Specification, Verification and Explanation of Violation
for Data Aware Compliance Rules

Ahmed Awad, Matthias Weidlich, and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{ahmed. awad,matthias.weidlich,mathias.weske}@hpi.uni-potsdam.de

Abstract. Compliance checking is becoming an inevitable step in the business
processes management life cycle. Languages for expressing compliance require-
ments should address the fundamental aspects of process modeling, i.e. control
flow, data handling, and resources. Most of compliance checking approaches
focus on verifying aspects related to control flow. Moreover, giving useful
feedback in case of violation is almost neglected. In this paper, we demonstrate
how data can be incorporated into the specification of compliance rules. We call
these rules data aware. Building upon our previous work, we extend BPMN-Q,
a query language we developed, to express these rules as queries and formalize
these rules by mapping them into PLTL. In addition, whenever a compliance
rule is violated, execution paths causing violations are visualized to the user. To
achieve this, temporal logic querying is used.

Keywords: Compliance Checking, Business Process Querying, Violation Expla-
nation, Temporal Logic Querying.

1 Introduction

Business process models are the means to formalize the way services are composed in
order to provide an added value [1]]. Evidently, the notion of a service in this context de-
pends on the purpose of the process model. High-level models capture the way business
goals laid by top management are achieved, whereas low-level models describe techni-
cal service orchestrations. When process models define how the day to day business is
enacted in a certain organizational and technical environment, they are the best place to
check for and enforce compliance to organization policies and external regulations.
Compliance rules originate from different sources and keep changing over time. Also,
these rules address different aspects of business processes, for example a certain order
of execution between activities is required. Other rules force the presence of activities
under certain conditions, e.g. reporting banking transactions to the central bank, when
large deposits are made. Violation to compliance requirements originating from regula-
tions, e.g., the Sarbanes-Oxley Act of 2002 [2]] could lead to penalties, scandals, and loss
of business reputation. Therefore, compliance checking is crucial for business success.
As both compliance requirements and processes evolve over time, it becomes nec-
essary to have automated approaches to reason about the adherence of process models
to these requirements. In this context, there is a number of challenges. First, the ques-
tion how to express the compliance requirements has to be addressed. Second, process
models that are subject to checking within large repositories containing hundreds to

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 500 2009.
© Springer-Verlag Berlin Heidelberg 2009

Specification, Verification and Explanation of Violation 501

thousands of process models have to be identified. Third, there has to be an appropriate
formalism for automatic checking of compliance rules against a process model. Fourth,
users should be provided with useful feedback in case of violations.

While there are different notations available in order to express compliance rules,
most of the approaches consider solely control flow aspects [3]]. Moreover, the second
challenge, that is automatic identification of processes that are subject to checking, was
almost neglected in existing work. Further on, different formalism have been used to
check for compliance. Here, model checking [4] is the most popular. The fourth chal-
lenge for compliance checking was neglected either. In case of violation, there is almost
no feedback conveyed to the user in common approaches.

In a previous work [5]], we demonstrated an approach that partially addresses these
challenges. We employed BPMN-Q [6], a visual language we developed for querying
business process models, to express compliance requirements (compliance rules) re-
garding execution ordering of activities (services) in process models. BPMN-Q was
capable of expressing control flow aspects. Rules, expressed as BPMN-Q queries, were
mapped into past linear time logic PLTL formulae [[7]]. Next, the resulting PLTL formu-
lae were model checked [4] against the process models to decide about compliance.

Our contribution in this paper is twofold. First, we build upon work in [3] by in-
corporating data aspects. With data coming into play, the user can express so called
data flow rules and conditional rules. Also, the mapping to PLTL is not straightforward.
We achieve this by extending BPMN-Q with data aspects. Second, we introduce an ap-
proach to explain violations to compliance requirements. Whenever a rule is violated by
the process model, we use temporal logic querying [8]] techniques along with BPMN-Q
queries to visually explain violations in the process model.

The use of BPMN-Q queries is manifold. First of all, BPMN-Q allows users to ex-
press compliance requirements in a visual way very similar to the way processes are
modeled. That, in turn, simplifies application of our approach, as the business expert
abstracts from the technical details. Second, a compliance rule that is defined as a query
automatically determines the set of process models that are subject to checking in a
repository. That is of particular importance, as such a repository might contain hun-
dreds to thousands of process models. Finally, due to the nature of BPMN-Q query
processing, the matching part(s) of the processes under investigation to the query are
used to show execution scenarios causing violations directly on the process model level.

