might be exposed in other situations as well. Moreover, the survey from [1]
suggests that most upgrade failures are not due to software defects.

This analysis suggests that there are four natural types of faults (Fig. 2):

– Type 1 corresponds to simple configuration errors (typos or structural) and to pro-
cedural errors that occur on the skill-based cognitive level. These faults break de-
pendencies on network addresses, file paths, or the replication degree.

– Type 2 corresponds to semantic configuration errors, which occur on the knowledge-
based cognitive level and which indicate a misunderstanding of the configuration

3 We compare faults using the Gower distance, based on the categorical values of the classifica-
tion variables. We perform agglomerative, hierarchical clustering with average linkage [15].

4 The fault descriptions provided in the three studies allow us to distinguish the operator errors
from the manifestations of software defects.
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Fig. 2. Upgrade-centric fault model. Principal-component analysis (a) creates a two-dimensional
shadow of the five classification variables, The survey and the user study also provide information
about the distribution of fault-occurrence rates (b).

directives used. These faults break dependencies on the request scheduling, cached
data, or parameter constraints.

– Type 3 corresponds to broken environmental dependencies, which are procedural
errors that occur on the rule-based cognitive level. These faults break dependencies
on shared libraries, listening ports, communication protocols, or access privileges.

– Type 4 corresponds to data-access errors, which are complex procedural or config-
uration errors that occur mostly on the rule- and knowledge-based cognitive levels.
These faults prevent the access to the system’s persistent data, breaking dependen-
cies on database schemas, access privileges, the replication degree, or the storage
availability.

Faults that occur while editing configuration files are of type 1 or 2. Types 1–3 are
located in the front-end and in the middle tier, and, except for a few faults due to omitted
actions, they usually do not involve violating the mandated sequence of actions. Type
4 faults occur in the back-end, and they typically consist of wrong or out-of-sequence
actions (except order inversions). Principal-component analysis (Fig. 2(a)) suggests that
the four types of faults correspond to disjoint and compact clusters. Positive values on
the x-axis indicate procedural faults, while negative values indicate faults that occur
while editing configuration files. The y-axis corresponds, approximately, to the hidden
dependencies broken by the upgrade faults.

We also estimate how frequently these fault types occur during an upgrade (Fig. 2(b)),
by considering the percentage of operators who induced the fault (during the user study)
or the percentage of DBAs who consider the specific fault among the three most fre-
quent problems that they have to address in their respective organizations (in the sur-
vey). We cannot derive frequency information from the field-study data. The individual
estimations are imprecise, because the rate of upgrades is likely to vary among organi-
zations and administrators, and because of the small sample sizes (5–51 subjects) used
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in these studies. We improve the precision of our estimations by combining the individ-
ual estimations for each fault type.5 We estimate that Type 1 faults occur in 14.6% of
upgrades (with a confidence interval of [0%,38.0%]). Most Type 1 faults (recorded in
the user study) occur in less than 21% of upgrades. Similarly, we estimate that Type 4
faults occur in 18.7% of upgrades (with a confidence interval of [0%,45.1%]). Because
faults of types 2 and 4 are predominantly reported in the field-study, we lack sufficient
information to compute a statistically-significant fault frequency for these clusters.

Threats to validity. Each of the three studies has certain characteristics that might
skew the results of the cluster analysis. Because the user study is concerned with the
behavior of the operators, it does not report any software defects or hardware failures.
Configuration errors submitted as bugs tend to be due to significant misunderstandings
of the program semantics, and, as a result, our field study contains an unusually-high
number of faults occurring on the knowledge cognitive level. Moreover, the results of
bug searches are not repeatable because the status of bugs changes over time; in partic-
ular, more open bugs are likely to be marked as invalid or not fixed in the future. Finally,
Crameri et al. [1], who identify broken dependencies as the leading cause of upgrade
failures, caution that their survey is not statistically rigorous.

2.2 Tolerating Upgrade Faults

Several automated dependency-mining techniques have been proposed such as static
and semantic analysis [18], but these approaches cannot provide a complete coverage
of dependencies that only manifest dynamically, at runtime. Our upgrade-centric fault
model emphasizes the fact that different techniques are required for tolerating each of
the four types of faults. Modern software components check the syntax of their con-
figuration files, and they are able to detect many Type 1 faults at startup (e.g., syntax
checkers catch 38%–83% of typos [11]). Type 2 faults are harder to detect automati-
cally; Keller et al. [11] argue that checking the constraints among parameter values can
improve the robustness against such semantic faults. To prevent faults that fall under
Type 3, modern operating systems provide package managers that make a best-effort
attempt to upgrade a software component along with all of its dependencies [19, 20].
Oliveira et al. propose validating the actions of database administrators using real work-
loads, which prevents some Type 4 faults but is difficult to implement when the admin-
istrator’s goal is to change the database schema or the system’s observable behavior.

Industry best-practices recommend carefully planning the upgrades and minimizing
their risks by deploying the new version gradually, in successive stages [6]. For instance,
two widely-used upgrading approaches are the rolling upgrades and the big-flip [9].
The first approach upgrades and then reboots each node, in a wave rolling through the
cluster. The second approach upgrades half of the nodes while the other half continues to

5 The precision of a measurement indicates if the results are repeatable, with small variations,
and the accuracy indicates if the measurement is free of bias. While in general it is not possible
to improve the accuracy of the estimation without knowing the systematic bias introduced in
an experiment, minimizing the sum of squared errors from dissimilar measurements improves
the precision of the estimation [17].
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process requests, and then the two halves are switched. Both these approaches attempt to
minimize the downtime by performing an online upgrade. A big flip has 50% capacity
loss, but it enables the deployment of an incompatible system. Instead, a rolling upgrade
imposes very little capacity loss, but it requires the old and new versions to interact with
the data store and with each other in a compatible manner.

