
L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 34–49, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Intelligent Overload Control for Composite Web Services

Pieter J. Meulenhoff1, Dennis R. Ostendorf2, Miroslav Živković1,
Hendrik B. Meeuwissen1, and Bart M.M. Gijsen1

1 TNO ICT, P.O. Box 5050, 2600 GB Delft, The Netherlands
{pieter.meulenhoff,miroslav.zivkovic}@tno.nl,

{erik.meeuwissen,bart.gijsen}@tno.nl
2 Quintiq, 's-Hertogenbosch, The Netherlands

Abstract. In this paper, we analyze overload control for composite web ser-
vices in service oriented architectures by an orchestrating broker, and propose
two practical access control rules which effectively mitigate the effects of se-
vere overloads at some web services in the composite service. These two rules
aim to keep overall web service performance (in terms of end-to-end response
time) and availability at agreed quality of service levels. We present the theo-
retical background and design of these access control rules as well as perform-
ance evaluation results obtained by both simulation and experiments. We show
that our access control rules significantly improve performance and availability
of composite web services.

Keywords: Availability, Performance, Quality of Service, Service Oriented
Architecture, Web Admission Control, Web Service Composition, Web Service
Orchestration.

1 Introduction

Service oriented architectures (SOAs), based on Web Service technology, are becom-
ing increasingly popular for the development of new applications due to the promises
of easier development and shorter time-to-market. These so-called SOA-based com-
posite services are offered by service providers, and typically consist of multiple web
services, developed by third parties, which are executed in multiple administrative
domains.

Currently, service developers and providers focus on the functional aspects of
composite web services. However, too little attention is paid to the non-functional
aspects of composite web services such as availability, performance, and reliability.

Since several composite web services can make use of the same web services,
these popular web services used by multiple composite web services may experience
high demand, resulting in more requests than they can handle, leading to degradation
of all services that rely on these web services. These overload situations lead to re-
duced availability as well as higher response times, resulting in degraded quality as
perceived by end users.

This paper concentrates on improving performance and availability of composite
web services. In particular, a solution is proposed to improve the quality as perceived

 Intelligent Overload Control for Composite Web Services 35

by end users by increasing the average number of successfully served requests per
second. This solution is based on intelligently preventing overload on any one of the
services in the composition, by denying service to specific requests based on dynamic
admission control rules.

To illustrate our problem setting, Fig. 1 shows a simplified SOA architecture with
an orchestrating web service, also referred to as an orchestrating broker. Let us sup-
pose that the composite web service consists of three web services identified by W1
thru W3.

The broker consists of a scheduler and a controller. The scheduler determines the
order of the jobs submitted to web services W1 thru W3, since it may be different per
client. Each web service, W1 thru W3, has implemented the Web Admission Control
(WAC) mechanism. The broker’s controller keeps track of the total request execution
time, and decides if the latency is within the required limit.

W1

W2

W3

Client 1

Client N

…

Orchestrating
Broker

Controller

Scheduler

1

2, 12

3, 13

4

5

8, 14

9, 15

11

14, 16

10

requests jobs

Fig. 1. Jobs for client requests are routed through a network of web services (W1, W2 and W3)
by an orchestrating broker

To illustrate normal operation, let us suppose that a request from Client 1 (#1) arrives
at the broker. The scheduler analyses the request, and determines that the web service
W1, W2, and W3 should be invoked in that order. If the total execution time of the
request is less than the required limit, the job is delegated to component W1 (#2).
Before actually executing the job in W1, the WAC mechanism decides that W1 is not
in overload and executes the job. On the response (#3) from W1, the scheduler checks
with the controller that the total latency is less than the required limit and invokes the
next job at W2 (#4). This is repeated until all web services are invoked, and the re-
sponse (#10) to Client 1 is given within a maximum amount of time.