While we use BPMN for illustrating our contributions, results are applicable to other
process modeling languages. The rest of the paper is organized as follows. Section
introduces an exemplary business process that needs to satisfy certain compliance rules.
SectionBlis devoted to preliminaries on the applied techniques and Section@shows how
BPMN-Q was extended to express data-aware compliance rules. Discussion of violation
explanation is given in Section [3] and Section [gives details on our implementation.
Related work is reviewed in Section[7] before we conclude in Section [§l

2 Motivating Example

A process model, expressed in BPMN notation, to open a correspondent bank account is
shown in Fig. [Tl The process starts with activity “Receive correspondent Account open
request”’. Afterwards, the bank identity is looked up (“Identify Respondent Bank™). If

502 A. Awad, M. Weidlich, and M. Weske

Extra_valuation = yes

| — Extra_valuation

Extra_valuation [yes]

initial

[N Sommm-- Lookup

= Evaluation Partner Banks
[failed]

Evaluation = failed T Extra_valuation = no

U
[—
Extra_valuation
[no]

Evaluation = passed

[N
Evaluation --1--,
initial
Request R_Bank_Record
initial [created]

Conduct due
diligence
study

Evaluation

[passed] Assess

Respondent
Bank risk

Add Respondent
Bank to Black List

]
'
! R_Bank_Record = freated
! [N

Certificate
[valid]

Evaluation = failed

Receive
correspondent
Account open
request

Identify
Respondent
Bank

Check

(Evaluation = passed or.
Evaluation = initial)

Bank cer‘lmcale

[N
[N o I
Certificate | | Certificate
initial [invalid]

R_Bank_Record = exists———

R_Bank_Record R_Bank_Record
initial [exists]

pmmm Y

Open
Correspondent
Account

Analyze
Respondent
Bank annual
report

o~
,=-=->1 DataA | The activity
Evaluation = passed or

state 1 changes the
state of “Data A*
Obtain T~ R_Bank_Record = exists . either to “state
Respondent i Veme Data A | 1or to “state 2“.
Bank Annual 0 0 . [state 2]
A o~
[

DataA F----y The activity

(Evaluation = failed or “
Rati s e aluation = iniial) [state 1] ! expects ‘Data
ating Activity A" to be either in
- [rejected] “state 1“ or

Data -7 “state 2".
[state 2]

Review
Respondent
Bank rating

Fig. 1. A process model to open a bank account

this is the first time this bank requests to open an account, a new record is created and
some checks must take place. The bank to open the account needs to conduct a study
about the respondent bank due diligence, where the respondent bank may pass or fail
this study. In case of failure, the bank inquires one of its partner banks about the re-
spondent bank (“Lookup Partner Banks™). Then, it is decided, whether to make an extra
study. It is also required to assess the risk of opening an account (‘“Assess Respondent
Bank risk”) resulting in either high or low risk. In the mean time, the respondent bank
certificate is checked for validity. If the evaluation fails, the respondent bank is added
to a black list. Subsequently, the bank obtains a report about the performance of the
respondent bank (“Obtain Respondent Bank Annual Report”). This report is analyzed,
and the respondent bank rate is reviewed. If the respondent bank passes the due dili-
gence evaluation or it has already a record at the bank, an account is finally opened.

To prevent money laundering, various compliance rules are in place for the banking
sector. We assume that the following rules must be checked for the process in Fig.[Il

R1: An account is opened only in case that risk is low.

R2: The respondent bank must always be added to the black list in case its due
diligence evaluation fails.

R3: Before opening an account, the respondent bank rating must be accepted.

R4: In case the respondent bank rating review is rejected, an account must never be
opened.

Specification, Verification and Explanation of Violation 503

3 Preliminaries
3.1 Linear Temporal Logic with Past Operators (PLTL)

Linear Temporal Logic (LTL) allows expressing formulae about the future states of sys-
tems. In addition to logical connectors (—, A, V, —, <) and atomic propositions, LTL
introduces temporal operators, such as eventually (F), always (G), next (X), and until
(U). PLTL [[7] extends LTL by operators that enable statements over the past states. That
is, it introduces the previous (P), once (O), always been (H), and since (S) operators.

3.2 Data Access Semantics

Formalization of data access in process models is needed to be able to reason about.
We formalized the semantics of accessing data objects by activities in a BPMN model
in [9]. The semantics is inspired by the notion of business object lifecyles (cf. [10]),
in which execution of activities might update the state of a data object. For instance,
activity “Assess Respondent Bank risk™ requires the data object “Risk” to be in state
initial in order to execute. Since object lifecyles are merely state transition systems, at
any point of execution a data object can assume only one state. Thus, an activity that has
two or more associations with the same data object but with different states, e.g. activity
“Lookup Partner Banks” with the data object "Extra valuation” in Fig.[I] is interpreted
as a disjunction of such states. This data processing semantics along with control flow
execution semantics of BPMN given in [I1] are used to generate the behavioral model
of the process for model checking grounded on the following atomic propositions:

— The predicate state(dataObject, stateV alue) describes the fact that a data object
assumes a certain state.

— The predicates ready (activity) and executed (activity) state that a certain ac-
tivity is ready to be executed or has already been executed, respectively.

3.3 BPMN-Q

Based on BPMN, BPMN-Q [6] is a visual language that is designed to query business
process models by matching a process to a query structurally. In addition to the sequence
flow edges of BPMN, BPMN-Q introduces the concept of path edges as illustrated in
Fig.2(b). Such a path might match a sub-graph of a BPMN process — the highlighted
part of the process in Fig.[2l(a) is the matching part to the path edge of Fig. 2(b).