Commercial products for rolling upgrades provide no way of determining if the in-
teractions between mixed versions are safe and leave these concerns to the application
developers [7]. However, 47 of the 55 upgrade faults analyzed break dependencies that
remain hidden from the developers or the operators performing the upgrade (see Ta-
ble 1), and some procedural or configuration errors occur despite correctly following
the upgrading procedure. This suggests that a novel approach is needed for improving
the dependability of enterprise-system upgrades.

3 Design and Implementation of Imago

To provide dependable, online upgrades, we built Imago with three design goals:

– Isolation: The dependencies within the old system must be isolated from the up-
grade operations.

– Atomicity: At any time, the clients of the system-under-upgrade must access the
full functionality of either the old or the new systems, but not both. The end-to-end
upgrade must be an atomic operation.

– Fidelity: The testing environment must reproduce realistically the conditions of the
production environment.

Distributed enterprise-systems typically have one or more ingress points (I), where
clients direct their requests, and one or more egress points (E), where the persistent
data is stored (see Fig. 1). The remainder of the infrastructure (i.e., the request paths be-
tween I and E) implements the business-logic and maintains only volatile data, such as
user-sessions or cached data-items. We install the new system in a parallel universe—a
logically distinct collection of resources, including CPUs, disks, network links, etc.—
that is isolated from the universe where the old system continues to operate. The new
system may be a more recent version of the old system, or it may be a completely differ-
ent system that provides similar or equivalent functionality. Imago updates the persistent
data of the new system through an opportunistic data-transfer mechanism. The logical
isolation between the universe of the old system, Uold, and the universe of the new sys-
tem, Unew, ensures that the two parallel universes do not share resources and that the
upgrade process, operating on Unew, has no impact on the dependencies encapsulated in
Uold. Our proof-of-concept implementation provides isolation by using separate hard-
ware resources, but similar isolation properties could be achieved through virtualization.
Because Imago always performs read-only accesses on Uold, the dependencies of the
old system cannot be broken and need not be known in advance.

Assumptions. We make three assumptions. We assume that (1) the system-under-
upgrade has well-defined, static ingress and egress points; this assumption simplifies the
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task of monitoring the request-flow through Uold and the switchover to Unew. We fur-
ther assume that (2) the workload is dominated by read-only requests; this assumption
is needed for guaranteeing the eventual termination of the opportunistic data-transfer.
Finally, we assume that the system-under-upgrade provides hooks for: (3a) flushing in-
progress updates (needed before switchover); and (3b) reading from Uold’s data-store
without locking objects or obstructing the live requests in any other way (to avoid inter-
fering with the live workload). We do not assume any knowledge of the internal com-
munication paths between the ingress and egress points.

These assumptions define the class of distributed systems that can be upgraded using
Imago. For example, enterprise systems with three-tier architectures—composed of a
front-end tier that manages client connections, a middle tier that implements the busi-
ness logic of the application, and a back-end tier where the persistent data is stored—
satisfy these assumptions. An ingress point typically corresponds to a front-end proxy
or a load-balancer, and an egress point corresponds to a master database in the back-end.
E-commerce web sites usually have read-mostly workloads [21], satisfying the second
assumption. The two Uold hooks required in the third assumption are also common in
enterprise systems; for instance, most application servers will flush the in-progress up-
dates to their associated persistent storage before shutdown, and most modern databases
support snapshot isolation6 as an alternative to locking.

Bootstrapping Data Transfer Termination Switchover

Testing

Upgrade Procedure. Imago uses a procedure with five phases: bootstrapping, data-
transfer, termination, testing, and switchover. Imago lazily transfers the persistent data
from the system in Uold to the system in Unew, converts it into the new format, monitors
the data-updates reaching Uold’s egress points and identifies the data objects that need
to be re-transferred in order to prevent data-staleness. The live workload of the system-
under-upgrade, which accesses Uold’s data store concurrently with the data-transfer pro-
cess, can continue to update the persistent data. The egress interceptor, E, monitors
Uold’s data-store activity to ensure that all of the updated or new data objects are even-
tually (re)-transferred to Unew. Because Imago always performs read-only accesses on
Uold, the dependencies of the old system cannot be broken and need not be known in
advance. Moreover, E monitors the load and the performance of Uold’s data store, al-
lowing Imago to regulate its data-transfer rate in order to avoid interfering with the live
workload and satisfying our isolation design-goal. This upgrade procedure is described
in detail in [22].

The most challenging aspect of an online upgrade is the switchover to the new ver-
sion. The data transfer will eventually terminate if the transfer rate exceeds the rate at
which Uold’s data is updated (this is easily achieved for read-mostly workloads). To
complete the transfer of the remaining in-progress updates, we must enforce a brief
period of quiescence for Uold. Imago can enforce quiescence using the E interceptor,
by marking all the database tables read-only, or using the I interceptors, by blocking

6 This mechanism relies on the multi-versioning of database tables to query a snapshot of the
database that only reflects committed transactions and is not involved in subsequent updates.
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The driver executes:
⊳ Join the group of ingress interceptors

1 JOIN (IGrp)
2 Wait until the data-transfer is nearly completed
3 BCAST (flush)
4 while ∃I ∈ IGrp : I has not delivered flush-done
5 do DELIVER (msg)
6 if msg = self -disconnect
7 then JOIN (IGrp)
8 elseif msg ∈ {self -join, interceptor-join}
9 then BCAST (flush)

⊳ Received flush-done from all live interceptors
10 Complete data-transfer
11 Send all requests to Unew
12 BCAST (shutdown)

Each ingress interceptor I executes:
⊳ Join the group of ingress interceptors

1 JOIN (IGrp)
2 DELIVER (msg)
3 if msg = flush
4 then Block incoming write requests
5 for ∀host ∈ {middle-tier connections}
6 do

⊳ Flush in-progress requests
7 FLUSH (host)
8 BCAST (flush-done)
9 while (TRUE)

10 do DELIVER (msg)
11 if msg = self -disconnect
12 then JOIN (IGrp)
13 elseif msg ∈ {flush,driver-join}
14 then BCAST (flush-done)
15 elseif msg = shutdown
16 then Shut down I

Fig. 3. Pseudocode of the switchover protocol

all the incoming write requests. The first option is straightforward: the database pre-
vents the system in Uold from updating the persistent state, allowing the data-transfer
to terminate. This approach is commonly used in the industry due to its simplicity [7].