To illustrate an overload situation, let us suppose that a request from Client N
(#11) arrives at the broker. The scheduler analyses the request, and determines that
the web services W1 and W2 should be invoked in that order. When the job is dele-
gated to web service W1 (#12), the WAC mechanism in W1 decides that W1 is not
in overload and the job is executed. On the response (#13) from W1, the scheduler

36 P.J. Meulenhoff et al.

delegates the next job to W2 (#14). The WAC mechanism in W2 denies the job as W2
is in overload, and an unavailable message is returned to the broker (#15). As a result,
the broker is able to respond to Client N with a service unavailable message (#16)
within the maximum amount of time as well as to prevent escalation of the overload
situation of W2. Obviously, in this described overload situation resources of web
service W1 have been wasted.

Providers of web services W1 thru W3 may apply different state-of-the-art tech-
niques, such as overdimensioning of computing resources, load balancing, and cach-
ing, to prevent overload in their own domain. In this paper we focus on the use of
admission control in the web services in combination with a simple response time
limit check in the orchestrating broker to prevent the composite web service from
becoming generally unavailable in an overload situation. Admission control is al-
ready widely used in telecommunications. Research has also been performed on the
use of admission control for Web Servers; see for instance [1]-[3], [7]. The use of
WAC to prevent overload for stand alone Web Services has been discussed in [4]-[5].
In the field of composite web services several contributions have been made more
recently, focusing on web service scheduling; for instance in [8]-[9]. However, to the
best of the knowledge of the authors admission control schemes that include aware-
ness of the state of the workflow in a composition of web services, have not been
published yet.

Specifically, we investigate how each individual web service can intelligently deny
service to some of the jobs in the system in order to maximize the number of client
requests for which the entire composite web service is available with a given maximal
response time. Each composite web service is responsible for preventing it from col-
lapsing in overload situations, and with it the entire composite web service. We
thereby assume that the broker is not a single point of failure, i.e. that it can instantly
serve and process all requests and jobs. In our solution to control quality of composite
web services, mathematically derived using queuing theory, denial of service will
typically occur when the number of active jobs at specific web services reaches the
allowed maximum. As a result, we serve as many client requests as possible with the
requested end-user perceived quality, including a guarantee on the maximum response
time.

The rest of the paper is organized as follows. In Section 2, we define the mathemati-
cal foundation of the admission control problem. In Sections 3 and 4, two algorithms
for admission control by the web services are derived from the results in Section 2. In
Section 5, the simulation setup to investigate our solutions is described as well as two
simulation cases. In Section 6, the results of an experimental validation are described.
In Section 7, we end with conclusions and suggestions for the future work.

2 Mathematical Foundation for Admission Control

In this section, we will derive a queueing model of an composition of web services,
including an orchestrating web service (broker), see Fig. 1. This queueing model
forms the mathematical foundation for our access control rules.

Let us suppose that the composite web service consists of web services from the
set W = {W1, W2, …, WN}. In general, the Wj ∈ W may be composite web services

 Intelligent Overload Control for Composite Web Services 37

themselves. The incoming client requests at the broker are composed of jobs to be
sequentially executed by a chain of web services from the set W. Thus, each job
within the request is served by a single web service. Since the broker controls differ-
ent composite web services, the order in which jobs are executed may differ per client
request. The broker tracks job execution on a per request basis.

In practice, web services serve jobs using threading, which could be modeled using
a round-robin (RR) service discipline in which jobs are served for a small period of
time (δ→0) and are then preempted and returned to the back of the queue. Since δ →
0, assuming there are n jobs with the same service rate μw, the per job service rate is
μw/n. To simplify analysis, this process is modeled as an (egalitarian) processor shar-
ing (PS) service discipline.

The service time distribution of web service Wj is assumed to be exponential with
parameter μj. Jobs arrive at web service Wj with arrival rate λj and the web service
load is defined as ρj= λj/μj.