While such a path considers only the structure of a process, execution semantics have
to be considered in the query if BPMN-Q is used for compliance checking. In this case,

(o]

b) A structural query

l‘_’@
<<Leads to>>

c) A behavioral /eads to query

" /—.@
a) A process model edes>>

d) A behavioral precedes query

Fig. 2. BPMN-Q Path Edges

504 A. Awad, M. Weidlich, and M. Weske

we type paths between two activities as being either precedes (cf. Fig.2ld)) or 1eads
to (cf. Fig.2lc)) paths [3]]. The former requires that before activity B is about to execute,
activity A has already been executed. The latter, in turn, states that an execution of the
first activity is eventually followed by an execution of the second activity. Considering
Fig.2Aa), it is obvious that A precedes D is satisfied, while A Ieads to D is not.
Moreover, behavioral BPMN-Q queries are wrappers for PLTL expressions. That is,
leads to paths are transformed into an implication with the eventually quantifier,
whereas precedes paths map to an implication with the once operator. Thus, the
mappings of the queries in Fig. Plc) and Fig.2ld) into PLTL are G(executed(A) —
F(ready(D))) and G(ready (D) — O(executed(A))), respectively. The resulting
expressions might then be checked against the process model’s execution state space.
The path edge has one more property called the exclude property. Imagine a struc-
tural query with a path from activity A to activity E where exclude is set to D. Then
matching this query to the process in Fig. 2la) would yield the whole model except
activity D. Setting the exclude property for behavioral paths affects the PLTL formula.

4 BPMN-Q for Data Aware Compliance Rules

In this section, we demonstrate how to express data aspects in compliance rules by
extending the BPMN-Q language. Section [T]illustrates the extensions and introduces
different kinds of data aware queries by using the aforementioned compliance rules as
examples. We define the syntax for BPMN-Q in Sectiond.2]and specify query semantics
by mapping the queries into PLTL expressions in Section[£.3]

4.1 Examples for Data Aware Compliance Rules

R1: An account is opened only in case that risk Open

is low. Data objects and data associations are o["
used in BPMN-Q in the same way as in BPMN.
BPMN-Q additionally introduces a new type of Fig. 3. Query for R1
association edges called behavioral associations. This association represents an implicit
association between a data object and an activity. This captures R1, which requires that
the data object “Risk™ must be in state [ow when the activity “Open Correspondent
Account” is about to execute. Fig. B depicts the query for R1. A behavioral association
edge is visualized with a double arrow head. Rules specifying solely data dependencies
for a single activity are called data rules.

R2: The respondent bank must always be added to the black list in case its due
diligence evaluation fails. R2 requires that once the due diligence evaluation fails

as a result of executing activity “Conduct due

diligence study”, the process must proceed in P E‘Ef;ﬁ:g]o”

a way that the respective bank is added to a i y
black list. The BPMN-Q query representing Cc(’,'i]%frffe“e ‘ } Respondent
this rule is shown in Fig. @l We call thisrulea | study <leadstors | Dor 0B

conditional leads torule. Itis a re-

. Fig. 4. Query for R2
finement of the Ieads to introduced above.

Specification, Verification and Explanation of Violation 505

R3: Before opening an account, the respondent bank rating must be accepted. This
rule might be modeled similarly to R1. In this case, we want to be sure that the state
of the “Rating” data object will always be accepted when the activity “Open Corre-
spondent Account” is about to execute. Another way to model R3 is shown in Fig.
This query requires that when the activity “Open Correspondent Account” is ready to
execute, the “Rating” was accepted as a result of the execution of activity “Review Re-
spondent Bank rating”. Unlike the first case, the state of the data object may change in
between. We call the latter query a conditional precedesrule.

Fotainiutaiaed > Rating Fm-m--- > Rating
: [Accepted] : [Accepted]
H H
Open
@A 11 Correspondent
<<Precedes>> Account

(a) A conditional precedes relation (b) A less strict form of

Review ‘
Respondent
Bank rating

‘ Open
‘ Corr it

<<Precedes>> Account

Fig. 5. Different BPMN-Q queries to capture R3

Fig.[5(b)shows an even less strict variant of the query in Fig.[5(a)] Here, focus is only
on the data condition that must have held once before the execution of activity “Open
Correspondent Account”. Using the BPMN-Q variable activity, denoted as an activity
with the label “@A”, relieves the modeler from explicitly mentioning the activity that
sets the “Rating” to accepted. Rule R2 could have been modeled in the same way.

R4: In case the respondent bank rating
review is rejected, an account must never I I
jected]

be opened. This rule is another way of
stating a requirement similar to this of R3. @A ExeteOpen Comtwoncen Amum):o

<<Leads to>>

When a certain condition holds, i.e. the
“Rating” is.re jected, it has to be ensured Fig. 6. Query for R4

that the activity “Open Correspondent Ac-

count” will never be executed. The query in Fig. [0l captures this requirement. The vari-
able activity “@A” with an association to the data object “Rating” with state rejected
represents the data condition. Moreover, there is a 1eads to path from this activity
to an end event with the exclude property set to the activity “Open Correspondent Ac-
count”. That is interpreted as: activity “Open Correspondent Account” must never be
executed from the point the data condition holds to the end of the process.

4.2 Syntax of Data Aware BPMN-Q Queries

After we have introduced data aware BPMN-Q queries by exemplary compliance rules,
we define their syntax formally. Therefore, the notions of a process graph and a query
graph as introduced in [3]] have to be extended with data related concepts. We introduce
these extensions formally solely for the query graph, as they subsume the extensions
needed for the process graph. We begin by postulating infinite sets of activities 2, data
objects ®, and labels of data object states £.