If the system-under-upgrade can not tolerate the sudden loss of write-access to the
database, Imago can instruct the I interceptors to block all the requests that might update
Uold’s persistent data (read-only requests are allowed to proceed). In this case, Imago
must flush the in-progress requests to Uold’s data store in order to complete the transfer
to Unew. Imago does not monitor the business logic of Uold, but the I interceptors record
the active connections of the corresponding ingress servers to application servers in
the middle tier and invoke the flush-hooks of these application servers. When all the
interceptors report the completion of the flush operations, the states of the old and new
systems are synchronized, and Imago can complete the switchover by redirecting all
the traffic to Unew (this protocol is described in Fig. 3). The volatile data (e.g., the user
sessions) is not transferred to Unew and is reinitialized after switching to the new system.
Until this phase the progress of the ongoing upgrade is transparent to the clients, but
after the switchover only the new version will be available.

Imago also supports a series of iterative testing phases before the switchover. Imago
checkpoints the state of the system in Unew and then performs offline testing—using
pre-recorded or synthetically-generated traces that check the coverage of all of the ex-
pected features and behaviors—and online testing—using the live requests recorded at
I. In the second case, the testing environment is nearly identical to the production en-
vironment, which satisfies our fidelity design-goal. Quiescence is not enforced during
the testing phase, and the system in Uold resumes normal operation while E continues
to monitor the persistent-state updates. At the end of this phase, Imago rolls the state
of the system in Unew back to the previous checkpoint, and the data transfer resumes in
order to account for any updates that might have been missed while testing. A detailed
discussion of the testing phase is beyond the scope of this paper.
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After adequate testing, the upgrade can be rolled back, by simply discarding the Unew
universe, or committed, by makingUnew the production system, satisfying our atomicity
design-goal. Imago treats the system-under-upgrade as a black box. Because we do not
rely on any knowledge of the internal communication paths between the ingress and
egress points of Uold and because all of the changes required by the upgrade are made
into Unew, Imago does not break any hidden dependencies in Uold.

Implementation. Imago has four components (see Fig. 1): the upgrade driver, which
transfers data items from the data store of Uold to that of Unew and coordinates the up-
grade protocol, the compare-engine, which checks the outputs of Uold and Unew during
the testing phase, and the I and E interceptors. The upgrade driver is a process that ex-
ecutes on hardware located outside of the Uold and Unew universes, while I and E are
associated with the ingress and egress points of Uold. We implement the E interceptor
by monitoring the query log of the database. The I interceptor uses library interposi-
tion to redefine five system calls used by the front-end web servers: accept() and
close(), which mark the life span of a client connection, connect(), which opens
a connection to the middle tier, and read() and writev(), which reveal the content
of the requests and replies, respectively. These five system calls are sufficient for im-
plementing the functionality of the I interceptor. We maintain a memory pool inside the
interceptor, and the redefined read() and writev() system-calls copy the content
of the requests and replies into buffers from this memory pool. The buffers are subse-
quently processed by separate threads in order to minimize the performance overhead.

In order to complete the data transfer, the upgrade driver invokes the switchover pro-
tocol from Fig. 3. We use reliable group-communication primitives to determine when
all the interceptors are ready to switch: JOIN allows a process to join the group of inter-
ceptors and to receive notifications when processes join or disconnect from the group;
BCAST reliably sends a message to the entire group; and DELIVER delivers messages
in the same order at all the processes in the group. These primitives are provided by the
Spread package [23]. The switchover protocol also relies on a FLUSH operation, which
flushes the in-progress requests from a middle-tier server. Each I interceptor invokes
the FLUSH operation on the application servers that it has communicated with.

Table 2. Structure of Imago’s code

Lines of code Size in memory
Upgrade driver 2,038

216 kBEgress interceptor 290

}
Ingress interceptor 2,056

228 kBSwitchover library 1,464

}
Compare engine 571 48 kB
Common libraries 591 44 kB
Application bindings 1,113 108 kB
Total 8,123 —

We have implemented the
FLUSH operation for the Apache
and JBoss servers. For Apache,
we restart the server with the
graceful swirch, allowing the
current connections to complete.
For JBoss, we change the times-
tamp of the web-application
archive (the application.war

file), which triggers a rede-
ployment of the application.
Both these mechanisms cause
the application servers to evict all the relevant data from their caches and to
send the in-progress requests to the back-end. This switchover protocol provides
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strong consistency, and it tolerates crashes and restarts of the driver or the intercep-
tors. All the modules of Imago are implemented in C++ (see Table 2). The application
bindings contain all the application-specific routines (e.g., data conversion) and consti-
tute 14% of the code. Most of this application-specific code would also be necessary to
implement and offline upgrade.