We define the latency Li of an incoming client request i as the total time it takes for
a request to be served. The sojourn time (i.e. time spent in the system) of job j at web
service Wj from request i is denoted by Sij. We ignore possible delay due to network
traffic and broker activity, so it holds that

∑=
j

iji SL (1)

The clients are willing to wait only a limited amount of time for the request(s) to the
composite web service to be completed. Within the SOA architecture, Service Level
Agreements (SLAs) can be defined between the clients and the provider of the com-
posite web service in order to quantify whether a request has been successful or not.
For example, the SLA may contain the description that a client request i is considered
successful when its latency Li is smaller than maximum latency Lmax. The maximum
latency tolerated by clients may depend on the application itself. Some studies [6]
show that users are on average willing to wait up to eight to ten seconds for the re-
sponse from a website. However, atomic commercial transactions may require laten-
cies that are much shorter [1]. The same SLA negotiation can be done between the
broker and each composite service. An existing standard that serves as inspiration is
WS Reliability [10]. Using the WS Reliability standard it is possible to give jobs so
called ‘expiry times’, which define the maximum time it may take to receive a re-
sponse.

We denote by cj a maximum number of jobs allowed to be served simultaneously
by web service Wj. When cj requests are served and the next job arrives it is denied
service by the admission control rules at the web service. This admission control rule
for web service Wj can be modeled by the blocking probability pcj. Since our objective
is to serve as many requests as possible (within Lmax) in an overload situation, our
goal is to find the optimal values of the cj.

To further simplify analysis, we assume that the web services Wj have the same
values of cj, λj, pcj, and μj, denoted as c, λ, pc and μ, respectively. We address this
optimization problem by modeling the web services Wj ∈ W as an M/M/1/c Processor

38 P.J. Meulenhoff et al.

Sharing Queue (PSQ). It is generally known that the blocking probability of the
M/M/1/c PSQ equals

∑ =

= c

k

k

c

cp
0
ρ

ρ
 (2)

And that the expected sojourn time at each of the web services equals

)1(1
/1

)(
cp

SE
−−

=
ρ

μ
 (3)

In the subsequent sections, two dynamic admission control algorithms S and D are
derived from the model discussed in this section.

3 Dynamic Admission Control Algorithm S

The basic underlying principle of algorithm S is that the expected sojourn time E(S)
of a job in a web service should be less than or equal to the average available time for
the jobs within the request. Thus, the problem of serving the client request within Lmax
is split up in consecutive steps. In each step, a limit on the expected sojourn time is
calculated in the following way.

The broker, which is the only component that `knows' the structure of the request,
divides the total allowed latency Lmax over all jobs. The moment t* when a request
enters the broker the due date for the next job j* is calculated. First, the total remain-

ing time for this request, i.e. ∑ −

=
− 1

1max

*

L
j

j ijS , is determined. Then, it is divided

over all remaining jobs in proportion to their service requirements. Let Dij* be the due
date of job j* from request i, let Ji be the total number of jobs from request i, let t* be
the time at which the due date for job j* is calculated, and let υij denote the expected
service time of job j from request i. Now the following relation holds:

∑
∑

=

−

= ⎟
⎠
⎞⎜

⎝
⎛ −+=

iJ

jj ij

ijj

j ijij
StD

*

**

*

1

1max
* L

ν

ν

As a result, the remaining time for job j from request i at time t is given by Rij (t) =
Dij - t. When the total remaining time of a request is less than zero, the request is dis-

carded by the broker and the client is notified. Let R denote the average remaining
available service time of all jobs in the Web Service Rij (t). Now dynamic admission

control algorithm S is derived based on the following constraint: the expected so-
journ time E(S) of a job in a web service should be less than or equal to the average
available time. Now our optimization problem is defined as follows:

 Intelligent Overload Control for Composite Web Services 39

{ }RSEc
c

≤)(:max (4)

In (4), both c and R are time-dependent, but we omit this to simplify our notation.

Computation of R is straightforward since due times of all jobs within the composite
service are known.