506 A. Awad, M. Weidlich, and M. Weske

Definition 1 (Query Graph). A BPMN-Q query graphis a tuple QG = (Ao, Eg, Do,
P, X,C,T,L) where:
- Ag C (AU {QA}) is the set of activities with QA as the distinguished variable
activity, Eg C {egs, ep} is the set of events that might contain a dedicated start and
a dedicated end event, and Do C D is the set of data objects. Ag,Eq, and Dg
are finite and disjoint sets.
- PC ({estUAg) x ({er} U.Ag) is the path relation.
- X : P — p(Ag) defines the exclude property for paths.
- C C (Dg x Ag) U (Ag x Do) is the data access relation.
- T : (P — {leadsto,precedes,none}) U (C — {behavioral,none}) assigns
stereotypes to paths and data associations.
— L:Dg — (L) assigns status labels to data objects.

We see that a query graph might contain data objects that are accessed by data associ-
ations. The latter, in turn, might be of type behavioral, which captures an indirect data
dependency as explained above. Moreover, a set of status labels is assigned to each data
object. The labeling function L, the set of data objects D¢, and the data access relation
C are data related extensions that are applied for process graphs as well.

Definition [T] allows to define query graphs that are unconnected or show anomalies
as, for instance, variable activities that are targets of a path. Therefore, we restrict the
definition to well-formed query graphs. As a short-hand notation, we use Ng = Ao U
Eo for all nodes, Sg = {n2 € Ng| Ani € Ng [(n1,n2) € P]} for start nodes, and
To ={n1 € Ng| Ana € Ng [(n1,n2) € P |} for end nodes.

Definition 2 (Well-Formed Query Graph). A query graph QG = (Ag,E0,Dg, P,
X,C, T, L) is well-formed, iff

-VneNg[3seSg,ecTg[sP*n A nP*e]]|with P* as the transitive reflexive
closure of P, i.e. activities and events are connected,

-VdeDg|TacAg|(d,a) €CV (a,d) € C|], ie. data objects are accessed,

-V (ni,n2) € Pl(ne#QA) A (nn =QA=3deDg|[(n1,d) €C))] ie. the
variable activity is never target of a path and must have data access.

We restrict our discussion to well-formed query graphs and use the term guery as a
short form for query graph. A query is called compliance query, if every path is of
type precedes or leads to. Note that we do not consider paths of type none
at this point. These paths are not applicable to specify compliance rules as BPMN-Q
queries, as they specify structural requirements for the process model rather than behav-
ioral requirements. Nevertheless, these queries are well-formed queries, which might
be generated in order to explain violations of compliance rules. Depending on how data
aspects are considered in the query, we distinguish data queries, control flow queries,
and conditional queries. Data queries specify data constraints for solely one activity.
In contrast, control flow queries are all BPMN-Q queries that do not consider any data
dependencies. A conditional query combines data and control flow dependencies, such
that a control flow dependency is required to hold under certain data conditions.

Definition 3 (Data Query). A query Q = (Ag,E0,Do, P, X,C,T, L) is called data
query, iff |[Ag| =1, Ag # {QA}, and Eg = 0, the query contains exactly one activity
(not the variable activity), but no events.

Specification, Verification and Explanation of Violation 507

Definition 4 (Control Flow Query). A query Q = (Ag,€0,Do,P,X,C,T,L) is
called control flow query, iff Dg = ().

Definition 5 (Conditional Leads to / Precedes Query). A query Q = (Ag, g, Do,
P,X,C,T,L) is called conditional query, iff

- (|Agl =2) vV ((|[Ag] =1) A (Eg = {egr})), the query contains two activities
or events, but no start event,

- (|P|=1) A Y (p1,p2) € P | p1 # p2 |, that are connected by a path,

-VdeDg[3(ar,n) € P(a1,d) € C]], all data objects are written by the node
that is the origin of the path.

A conditional query is called conditional leads to query, iff Vp € P [T (p) = leadsto],
or conditional precedes query, iff V.p € P [T (p) = precedes |.

4.3 Mapping Queries into PLTL

After we specified the syntax for BPMN-Q queries, this section introduces the mapping
of a query into a PLTL formula in order to model check them against process models.
This mapping is based on the aforementioned classification of BPMN-Q queries. We
focus on the mapping of data queries and conditional queries, and refer to [3J] for a
mapping of control flow queries.

Mapping Data Queries. The mapping into PLTL is straightforward. A certain data
condition must always hold at the time an activity is about to execute.

Definition 6 (PLTL for Data Query). For a data query Q = (Ag,E9,Do, P, X,
C,T,L), the corresponding PLTL formula P is defined as: Py = G(ready(a) —
Naepo Pa) with a € Ag, Py =\, state(d, s).

According to this definition, the mapping of the query in Fig. 3| into PLTL is
G(ready(Open Correspondent Account) — state(Risk,low)).