4 Experimental Evaluation

We evaluate the dependability of enterprise-system upgrades performed using Imago.
Specifically, we seek answers to the following questions:

– What overhead does Imago impose during a successful upgrade? §4.1
– Does Imago improve the availability in the presence of upgrade faults? §4.2
– How do types 1–4 of upgrade faults affect the reliability of the upgrade? §4.3

Upgrade Scenario. We use Imago to perform an upgrade of RUBiS (the Rice Univer-
sity Bidding System) [24], an open-source online bidding system, modeled after eBay.
RUBiS has been studied extensively, and several of its misconfiguration- and failure-
modes have been previously reported [12, 13]. RUBiS has multiple implementations
(e.g., using PHP, EJB, Java Servlets) that provide the same functionality and that use
the same data schema. We study an upgrade scenario whose goal is to upgrade RUBiS
from the version using Enterprise Java Beans (EJB) to the version implemented in PHP.
The system-under-upgrade is a three-tier infrastructure, comprising a front-end with two
Apache web servers, a middle tier with four Apache servers that execute the business
logic of RUBiS, and a MySQL database in the back-end. More specifically, the upgrade
aims to replace the JBoss servers in the middle tier with four Apache servers where we
deploy the PHP scripts that implement RUBiS’s functionality. The RUBiS database con-
tains 8.5 million data objects, including 1 million items for sale and 5 million bids. We
use two standard workloads, based on the TPC-W specification [21], which are typical
for e-commerce web sites. The performance bottleneck in this system is the amount of
physical memory in the front-end web servers, which limits the system’s capacity to
100 simultaneous clients. We conduct our experiments in a cluster with 10 machines
(Pentium 4 at 2.4 GHz, 512 MB RAM), connected by a 100 Mbps LAN.

We compare Imago with two alternative approaches, rolling upgrades and big flip
(see Section 2.2). These procedures are illustrated in Fig. 4. In both cases, the front-end
and back-end remain shared between the old and new versions. Rolling upgrades run
for a while in a mode with mixed versions, with a combination of PHP (Apache) and
EJB (JBoss) nodes in the middle tier, while the big flip avoids this situation but uses
only half of the middle-tier servers. With the former approach an upgraded node is tested
online (Fig. 4(a)), while the latter approach performs offline tests on the upgraded nodes
and re-integrates them in the online system only after the flip has occurred (Fig. 4(b)).
In contrast, Imago duplicates the entire architecture, transferring all of the 8.5 million
RUBiS data-items to Unew, in order to avoid breaking dependencies during the upgrade.
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Fig. 4. Current approaches for online upgrades in RUBiS

Methodology. We estimate Imago’s effectiveness in performing an online upgrade, in
the absence of upgrade-faults, by comparing the client-side latency of RUBiS before,
and during, the upgrade. We assess the impact of broken dependencies by injecting
upgrade faults, according to the fault model presented in Section 2, and by measuring
the effect of these faults on the system’s expected availability. Specifically, we estimate
the system’s yield [9], which is a fine-grained measure of availability with a consistent
significance for windows of peak and off-peak load:

Yield( f ault) =
Requestscompleted( f ault)

Requestsissued

We select 12 faults (three for each fault type) from the data analyzed in Section 2, prior-
itizing faults that have been confirmed independently, in different sources or in separate
experiments from the same source. We repeat each fault-injection procedure three times
and we report the average impact, in terms of response time and yield-loss, on the sys-
tem. Because this manual procedure limits us to injecting a small number of faults, we
validate the results using statistical-significance tests, and we complement these exper-
iments with an automated injection of Type 1 faults.

From a client’s perspective, the upgrade faults might cause a full outage, a partial out-
age (characterized by a higher response time or a reduced throughput), a delayed outage
(due to latent errors) or they might have no effect at all. A full outage (Yield = 0) is
recorded when the upgrade-fault immediately causes the throughput of RUBiS to drop
to zero. Latent errors remain undetected until they are eventually exposed by external
factors (e.g., a peak load) or by system-configuration changes. To be conservative in
our evaluation, we consider that (i) the effect of a latent error is the same as the effect
of a full outage (Yield = 0); (ii) an upgrade can be stopped as soon as a problem is
identified; and (iii) all errors (e.g., HTTP-level or application-level errors) are detected.
An upgrading mechanism is able to mask a dependency-fault when the fault is detected
before reintegrating the affected node in the online system. To avoid additional approx-
imations, we do not attempt to estimate the durations of outages caused by the broken
dependencies. As the yield calculations do not include the time needed to mitigate the
failures, the values reported estimate the initial impact of a fault but not the effects of
extended outages. While the result that Imago provides better availability under upgrade
faults is statistically significant, the quantitative improvements depend on the system
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Fig. 5. Upgrade overhead on a live RUBiS system

architecture and on the specific faults injected, and they might not be reproducible for a
different system-under-upgrade. The goal of our fault-injection experiments is to deter-
mine the qualitative reasons for unavailability during online upgrades, and to emphasize
the opportunities for improving the current state-of-the-art.

4.1 Performance Overhead without Faults

The latency of querying the content of a data item from Uold and inserting it in Unew
dominates the performance of the data-transfer; less than 0.4% out of the 5 ms needed,
on average, to transfer one item are spent executing Imago’s code. Fig. 5(a) shows the
impact of the data transfer on RUBiS’s end-to-end latency (measured at the client-side).
If requests arrive while a data-transfer is in progress, the response times increase by
three orders of magnitude (note the log scale in the top panel of Fig. 5(a)). These high
latencies correspond to a sharp drop in the transfer rate as the Uold database tries to
adjust to the new load. However, Imago can use the information collected by the E in-
terceptor to self-regulate in order to avoid overloading the production system. We have
found that the incoming query rate for Uold’s database provides sufficient warning: if
Imago uses a simple adaptation policy, which pauses the data transfer when the RUBiS
clients issue more than 5 queries/s, the end-to-end latency is indistinguishable from the
case when clients do not compete with Imago for Uold’s resources (Fig. 5(a)). After
resuming the data transfer, Imago must take into account the data items added by RU-
BiS’s workload. These new items will be transferred during subsequent periods of client
inactivity. Under a scenario with 1000 concurrent clients, when the site is severely over-
loaded, Imago must make progress, opportunistically, for 2 minutes per hour in order
to catch up eventually and complete the data transfer.