Substituting (3) in (4) yields:

⎭
⎬
⎫

⎩
⎨
⎧

≤
−−

R
p

c
c

c)1(1
/1

:max
ρ

μ
 (5)

Substituting (2) in (5) yields:

{ } 1))1(1(log:max >−+≤ ρρμρ forRcc
c

 (6)

Therefore, the admission control algorithm S is now defined as:

Allow arriving jobs service if ρ<1 or))1(1log(−+≤ ρμ Rn still holds after the

new job is allowed service.

In the remainder of this section, we discuss two issues of algorithm S. In order to
compute c the value of ρ is needed and thus the values of λ and μ as well. It is as-
sumed that the service requirement rate μ is known, but the value of λ is not. The
arrival process (of a web service) will in reality not be known and thus must be esti-
mated. Therefore, the question arises what is the time period to estimate λ and how to
estimate this value.

Another issue is that the arrival rate is explicitly used to estimate the value of c. In-
tuitively the number of jobs, which can be simultaneously served, does not depend on
the number of jobs which arrive at the system. The web service is capable of simulta-
neously serving c jobs. The blocking probability corrects for this fact, but further
investigation of this issue is required.

In the next section, an alternative dynamic admission control rule is derived, in
which the arrival rate λ (and hence ρ) is not used to determine the maximum value of
the number of jobs allowed.

4 Dynamic Admission Control Algorithm D

The goal of algorithm D is to implement admission control without knowledge of the
arrival rate λ. This algorithm is based on the relaxed constraint that only the average
job has to be completed on time. Theoretically, the average job completes on time
when the number of jobs in the system remains the same for the entire service time of
each job. Although jobs may enter the jobs may enter the system or depart from the
system, we investigate whether effective admission control is possible under the
assumption that the number of jobs remains the same.

40 P.J. Meulenhoff et al.

When the number of jobs n in the queue is assumed to be constant, the expected so-
journ time for a job equals n/μ. When all jobs must be served before their due dates
the problem is defined as follows:

{ }serviceinjobsallfor,)(:max ij
c

RSEc ≤ (7)

In our case E(S) equals c/μ, and ijR is replaced by R , where R determines the aver-

age remaining available service time for all jobs in service. These relaxations lead to
the following optimization problem:

,:max
⎭
⎬
⎫

⎩
⎨
⎧ ≤ R

c
c

c μ
 (8)

The solution of this trivial problem yields Rc μ= . Hence we define the more practi-

cal admission control algorithm D as follows:

Allow arriving jobs service if Rn μ≤ still holds after the arriving job is allowed

service.

Note that for the calculation of the admission control parameter c, the arrival rate (and
thus ρ) is not needed. This is a major advantage from a practical point of view com-
pared to algorithm S.

5 Simulation Setup

A discrete-event simulation model is constructed to evaluate the proposed admission
control algorithms. The model is implemented using the software package eM-Plant
see [11]. The simulation model basically consists of four components, see Fig. 2.
Component ‘Client’ generates new requests according to a Poisson process with rate λ.
Requests are dispatched through the network by component ’Broker’. After a request
has been generated a request type is randomly assigned, to indicate which web services
need to be visited. Each web service is an instance of component ‘WS’. The completed
or denied requests arrive at component ‘Output’, where relevant data is collected.