Mapping Conditional Leads to Queries. These queries can be distinguished
into presence and absence queries, depending on whether the execution of an activity
has to be ensured (presence) or prevented (absence). The query in Fig. @l is an example
for a presence query, whereas the query in Fig.[6]is an absence query.

A mapping of these conditional queries to PLTL is not straightforward. Con-
sidering the query in Fig. Ml a first attempt to map this query might result in
G(executed(Conduct due diligence study) A state(Evaluation, failed) —
F(ready(Add Respondent Bank to Black List))).

At the first glance, the formula captures the requirement. Whenever the activity “Con-
duct due diligence study” is executed and the bank evaluation failed, the respondent
bank must be added to a black list. Referring to the process in Fig.[Il we see that this re-
quirement is satisfied. However, model checking this formula against the process model
tells that the model does not satisfy the formula. The reason is that the formula has not
been specified properly. Imagine the execution scenario where “Conduct due diligence
study” is executed for the first time and as a result the evaluation fails, i.e., the condition
of the above mentioned formula holds. Next, “Lookup Partner Bank™ is executed with

508 A. Awad, M. Weidlich, and M. Weske

the result to make an extra diligence study. In the second execution of the diligence
study, the “Evaluation” is passed. From that point the process continues without adding
the respondent bank to the black list. Thus, the rule is violated.

As a result, the aforementioned mapping cannot be applied. Instead, for this
specific example, we need the model checker to record that the evaluation failed
only when there is no chance to pass the evaluation in the future. We say that the
data object state, and consequently the predicates, state(Evaluation, failed) and
state(Fvaluation, passed) are contradicting. We assume that we have the knowl-
edge about these contradicting states before we start the process of rule mapping. The
corrected PLTL formula is G(executed(Conduct due diligence study) A
state(Evaluation, failed) A G(— state(Evaluation, passed)) —
F(ready(Add Respondent Bank to Black List))).

Before we introduce the mapping of conditional leads toBPMN-Q queries
into PLTL formulae, we introduce two auxiliary predicates that will be used in the
mapping of all conditional queries.

Definition 7 (Full Data Condition Predicate). For a set of data objects Do and a la-
belling function L, the full data condition is a PLTL predicate defined as: PD p,) =

/\deDQ(\/seﬁ(d) state(d, s)) A G(/\sceﬁc(d,s) - state(d, s.)).

Definition 8 (Variable Activity Condition Predicate). For a node n, the variable ac-
tivity condition is a PLTL predicate defined as:

PV = {true iff n=QA .
executed(n) else

The full data condition requires all data objects to be in one state out of a set of states. In
addition, it prohibits contradicting data object states. As mentioned above, we assume
the knowledge about contradicting states to be part of the business context. This is
formalized as a function L¢ : © x £ — p(£) that returns all contradicting states for
a pair of a data object and a state. The second auxiliary predicate, namely the variable
activity condition, requires the execution of an activity. In case of the variable activity
“@A” this predicate is simply true.

Definition 9 (PLTL for Conditional Leads To Query). For a conditional leads to

query Q = (Ag,€0,Do, P, X.C,T,L), the corresponding PLTL formula Py is de-

fined as: Pg = G((PV(syey N PD(pg.r)) — Prar) with (src,tar) =pe P,

P — Naex(p)(~ executed(a))U(ready(tar)) iff p € dom(X) .
F(ready(tar)) else

We distinguish presence and absence queries by the definition of the predicate P,
which is defined based on whether the exclude property is set for the path.

Mapping Conditional Precedes Queries. Similarly, we can derive the PLTL
formula for a conditional precedes query. For instance, consider the rule
in Fig. Informally the rule states that at the point activity “Open Correspon-
dent Account” is ready to execute, i.e. ready(Open Correspondent Account)

Specification, Verification and Explanation of Violation 509

holds, there was a previous state in which activity “Review Respondent Bank Rat-
ing” was executed and the “Rating” was accepted. In other words, the predicates
executed(Review Respondent Bank Rating) and state(Rating, accepted) were
true before. Following the argumentation on the change of data states given above, we
need to be sure that the state of the data object “Rating” did not change to a contra-
dicting state. Therefore, the PLTL formula to capture the query in Fig. is defined
as G(ready(Open Correspondent Account) — O(state(Rating, accepted) A
executed(Review Respondent Bank Rating) A G(— state(Rating, rejected)))).
For the rule in Fig.[5(b)} the mapping is quite similar except the treatment of the variable
activity (according to Definition).

While the former queries require the presence of an execution of a certain activity,
absence queries can be mapped similarly. They require the absence of an execution of
certain activities between two activities taking the data conditions into account. The
conditional precedes query is mapped to a PLTL formula as follows.

Definition 10 (PLTL for Conditional Precedes Query). For a conditional precedes
query Q@ = (Ag,€0,Dg,P,X,C,T,L), the corresponding PLTL formula Pg is
defined as: Py = G(ready (tar) — Ps;.) with (sre,tar) =p € P,

P _ Nacx(p) (T executed(a))S(PVisrey N PD(pg,r)) iff p € dom(X)
e O(PV(srey N PD(pg 1)) else '

Predicate Pk, reflects the difference between presence/absence queries.