Fig. 5(b) compares the overheads introduced by different Imago components (the
error bars indicate the 90% confidence intervals for the RUBiS response time). The I
interceptors impose a fixed overhead of 4 ms per request; this additional processing
time does not depend on the requests received by the RUBiS front-ends. When Imago
performs a data conversion (implemented by modifying the RUBiS code, in order to
perform a database-schema change during the upgrade), the median RUBiS latency is



Why Do Upgrades Fail and What Can We Do about It? 363

not affected but the maximum latency increases significantly. This is due to the fact
that the simple adaptation policy described above is not tuned for the data-conversion
scenario.

The rolling upgrade does not impose any overhead, because sequentially rebooting
all the middle-tier nodes does not affect the system’s latency or throughput. The big flip
imposes a similar run-time overhead as Imago because half of the system is unavailable
during the upgrade. With Imago, the upgrade completes after ≈13h, which is the time
needed for transferring all the persistent data plus the time when access to Uold was
yielded to the live workload. This duration is comparable to the time required to per-
form an offline upgrade: in practice, typical Oracle and SAP migrations require planned
downtimes of tens of hours to several days [25].

Before switching to Unew, Imago enforces quiescence by either marking the database
tables read-only, or by rejecting write requests at the I interceptors and flushing the
in-progress updates to the persistent storage. When the middle-tier nodes are running
Apache/PHP servers, the flush operation takes 39 s on average, including the synchro-
nization required by the protocol from Fig. 3. In contrast, flushing JBoss application
servers requires only 4.4 s on average, because in this case we do not need to restart the
entire server. The switchover mechanism does not cause a full outage, as the clients can
invoke the read-only functionality of RUBiS (e.g., searching for items on sale) while
Imago is flushing the in-progress requests. Moreover, assuming that the inter-arrival
times follow an exponential distribution and the workload mix includes 15% write re-
quests (as specified by TPC-W [21]), we can estimate the maximum request rate that
the clients may issue without being denied access. If the switchover is performed during
a time window when the live request rate does not exceed 0.5 requests/min, the clients
are unlikely (p=0.05) to be affected by the flush operations.

4.2 Availability under Upgrade-Faults

Table 3 describes the upgrade-faults injected and their immediate, local manifestation.
We were unable to replicate the effects of one fault (apache_largefile, which was
reported as bugs 42751 and 43232 in the field study) in our experimental test-bed. We
inject the remaining 11 faults in the front-end (5 faults), middle tier (4 faults) and the
back-end (3 faults) during the online upgrade of RUBiS. In a rolling upgrade, a node
is reintegrated after the local upgrade, and resulting errors might be propagated to the
client. The big flip can mask the upgrade-faults in the offline half but not in the shared
database. Imago masks all the faults that can be detected (i.e., those that do not cause
latent errors).

Fig.6 shows the impacts that Types 1–4 of upgrade faults have on the system-under-
upgrade. Certain dependency-faults lead to an increase in the system’s response time.
For instance, the apache_port_f fault doubles the connection load on the remaining
front-end server, which leads to an increased queuing time for the client requests and a
8.3% increase in response-time when the fault occurs. This outcome is expected during
a big-flip, but not during a rolling upgrade (see Fig. 4). This fault does not affect the
system’s throughput or yield because all of the requests are eventually processed and
no errors are reported to the clients.
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Table 3. Description of upgrade-faults injected

Name /
Instances [source] Location Fault-Injection Procedure Local Manifestation

wrong_apache

2 [12] Front-end
Restarted wrong version of
Apache on one front-end.

Server does not forward re-
quests to the middle tier.

config_nochange

1 [12] Front-end
Did not reconfigure front-end
after middle-tier upgrade.

Server does not forward re-
quests to the middle tier.T

yp
e
1

config_staticpath

2 [12, 14] Front-end
Mis-configured path to static
web pages on one front-end.

Server does not forward re-
quests to the middle tier.

config_samename

1 [12] Front-end
Configured identical names
for the application servers.

Server communicates with
a single middle-tier node.

apache_satisfy

1 [14] Middle tier
Used Satisfy directive incor-
rectly.

Clients gain access to re-
stricted location.T

yp
e
2

apache_largefile

2 [14] Middle tier
Used mmap() and sendfile()

with network file-system.
No negative effect (could
not replicate the bug).

apache_lib

1 [14] Middle tier Shared-library conflict. Cannot start application
server.

T
yp

e
3

apache_port_f

1 [14] Front-end
Listening port already in use
by another application.

Cannot start front-end web
server.

apache_port_m

1 [14] Middle tier
Listening port already in use
by another application.

Cannot start application
sever.

wrong_privileges

2 [12, 13] Back-end
Wrong privileges for RUBiS
database user.

Database inaccessible to
the application servers.

T
yp

e
4

wrong_shutdown

2 [12, 13] Back-end
Unnecessarily shut down the
database.

Database inaccessible to
the application servers.

db_schema

4 [13] Back-end
Changed DB schema (re-
named bids table).

Database partially inacces-
sible to application servers.