When a job is sent to one of the web services in the composition, the web service
checks whether it is allowed or denied service. In case admission control is not used,
all incoming jobs are allowed. When admission control is used, the web service uses
an access control rule to decide whether the incoming job may be served or not. Fig. 3
illustrates the flowchart of the broker component in case of admission control. When
a new request comes in, the broker determines whether the latency of this request has
already reached its limit, i.e. the remaining time for the request is less than zero. If the
limit is reached, the request is denied service and sent to the output component. It may
happen that the request has been allowed by the broker, but still the web service itself
can not serve the request. Even when the remaining time is greater than zero, the
broker determines whether the request has previously been denied service by the web

 Intelligent Overload Control for Composite Web Services 41

Fig. 2. Overview of the simulation model

Fig. 3. Flowchart of the broker component in case of admission control

service component. If so, the request is also sent to the output component. If neither
the latency limit has been reached nor the request has been denied service previously,
the next web service needed to complete the request is determined. The web service
calculates the due time for the next job, and then sends the job to the determined web
service. For this calculation the total remaining time for the request is divided over all
remaining jobs in proportion to their service requirements. When all jobs in the re-
quest are served, the request is sent to the output component as well.

Two simulation cases were designed to be used to compare the proposed admission
control algorithms:

Case 1: The web services are placed in a specific order i.e. if web service X is before
web service Y in one request type, it will be in every request type (in which both web
services are present).

42 P.J. Meulenhoff et al.

Case 2: There is no specific order of web services, but almost all request types make
use of two specific web services.

Both cases are identified by

• the (order of) web services which need to be used by each request type.
• the distribution of requests over the different request types.
• the (required) service rates of all web services.

Note that the arrival rate λ is not part of the case characteristics, nor is the maximum
allowed latency, Lmax. These are considered to be parameters within a given case.

There are two performance indicators for the given admission control algorithms
that we observed in greater detail

• Number of successfully served requests
• Goodput, which is defined as the average number of successfully served requests

per second.

All simulations are executed on a desktop computer with a dual Pentium IV 3.2GHz
processor and 1GB RAM memory. Unfortunately, the simulation package eM-Plant7
is not capable of using both processors. A bootstrap period (used to estimate λ) of 15
minutes is chosen as well as a simulation time of 15 minutes. A total of 15 simula-
tions per case have been run.

Simulation Case 1

In the first case a total of 11 web services W1, W2, …, W11 and 10 different request
types r1, r2, …, r10 were used. Most requests start in W1 or W5 and finish in W10 or
W11. The characteristics of this case are as follows:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

10

3/10

10

10

5

5

3/10

5

5

3/10

5

,

02.0

03.0

05.0

40.0

10.0

05.0

05.0

05.0

20.0

05.0

,

4

2

119861

105

119841

109841

109821

1098721

1098321

11987321

10

9

8

7

6

5

4

3

2

1

μp

W

W

WWWWW

WW

WWWWW

WWWWW

WWWWW

WWWWWW

WWWWWW

WWWWWWW

r

r

r

r

r

r

r

r

r

r

Y

In this notation Y is a matrix which shows the (order of) web services which need to
be used by each request. The vector p denotes the distribution of requests over the
different types and vector μ denotes the (required) service rates of all web services.
Using test runs, the system (with Lmax=8s) is found to get in overload around λ=3s-1.
Therefore arrival rates around λ=3s-1 were investigated as well as other extreme val-
ues. Without WAC, the simulation runtime rapidly increases as λ increases. For λ=1s-

1 the runtime (without WAC) is about half a minute. For λ=10s-1 the runtime has in-
creased to about 45 minutes. To keep simulation run times acceptable, the extreme

 Intelligent Overload Control for Composite Web Services 43

arrival rates are not investigated for the situation without admission control. It is ex-
pected that the fraction of successfully served request and the goodput both have
value 0 in these situations. Total simulation time of this case was approximately 8
hours. Simulation results are summarized in Fig. 4, including 99.7% individual confi-
dence intervals. Notice that the scale of the horizontal axis changes after λ=10s-1.