5 Explanation of Violation

When the rules R1 to R4 introduced in Section [£.1] are checked against the process
model in Fig. [Tl we get the following result. R2 is satisfied by the model, whereas R1,
R3, and R4 are violated. That, in turn, leads to the question why a certain rule is violated.

We would like to answer this question by showing execution scenarios that violate the
rule directly in the process model. One could think of using the counterexample returned
by the model checker when the rule is not satisfied. However, there are two problems
with that approach. Firstly, the counterexample is given as a trace of states that violate the
rule. Therefore, we need to translate it back to the level of the model structure. Secondly,
counterexamples given by a model checker are not exhaustive. That is, they do not show
every possible violation to the rule, rather, they show the first met violation.

In order to tackle this problem we use a two-step approach. First, we extract the data
conditions under which the violation occurred. Second, this violation is visualized on
the process model level. For the first step we use Temporal Logic Querying (TLQ) [8].
For the purpose of visualizing the violations based on the results of the first step, we
use BPMN-Q to formulate the so-called anti-pattern queries.

We briefly introduce TLQ in Section 5.1l Subsequently, Sections [5.2] to 5.4] demon-
strate the application of this two-step approach for each category of queries.

5.1 Temporal Logic Querying

Temporal Logic Querying (TLQ) was first introduced by Chen in in order to find
software model invariants and gain understanding about the behavior of the model. So,

510 A. Awad, M. Weidlich, and M. Weske

model checking can be seen as a subproblem of temporal logic querying. In model
checking, we issue Boolean queries only. In the general case of TLQ, we ask a TLQ
solver (e.g. [12]]) to find a propositional formula that would make our query hold true
when seen as a temporal logic formula. The question mark ‘?” is used in a temporal logic
query as a placeholder for such a propositional formula, which might also be limited to
certain predicates. For instance, the query G(?{p, ¢}) looks for invariants that are based
on the predicates p and q.

5.2 Explanation of Data Rules Violations

A data compliance query (cf. Definition [6) is violated if there is a state in which the
respective activity (a) is ready to execute (ready(a) holds), but the data condition is
not fulfilled. This occurs in case the data objects that are relevant to the compliance
rule, assume states other than specified in the rule. We issue the temporal logic (TL)
query G(ready(a) — state(? 405, 7st)) to discover the violation. Thus, we are asking
about the data states that are set at the point ready(a) holds. Here, the symbol 7 4., is
a placeholder for the data objects that were mentioned in the compliance query; while
?s¢ 1s the placeholder for their respective states. In general, such a query delivers the
different assignments of data object states that make the statement hold. The general
form of the query resultis A ;e (\/sec(d) state(d, s)).
For the case of rule R1,

the result of the TL query . N Riski

G(ready(Open Correspondent Account) i thigh)

— state(Risk,?s)) is state(Risk, low) V C open
state(Risk, high). Thus, there is a possible er Conaspandent
execution trace where the state of data object

“Risk” is set to high and remains in this state Fig.7. Anti-pattern for R1

until activity “Open Correspondent Account”

is ready to execute. In order to visualize this execution trace on the process model level,
we need to find a path from some activity that sets the state of “Risk” to high and
another path from this activity to the activity “Open Correspondent Account”. That is
captured by the anti-pattern, which is illustrated in Fig. [l Such anti-pattern matches
the process part that causes the violation of the original compliance rule.

5.3 Explanation of Conditional Leads to Violations

Derivation of anti-patterns for _

conditional leads to compli- i’nﬂ} rejecie]

ance rules is straight-forward. Such a rule is

violated when there is at least one execution LY — Conespondert
trace in which the source activity is executed hocount

and the data condition holds, and the exe-
cution continues to the end of the process
without executing the target activity. On the other hand, a conditional absence
leads torule is violated, if the activity required to be absent is executed in at least
one possible execution trace. Rule R4 is an example for the latter kind of compliance

Fig. 8. Anti-pattern for R4

Specification, Verification and Explanation of Violation 511

rule. The corresponding anti-pattern query is shown in Fig. [8l Here, the path edge
connects a variable activity at which the data condition holds to the activity “Open
Correspondent Account”. The type of path is none. Thus, we look for a structural
match.

5.4 Explanation of Conditional Precedes Rules Violations

Explanation of violations of this type of rules is more complex than for the case of
conditional leads to rules. According to Definition[I0l a violation might be
traced back to the following reasons.

L. PVire A Naepg (Vser(ay state(d, s)) did not occur before activity zar is reached.
That, in turn, might be traced back to one of the following reasons:
(a) Either activity src was not executed at all, or
(b) the data condition A ;e (Ve z(q) State(d, s)) was not fulfilled.

2. G(Ns,ece(a,s) —state(d, sc)) was notfulfilled, i.e., the state of the data object had
been altered to a contradicting data state before activity tar was ready to execute.

In order to identify the exact reason for the violation, we have to issue a sequence of
TL queries. Depending on the results, anti-pattern queries are derived. First, we check
whether the predicates for the execution of the source activity and the data condition
hold when the target activity is ready to execute, i.e. G(ready (tar) — O(PVse A
Naepo (Vser(a) state(d, s)))). Note that, again, we use the variable activity predicate
PV, (DefinitionB) resolving to executed (src) for ordinary activities and to ¢rue for
the variable activity “@A”. If this query returns a positive result, we know that violation
occurred owing to the second of the aforementioned reasons (2). That is, the states of
the data objects are altered, such that G(A;_c.. (4,5 — State(d, s¢)) is not satisfied.
The corresponding anti-pattern query is sketched in Fig.