The config_nochange and wrong_apache faults prevent one front-end server
from connecting to the new application servers in the middle tier. The front-end ser-
ver affected continues to run and to receive half of the client requests, but it generates
HTTP errors (Yield = 0.5). Application errors do not manifest themselves as notice-
able degradations of the throughput, in terms of the rate of valid HTTP replies, mea-
sured at either the client-side or the server-side. These application errors can be detected
only by examining the actual payload of the front-end’s replies to the client’s requests.
For instance, db_schema causes intermittent application errors that come from all four
middle-tier nodes. As this fault occurs in the back-end, both the rolling upgrade and the
big flip are affected. Imago masks this fault because it does not perform any configu-
ration actions on Uold. Similarly, Imago is the only mechanism that masks the remain-
ing Type 4, wrong_privileges and wrong_shutdown. The apache_satisfy fault
leads to a potential security vulnerability, but does not affect the yield or the response
time. This fault can be detected, by issuing requests for the restricted location, unlike
the config_staticpath fault, which causes the front-end to serve static web pages
from a location that might be removed in the future. Because this fault does not have
any observable impact during the rolling upgrade or the big flip, we consider that it pro-
duces a latent error. Imago masks config_staticpath because the obsolete location
does not exist in Unew, and the fault becomes detectable. The config_samename fault
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Fig. 6. Impact of upgrade faults

prevents one front-end server from forwarding requests to one middle-tier node, but
the three application servers remaining can successfully handle the RUBiS workload,
which is not computationally-intensive. This fault produces a latent error that might be
exposed by future changes in the workload or the system architecture and is the only
fault that Imago is not able to mask.

The rolling upgrade masks 2 faults, which occur in the middle tier and do not degrade
the response time or the yield, but have a visible manifestation (the application server
fails to start). The big flip masks 6 faults that are detected before the switch of the halves.
Imago masks 10 out of the 11 injected faults, including the ones masked by the big flip,
and excluding the latent error. A paired, one-tailed t-test7 indicates that, under upgrade
faults, Imago provides a better yield than the rolling upgrade (significant at the p = 0.01
level) and than the big flip (significant at the p = 0.05 level).

4.3 Upgrade Reliability

We observe in Fig.6 that broken environmental dependencies (Type 3) have only a small
impact on enterprise-system upgrades, because their manifestations (e.g., a server’s fail-
ure to start) are easy to detect and compensate for in any upgrading mechanism. Rolling
upgrades create system states with mixed versions, where hidden dependencies can be
broken. Contrary to the conventional wisdom, these faults can have a global impact on
the system-under-upgrade, inducing outages, throughput- or latency-degradations, se-
curity vulnerabilities or latent errors.

Compared with a big flip, Imago improves the availability because (i) it removes
the single points of failure for upgrade faults and (ii) it performs a clean installation
of the new system. For instance, the config_staticpath fault induces a latent error
during the big flip because the upgrade overwrites an existing system. The database
represents a single point of failure for the big flip, and any Type 4 fault leads to an
upgrade failure for this approach. Such faults do not always cause a full outage; for
instance, the db_schema fault introduces a throughput degradation (with application
errors). However, although in this case the application error-rate is relatively low (9%

7 The t-test takes into account the pairwise differences between the yield of two upgrading ap-
proaches and computes the probability p that the null hypothesis—that Imago doesn’t improve
the yield—is true [17].
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of all replies), the real impact is much more severe: while clients can browse the entire
site, they cannot bid on any items. In contrast, Imago eliminates the single-points-of-
failure for upgrade faults by avoiding an in-place upgrade and by isolating the system
version in Uold from the upgrade operations.

Imago is vulnerable to latent configuration errors such as config_samename, which
escapes detection. This failure is not the result of breaking a shared dependency, but cor-
responds to an incorrect invariant of the new system, established during a fresh install.
This emphasizes the fact that any upgrading approach, even Imago, will succeed only
if an effective mechanism for testing the upgraded system is available.

Because our qualitative evaluation does not suggest how often the upgrade faults
produce latent errors, we inject Type 1 faults automatically, using ConfErr [11]. Con-
fErr explores the space of likely configuration errors by injecting one-letter omissions,
insertions, substitutions, case alterations and transpositions that can be created by an
operator who mistakenly presses keys in close proximity to the mutated character. We
randomly inject 10 typographical and structural faults into the configuration files of
Apache web servers from the front-end and the middle tier, focusing on faults that are
likely to occur during the upgrade (i.e., faults affecting the configuration directives of
mod_proxy and mod_proxy_balancer on the front-end and of mod_php on the mid-
dle tier). Apache’s syntactic analyzer prevents the server from starting for 5 front-end
and 9 middle-tier faults. Apache starts with a corrupted address or port of the appli-
cation server after 2 front-end faults and with mis-configured access privileges to the
RUBiS URLs after 1 middle-tier fault. The remaining three faults, injected in the front-
end, are benign because they change a parameter (the route from a BalancerMember

directive) that must be unique but that has no constraints on other configuration settings.
These faults might have introduced latent errors if the random mutation had produced
identical routes for two application servers; however, the automated fault-injection did
not produce any latent errors. This suggests that latent errors are uncommon and that
broken dependencies, which are tolerated by Imago, represent the predominant impact
of Type 1 faults.