It can be seen that both admission control rules have a positive effect on goodput.
Both admission control schemes seem to perform equally well. Only at extreme arri-
val rates the difference with the theoretical maximum increases. Goodput drops when
admission control is not used. However, when admission control is not used, there is a
slight increase in goodput between λ=5s-1 and λ= 9s-1. Especially at λ=9s-1 the per-
centage of successful requests is much larger than expected. Given the (very small)
confidence intervals it seems unlikely that this is due to the stochastic nature of the
experiment results. This phenomenon will be called the arrival paradox and is ex-
plained by the following example:

Consider three web services, W1, W2 and W3 (see Fig. 5) each with service rate 5.
Requests go from W1 or W2 to W3. If both W1 and W2 are not overloaded, the goodput

1 2 3 4 5 6 7 8 9 10 50 100 300

Arrival rate (requests/second)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 s

uc
ce

ss
fu

l

Succes (NoWAC)
Succes (Priorities - WAC S)
Succes (Priorities - WAC D)
Late
Denied

1 2 3 4 5 6 7 8 9 10 50 100 300

Arrival rate (requests/second)

0

2

4

6

8

10

12

14

16

18

G
oo

dp
ut

 (
re

qu
es

ts
/s

ec
on

d)

Upper Bound
NoWAC
Priorities - WAC D
Priorities - WAC S

Fig. 4. Simulation results for Case 1

44 P.J. Meulenhoff et al.

from these web services equals the arrival rate of these web services. Therefore the
arrival rate at W3 equals the sum of the arrival rates at W1 and W2 and hence W3 is in
overload and its goodput drops to zero. When the arrival rates are doubled, one of the
web services W1 and W2 may get overloaded. Because admission control is not used,
sojourn times will explode and requests will exceed their maximum allowed latencies.
Recall that late requests are preempted at the broker. Therefore the arrival rate at web
service W3 decreases due to the higher overall arrival rate and W3 no longer is in over-
load, hence its goodput increases.

4
W1
(5)

W2
(5)

W3
(5)2

4

2

0

8
W1
(5)

W2
(5)

W3
(5)4

0

4

4

Fig. 5. Example of the arrival paradox, where web services in grey indicate overload

Simulation Case 2

In this case there are 10 request types and 9 web services. Most requests will visit W5
and/or W6, but these web services are not on a specific location in the chain, nor is
there any other general sequence in which web services are called. The characteristics
of Case 2 are as follows (using the same notation as in Case 1).

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

5

5

10

4

4

10

4

5

5

,

05.0

15.0

1.0

05.0

05.0

2.0

1.0

05.0

1.0

15.0

,

21891

456

9385

5198

53647

6195287

195578

62734

167325

268

10

9

8

7

6

5

4

3

2

1

μp

WWWW

WWW

WWWW

WWWW

WWWWW

WWWWWWW

WWWWWW

WWWWW

WWWWWW

WWW

r

r

r

r

r

r

r

r

r

r

Y

In Case 1 it could be argued that some web services would never get in overload. For
Case 2 this cannot be argued. Requests start in web services W1, W4, W5, W6, W7 or
W8, thus these web services will get in overload if the arrival rate is high enough. For
the other web services the line of reasoning used in Case 1 cannot be followed. This is
because Case 2 lacks the structure like Case 1 has. Therefore it seems that each web
service may get in overload. Total simulation time of this case was approximately 11
hours. Simulation results are summarized in Fig. 6. Just as in the previous case, the
differences between the admission control algorithms seem almost negligible. The

 Intelligent Overload Control for Composite Web Services 45

only (relevant) difference occurs in terms of goodput for high arrival rates. For low
arrival rates (λ<5s-1) the D rule results in a slightly worse situation than if admission
control is not used. In all other cases the admission control rules both behave better
than when admission control is not used.

The difference between the theoretical maximum for the goodput and the observed
goodput is larger compared to case 1, even for small values of λ. In case 1 the good-
put kept increasing, even at high arrival rates. In this case however, the goodput de-
creases after λ=12s-1.