” R Contra Contra
:'""> Condition :' > Condition HE—— > Condition
|
H H H
e) o o]

(a) Occurrence of contradicting data states (b) Non occurrence of data condition

Fig. 9. Anti-pattern queries for conditional precedes

On the other hand, if the result is negative; either the source activity has not been
executed at all before the target activity (reason [Ta) or the data condition did not
hold (reason [[B). In order to decide on a reason, we issue a TL query that checks,
whether the source activity (src) is always executed before the target activity (tar), i.e.
G(ready(tar) — O(PV{(4.))). If this query is not satisfied, then we know that the tar-
get activity (tar) might be executed without executing the source activity (src) before.
Thus, the violation can be identified by finding paths from the start of the process to the
target activity without executing the source activity (which is captured by the exclude
property). On the other hand, if this query is satisfied; we know that in some cases the

512 A. Awad, M. Weidlich, and M. Weske

data condition does not hold. To identify the data states that violate the data condition,
we query the states of data objects that result from an execution of the source activity
(src), as a TL query G(ready (tar) — O(PV(sc) A state(?qop, ?states))). For each
resulting data state, a query as in Fig. shows the violation in the process model.

Finally, the case of
. R PR Rating
conditional absence ; 1 [rejected]

precedes compliance rules adds

one more potential reason for viola- O_”E " wﬁsﬁfem
tion. That is, the excluded activities

might have been executed. Again, the Fig. 10. Anti-pattern for R3

violation can be captured by issuing

a query where there is a path from the start of the process to the activity that should
be absent, and another path from this activity to the target activity. With respect to
our examples, the anti-pattern query for rule R3 is illustrated in Fig. This query
matches the whole process model, such that activity “Review Respondent Bank Rating”
is executed, the “Rating” is rejected, whereas activity “Open Correspondent Account
might be executed.

LL)

6 Implementation

Our approach has been implemented within the BPMN-Q query processor engine. The
implementation covers mapping of the discussed rules into corresponding PLTL formu-
las as shown earlier. To prepare the investigated process models for model checking, the
mapping proposed in is used to generate the behavioral model.

For our work, we were not able to use existing temporal logic query solvers
as they support only CTL based queries. However, according to [14] it is possible to
implement a temporal logic query solver by using a model checker and issuing all pos-
sible 22" combinations, where n is a finite set of predicates, and tabulating the result
of each combination. In our case, we adopted this approach in an even simplified form
as we know for data states that they are mutually exclusive, i.e., a data object can have
only one state at a time [9]]. The implementation of this special case TL query solver is
an integral part of the BPMN-Q query processor.

7 Related Work

There has been a large body of research interested in compliance checking on business
process models. We focus on work done regarding execution ordering between activities
on a business process. In this regard, we can divide work done on compliance into two
areas, namely compliance by design and post-design compliance checking.

Compliance by design takes compliance rules as input for the design of new process
models. Work in shows how compliance requirements are enforced in
the design process of new business processes. By definition, there is no chance for
violations to occur. However, once a new compliance requirement is introduced or the
process model is modified, the checking for compliance is needed.

Specification, Verification and Explanation of Violation 513

Post-design compliance checking, in turn, targets checking for compliance for ex-
isting process models. Thus, it separates the modeling phase of a process model from
the checking phase. Our approach belongs to this category. Similar approaches
also employ model checking to verify that process models satisfy the compliance rules.
Although some of these approaches are able to express what we call conditional rules,
it remains open how these approaches can be applied to express so-called data flow
rules. Taking business contracts as a source for compliance rules, deontic logic was
employed as a formalism to express these requirements in [2122123]). It is possible to
express the notion of obligation and permission and prohibition. Thus, it is possible to
express alternative actions to be taken when a primary one is not done. However, the
data perspective is largely neglected. Further on, work in addressed the consis-
tency between business process models and lifecycles of business objects processed in
these models. Yet, explanation of the points of deviation and their representation has
not been addressed. A recent approach to measure the compliance distance between a
process model and a rule was introduced in [23]. This approach enables measuring the
degree of compliance on the scale from 0 to 1. Again, data aspects are not considered.

Another field of related work deals with resolution of compliance violations. In [26]
an approach to check compliance of business processes and the resolution of violations
was introduced. Although automated resolution is important, the paper discussed it from
a high level point of view. We believe that this point needs further investigation and has
to be tackled in future work.

Explanation of violations was also addressed in the area of workflow verification
as well as service orchestration [28]. In both approaches, the explanation was a transla-
tion of the output of the verification tools. Thus, it might be the case that some violation
scenarios were not discovered.

The unique features of our approach are 1) the possibility of identifying process
models subject to checking by means of queries and 2) giving explanations of possible
violations on the process model level.