5 Lessons Learned

Offline upgrades of critical enterprise-systems (e.g., banking infrastructures) provide the
opportunity for performing extensive tests for accepting or rejecting the outcome of the
upgrade. Online upgrades do not have this opportunity; when there are mixed versions,
system states are often short-lived and cannot be tested adequately, while the system-
under-upgrade must recover quickly from any upgrade faults. Unlike the existing strate-
gies for online upgrade, which rely on tracking dependencies, Imago trades off spatial
overhead (i.e., additional hardware and storage space) for an increased dependability
of the online upgrade. Imago was designed for upgrading enterprise systems with tra-
ditional three-tier architectures. The current implementation cannot be readily applied
to certain kinds of distributed systems, such as peer-to-peer systems, which violate the
first assumption by accommodating large numbers of dynamically added ingress-points,
or data-intensive computing (e.g., MapReduce), which distribute their persistent data
throughout the infrastructure and do not have a well-defined egress point. However, the
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Table 4. Design choices for online upgrades in enterprise systems

In-Place Out-of-Place

M
ix
ed

V
er
si
on

s

– Risk propagating corrupted data
– Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

– Incur run-time overhead for data conversions
– Risk breaking hidden dependencies

– Risk propagating corrupted data
– Need indirection layer, with:

– Potential run-time overhead
– Installation downtime

– Incur spatial overhead

A
to
m
ic – Incur run-time overhead for data conversions

– Risk breaking hidden dependencies
– Incur spatial overhead

– Incur spatial overhead

availability improvements derive from the three properties (isolation, atomicity and fi-
delity) that Imago provides. Specifically, the isolation between the old and new versions
reduces the risk of breaking hidden dependencies, which is the leading cause of upgrade
failure [1], while performing the end-to-end upgrade as an atomic operation increases
the upgrade reliability by avoiding system states with mixed versions. Imago improves
the upgrade dependability because it implements dependency-agnostic upgrades. In the
future, we plan to investigate mechanisms for implementing the isolation, atomicity and
fidelity properties in other distributed-system architectures, and for reducing Imago’s
spatial overhead through virtualization.

Moreover, upgrades that aim to integrate several enterprise systems (e.g., following
commercial mergers and acquisitions) require complex data conversions for changing
the data schema or the data store, and such data conversions are often tested and de-
ployed in different environments [13], which increases the risk of upgrade failure. Imago
is able to integrate complex data-conversions in an online upgrade and to test the new
version online, in an environment nearly identical to the deployment system. While an
in-depth discussion of these topics is outside the scope of this paper, we note that there
are two major design choices for software-upgrade mechanisms: (i) whether the upgrade
will be performed in-place, replacing the existing system, and (ii) whether the upgrade
mechanisms will allow mixed versions, which interact and synchronize their states until
the old version is retired. Table 4 compares these choices. Mixed versions save storage
space because the upgrade is concerned with only the parts of the data schema that
change between versions. However, mixed versions present the risk of breaking hidden
dependencies; e.g., if the new version includes a software defect that corrupts the per-
sistent data, this corruption will be propagated back into the old version, replacing the
master copy. Mixed, interacting versions also require an indirection layer, for dispatch-
ing requests to the appropriate version [26], which might introduce run-time overhead
and will likely impose downtime when it is first installed. A system without mixed ver-
sions performs the upgrade in a single direction, from the old version to the new one.
However, for in-place upgrades, the overhead due to data conversions can have a neg-
ative impact on the live workload. When, instead, an upgrade uses separate resources
for the new version, the computationally-intensive processing can be performed down-
stream, on the target nodes (as in the case of Imago). As we have shown in Section 4,
in-place upgrades introduce a high risk of breaking hidden dependencies, which de-
grades the expected availability.
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The most significant disadvantage of out-of-place upgrades is the spatial overhead
imposed. However, the cost of new hardware decreases while unavailability becomes
more expensive [9], and enterprises sometimes take advantage of a software upgrade to
renew their hardware as well [25, 27]. Moreover, Imago requires additional resources
only for implementing and testing the online upgrade, and storage and compute cycles
could be leased, for the duration of the upgrade, from existing cloud-computing infras-
tructures (e.g., the Amazon Web Services). This suggests that Imago is the first step
toward an upgrades-as-a-service model, making complex upgrades practical for a wide
range of enterprise systems.

6 Related Work

In our previous work [22], we have outlined the upgrade procedure on which Imago is
based. Here, we review the research related to our contributions in this paper.

6.1 Upgrade Fault-Models

Oppenheimer et al. [10] study 100+ post-mortem reports of user-visible failures from
three large-scale Internet services. They classify failures by location8 (front-end, back-
end and network) and by the root cause of the failure8 (operator error, software fault,
hardware fault). Most failures reported occurred during change-management tasks, such
as scaling or replacing nodes and deploying or upgrading software. Nagaraja et al. [12]
report the results of a user study9 with 21 operators and observe seven classes of faults:8

global misconfiguration, local misconfiguration, start of wrong software version, unnec-
essary restart of software component, incorrect restart, unnecessary hardware replace-
ment, wrong choice of hardware component. Oliveira et al. [13] present a survey of 51
database administrators,9 who report eight classes of faults:8 deployment, performance,
general-structure, DBMS, access-privilege, space, general-maintenance, and hardware.
Keller et al. [11] study configuration errors and classify them according to their rela-
tionship with the format of the configuration file8 (typographical, structural or semantic)
and to the cognitive level where they occur8 (skill, rule or knowledge). These models
do not constitute a rigorous taxonomy of upgrade faults. Some classifications are too
coarse-grained [10] or relevant for only a subset of the upgrade faults [11]. In many
cases, the fault categories are not disjoint and the criteria for establishing these cate-
gories are not clearly stated.

6.2 Online Upgrades

The problem of dynamic software update (DSU), i.e., modifying a running program
on-the-fly, has been studied for over 30 years. Perhaps the most advanced DSU tech-
niques are implemented in the Ginseng system, of Neamtiu et al. [28], which uses static
analysis to ensure the safety and timeliness of updates (e.g., establishing constraints to

8 We use this subdivision as a classification variable in our upgrade fault-model (Section 2).
9 We use this data to develop our upgrade fault-model (Section 2).
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prevent old code from accessing new data) and supports all the changes required for up-
dating several practical systems. When upgrading distributed systems with replicated
components (e.g., multiple application servers in the middle tier), practitioners often
prefer rolling upgrades [9], because of their simplicity. DSU techniques are difficult
to use in practicebecause they require programmers to annotate (e.g., indicating suit-
able locations for performing the update) or to modify the source code of the old and
new versions. Moreover, active code (i.e., functions on the call stack of the running pro-
gram) cannot be replaced, and updating multi-threaded programs remains a challenging
task [29]. Like Imago, DSU techniques require state conversion between program ver-
sions [28], but Imago never produces mixed versions and does not have to establish
correctness conditions for the interactions among these versions. Imago performs the
entire end-to-end upgrade as one atomic action.