Fig. 6. Simulation results for Case 2

6 Experimental Validation

Besides theoretical analysis and simulation of admission control, an empirical ex-
periment is set up to validate the simulations. Concrete web services were built and
the results are compared to the simulation results. For this purpose of comparison it
does not matter what function the web services perform. In addition, for setting up the
tests it is convenient if the CPU demand of executing a web service can be controlled.
Therefore, we implemented web services that calculate a specific Fibonacci number
(each service has its own number to calculate) according to a CPU consuming

1 2 3 4 5 6 7 89 39 899 199

Arrival rate (requests/second)

9

0

2

4

6

89

G
oo

dp
ut

 (
re

qu
es

ts
/s

ec
on

d)

Upper Bound
NoWAC
Priotities - WAC D
Priorities - WAC S

1 2 3 4 5 6 7 89 88 80 39 899 839

Arrival rate (requests/second)

9%

09%

29%

49%

69%

899%

Pr
ec

en
ta

ge
 S

uc
ce

ss
fu

l

Success (NoWAC)
Success (Priorities - WAC S)
Success (Priorities - WAC D)
Late
Denied

46 P.J. Meulenhoff et al.

algorithm. By choosing the Fibonacci number the CPU consumption of this web ser-
vice can be influenced. During the experiments two scenarios were evaluated: One
where admission control rule D is enabled (WAC D); the other where admission con-
trol is disabled (NOWAC). To obtain the results from the web service the software
package JMeter [12] was used. A global overview of the experimental setup is given
in Fig. 7.

Fig. 7. System setup for empirical validation of admission control

The orchestrating broker (see Fig. 3) and the individual web services (W1 thru W5) are
implemented following the design and implementation of the corresponding compo-
nents in the simulations. All software was written in Java and executed on Tomcat
[13] extended with Axis2 [14] for web service functionality. The case used in these
experiments resembles the first case, where the web services are placed in a specific
order. The characteristics of the web services are as follows (using the same notation
as in Case 1):

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

,

43

52

431

531

541

21

5421

54321

4

1

10

9

8

7

6

5

4

3

2

1

p

WW

WW

WWW

WWW

WWW

WW

WWWW

WWWWW

W

W

r

r

r

r

r

r

r

r

r

r

Y

Note that no values for the service rate of each web service are given. All web ser-
vices were configured to calculate the same Fibonacci number. Both the JMeter and
the Broker run on the system equipped with 2GB RAM and single Pentium IV proc-
essors clocked at 3.2GHz. The web services W1,…, W5 run on systems equipped with
0.5GB, 1GB, 1GB, 0.5GB, 0,5GB and with Pentium IV processors at 1GHz, 2.4GHz,

JMeter

W1 W2 W3 W4 W5

Broker

 Intelligent Overload Control for Composite Web Services 47

2.4Ghz, 1GHz, 1GHz respectively. JMeter was configured to generate the requests r1,
r2, …, r10 based on the probabilities p1, p2, …, p10. In each run of JMeter a fixed num-
ber of threads (between 1 and 200) were active. Each run used a warm-up time of 15
minutes, and a test time of 15 minutes; the latter has been used to gather the results
shown here.

In any composite web service the orchestrating broker is a suspect to become a per-
formance bottleneck and should therefore be kept light. In our case the admission
control rules are executed by the web services, and the broker is only responsible for
service orchestration and tracking total latency of a composite request. In our experi-
mental validation the orchestration is implemented in such a way, that performing
admission control does not add a bottleneck to the composite web service. If, the
broker would become the bottleneck in the system due to its orchestration function,
then it would be possible to distribute the work by using more brokers. This is possi-
ble since the admission control rules are implemented in the web services. An over-
view of the experimental results is given in Fig. 8.

Fig. 8. Results of the empirical tests

The empirical and simulation results correlate well. Using WAC the overall goodput
was noticeably higher than the NOWAC scenario. The NOWAC scenario reaches a
maximum goodput when there are a little bit more than 4 requests per second at 15
concurrent threads. The WAC scenario seems to level between 6 to 7 requests per
second at 50 concurrent threads.