8 Conclusion

In this paper, we discussed an approach to model the so-called data aware compli-
ance rules. These rules were realized by extending BPMN-Q. Including data aspects
increased the expressiveness of the language. Nevertheless, formalizing these rules
(queries), by mapping into PLTL, is not straightforward. Extra information, e.g. the
notion of contradicting states, must be present. To explain violations, we applied tem-
poral logic querying (TLQ). We demonstrated how feedback can be given — based on
so-called anti-pattern queries that are derived automatically. To the best of our knowl-
edge, we are the first to apply TLQ in the area of business process management.

The ability to provide explanations why a certain compliance rule is not satisfied
has to be seen as a major step towards real-world applicability. Knowing just that a
process violates a certain compliance rule is of limited use for common business sce-
narios. Owing to the intrinsic complexity of these scenarios, feedback on violations is
crucial.

514 A. Awad, M. Weidlich, and M. Weske

In future, we will investigate approaches for (semi) automated resolution of viola-
tions. In that case, other formalism has to be used as resolution of violation implies
changes to the structure of the process models.

References

1. Weske, M.: Business Process Management. Springer, Heidelberg (2007)

2. United States Senate and House of Representatives in Congress: Sarbanes-Oxley Act of 2002.
Public Law 107-204 (116 Statute 745) (2002)

3. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.: Business Process Com-
pliance Checking: Current State and Future Challenges. In: MoblS, GI. LNI, vol. P-141, pp.
107-113 (2008)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

5. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using bpmn-q and temporal
logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326—
341. Springer, Heidelberg (2008)

6. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA, GI. LNI, vol. P-
119, pp. 115-128 (2007)

7. Zuck, L.: Past Temporal Logic. PhD thesis, Weizmann Intitute, Israel (1986)

8. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450-463. Springer, Heidelberg (2000)

9. Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing Data Anomalies in Process
Models. In: 5th International Workshop on Business Process Design. LNBIP. Springer, Hei-
delberg (to appear, 2009)

10. Kiister, J.M., Ryndina, K., Gall, H.: Generation of Business Process Models for Object Life
Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165-181. Springer, Heidelberg (2007)

11. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Inf. Softw. Technol. 50, 1281-1294 (2008)

12. Chechik, M., Gurfinkel, A.: TLQSolver: A temporal logic query checker. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210-214. Springer, Heidelberg (2003)

13. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool for model
exploration. IEEE Trans. Softw. Eng. 29, 898-914 (2003)

14. Bruns, G., Godefroid, P.: Temporal logic query checking. In: LICS, p. 409. IEEE Computer
Society, Los Alamitos (2001)

15. Lu, R., Sadiq, S.W., Governatori, G.: Compliance aware business process design. In: ter Hof-
stede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 120-131. Springer, Heidelberg (2008)

16. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes from Obligations
and Permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5-14. Springer, Heidelberg (2006)

17. Goedertier, S., Vanthienen, J.: Compliant and flexible business processes with business rules.
In: BPMDS. CEUR Workshop Proceedings, CEUR-WS.org, vol. 236 (2006)

18. Milosevic, Z., Sadiq, S.W., Orlowska, M.E.: Translating business contract into compliant
business processes. In: EDOC, pp. 211-220. IEEE Computer Society, Los Alamitos (2006)

19. Yu,J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property specification and
verification for service composition. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y.,
Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 156-168. Springer, Heidelberg (2006)

20. Lui, Y., Miiller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Syst. J. 46, 335-362 (2007)

21.

22.

23.

24.

25.

26.

27.

28.

Specification, Verification and Explanation of Violation 515

Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and domain spe-
cific language. In: EDOC, pp. 46-57. IEEE Computer Society, Los Alamitos (2005)
Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: EDOC, pp. 221-232. IEEE Computer Society, Los Alamitos
(2006)

Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 149-164. Springer, Heidelberg (2007)

Ryndina, K., Kiister, J.M., Gall, H.C.: Consistency of Business Process Models and Object
Life Cycles. In: Kiihne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80-90. Springer, Hei-
delberg (2007)

Lu, R., Sadiq, S., Governatori, G.: Measurement of Compliance Distance in Business Pro-
cesses. Inf. Sys. Manag. 25, 344-355 (2008)

Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krdmer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169-180. Springer, Heidelberg
(2007)

Flender, C., Freytag, T.: Visualizing the soundness of workflow nets. In: Algorithms and
Tools for Petri Nets (AWPN 2006), University of Hamburg, Germany, Department Informat-
ics Report 267, pp. 47-52 (2006)

Schroeder, A., Mayer, P.: Verifying interaction protocol compliance of service orchestrations.
In: Bouguettaya, A., Krueger, 1., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 545—
550. Springer, Heidelberg (2008)

	Specification, Verification and Explanation of Violation for Data Aware Compliance Rules
	Introduction
	Motivating Example
	Preliminaries
	Linear Temporal Logic with Past Operators (PLTL)
	Data Access Semantics
	BPMN-Q

	BPMN-Q for Data Aware Compliance Rules
	Examples for Data Aware Compliance Rules
	Syntax of Data Aware BPMN-Q Queries
	Mapping Queries into PLTL

	Explanation of Violation
	Temporal Logic Querying
	Explanation of Data Rules Violations
	Explanation of Conditional Leads to Violations
	Explanation of Conditional Precedes Rules Violations

	Implementation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