6.3 Dependable Upgrades

To improve the dependability of single-node upgrades, modern operating systems in-
clude package-management tools, which track the dependencies among system com-
ponents in depth, to prevent broken dependencies. Instead of tracking the dependen-
cies of each package, Crameri et al. [1] suggest that the risk of upgrade failure can be
reduced by testing new or updated packages in a wide variety of user environments
and by staging the deployment of upgrades to increasingly dissimilar environments.
Imago is closest in spirit to the previous upgrading approaches that avoid dependency
tracking by isolating the new version from the old one. Lowell et al. [30] propose up-
grading operating systems in a separate, lightweight virtual-machine and describe the
Microvisor virtual-machine monitor, which allows a full, “devirtualized” access to the
physical hardware during normal operation. The online applications are migrated to
a separate virtual machine during the upgrade. To facilitate this application-migration
process, Potter et al. [31] propose AutoPod, which virtualizes the OS’s system calls, al-
lowing applications to migrate among location-independent “pods”. These approaches
do not provide support for application upgrades. While providing better isolation prop-
erties than other in-place upgrades, the approaches based on virtual machines induce
run-time overhead, which might break dependencies on performance levels (e.g., appli-
cations that disable write-access when the response time increases).

Multi-node upgrades are vulnerable to Types 1–4 of upgrade faults. Nagaraja et al. [12]
propose a technique for detecting operator errors by performing upgrades or configura-
tion changes in a “validation slice,” isolated from the production system. The upgraded
components are tested using the live workload or pre-recorded traces. This approach re-
quires component-specific inbound- and outbound-proxies for recording and replaying
the requests and replies received by each component-under-upgrade. If changes span
more than one node, multiple components (excluding the database) can be validated at
the same time. Oliveira et al. [13] extend this approach by performing change oper-
ations on an up-to-date replica of the production database. Because these approaches
operate at component granularity, they require knowledge of the system’s architecture
and queuing paths, and some errors remain latent if the components are tested in iso-
lation [12]. Moreover, implementing the inbound- and outbound-proxies requires an
understanding of each component’s behavior, e.g., the communication protocols used
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and its non-determinism. For instance, routing requests to a different application server
in the validation slice would produce equivalent results, but processing database trans-
actions in a different order would compromise the replication. To enforce a common
order of execution, database requests must be serialized in order to prevent transaction
concurrency, for both the production database and the validation slice [13]. Aside from
inducing a performance penalty during the upgrade, this intrusive technique prevents
testing the upgrade’s impact on the concurrency-control mechanisms of the database,
which limits the usefulness of the validation results. Compared with these approaches,
Imago does not change the way requests are processed in the production system and
only requires knowledge of the ingress and egress points. The other components of the
system-under-upgrade and the internal queuing paths are treated as a black box. Un-
like the previous approaches, Imago targets end-to-end upgrades of distributed systems,
and it addresses the problem of coordinating the switchover to the new version. More-
over, Imago’s design facilitates upgrades that require long-running, computationally-
intensive conversions to a new data format.

6.4 Dependability Benchmarking for Upgrade Mechanisms

Evaluations of most of the previous upgrade mechanisms focus on the types of changes
supported and on the overhead imposed, rather than on the upgrade dependability. Be-
cause of this reason, while the costs of upgrading techniques (e.g., atomic upgrades,
isolation between the old and new versions) can be assessed in a straightforward man-
ner, their benefits are not well understood. User studies [12], fault injection [12,13] and
simulation [1] have been used to assess the effectiveness of previous approaches in re-
ducing the number of upgrade failures. We rely on our upgrade-centric fault model to
perform systematic fault-injection experiments, with an improved coverage of upgrade
faults. We inject faults manually, in order to determine the impact of each fault type on
the three upgrading approaches compared, and we also use an existing fault-injection
tool for automatically injecting Type 1 faults. Similar fault-injection tools can be devel-
oped for upgrade faults of Types 2–4, in order to evaluate the dependability of future
upgrade mechanisms.

7 Conclusions

We propose a new fault model for upgrades in enterprise systems, with four types of
faults. The impact of Type 3 faults (broken environmental dependencies) seems to be
easy to detect using existing techniques. Faults of Type 1, 2, and 4 frequently break
hidden dependencies in the system-under-upgrade. Existing mechanisms for online up-
grade are vulnerable to these faults because even localized failures might have a global
impact on the system. We present the design and implementation of Imago, a system for
upgrading three-tier, enterprise systems online, despite hidden dependencies.
Imago performs the end-to-end upgrade as an atomic operation and does not rely on
dependency-tracking, but it requires additional hardware and storage space. The up-
grade duration is comparable to that of an offline upgrade, and Imago can switch over
to the new version without data loss and, during off-peak windows, without disallow-
ing any client requests. Manual and automated fault-injection experiments suggest that
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Imago improves the dependability of the system-under-upgrade by eliminating the sin-
gle points of failure for upgrade faults.

Acknowledgements. We thank Dan Siewiorek, Greg Ganger, Bruce Maggs, and Asit
Dan for their feedback during the early stages of this research. We also thank Lorenzo
Keller for providing assistance with the use of ConfErr.

References
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