7 Concluding Remarks

In this paper two different overload control algorithms for composite web services in
service oriented architectures, were derived. These algorithms, S and D, were derived
based on a M/M/1/c Processor Sharing Queue. In addition, a simulation model was

0 50 100 150 200

Number of concurrent client threads

0

1

2

3

4

5

6

7

G
oo

dp
ut

 (
re

qu
es

ts
/s

ec
on

d)

Priorities - WAC D
NoWAC

48 P.J. Meulenhoff et al.

constructed and used to conduct simulations with these two rules and a benchmark
(in which no admission control rule is used). Moreover, an experimental setup was
constructed to conduct an empirical evaluation of rule D and the benchmark.

Based on simulation results, we conclude that in most situations both admission
control rules S and D resulted in a higher objective value (measured in goodput) than
the benchmark. While the difference is small, rule S does perform better than rule D.
However, it can be observed that the results are dependent on the case, the structure
and interaction patterns of the used web service components. The experimental
evaluation of rule D gives similar results to the simulations performed for this rule.

To achieve further improvements, the empirical experiments should be scaled up to
evaluate a broader range of different and larger service oriented infrastructures. Such
experiments would be primarily focused on obtaining the most optimum goodput as
well as incorporating business objectives in the admission control rules.

Another area of research is to extend the proposed admission control mechanisms
in more complex environments, e.g. when the sequence of composite services is not
known in advance, or when there is more variation in the resource requirements of
each composite service.

Ackowledgement

Part of this work has been carried out in the context of the IOP GenCom project Ser-
vice Optimization and Quality (SeQual), which is supported by the Dutch Ministry of
Economic Affairs via its agency SenterNovem.

References

1. Gijsen, B.M.M., Meulenhoff, P.J., Blom, M.A., van der Mei, R.D., van der Waaij, B.D.:
Web admission control: Improving performance of web-based services. In: Proceedings of
Computer Measurements Group, International Conference, Las Vegas, USA (2004)

2. Xu, Z., Bochmann, G.V.: A Probabilistic Approach for Admission Control to Web Serv-
ers. In: Proceedings of Intern. Symp. on Performance Evaluation of Computer and Tele-
communication Systems, SPECTS 2004, San Jose, California, USA, July 2004, pp. 787–
794 (2004) ISBN 1-56555-284-9

3. Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A Method for Transparent Admis-
sion Control and Request Scheduling in E-Commerce Web Sites. In: Proceedings of the
13th international conference on World Wide Web, New York, USA, pp. 276–286 (2004)
ISBN:1-58113-844-X

4. Urgaonkar, B., Shenoy, P.: Cataclysm: Scalable Overload Policing for Internet Applica-
tions. Journal of Network and Computer Applications (JNCA) 31, 891–920 (2008)

5. Xi, B.: Quality of service (QoS) for web-based applications. Technical report, TNO-ICT
and Eindhoven University of Technology (2007)

6. Bouch, A., Kuchinsky, A., Bhatti, N.: Quality is in the eye of the beholder: Meeting user’s
requirements for internet quality of service. In: Proceedings of CHI 2000 Conference on
Human Factors in Computing Systems (2000)

 Intelligent Overload Control for Composite Web Services 49

7. Abdelzaher, T., Bhatti, N.: Web server QoS management by adaptive content delivery.
In: Proceedings of the International Workshop on Quality of Service, London, UK
(June 1999)

8. Dyachuk, D., Deters, R.: Scheduling of Composite Web Services. In: Meersman, R., Tari,
Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 19–20. Springer,
Heidelberg (2006)

9. Dyachuk, D., Deters, R.: Improving Performance of Composite Web Services. In: Pro-
ceedings of IEEE International Conference on Service-Oriented Computing and Applica-
tions, June 2007, pp. 147–154 (2007) ISBN 0-7695-2861-9

10. Iwasa, K., Durand, J., Rutt, T., Peel, M., Kunisetty, S., Bunting, D.: Web Services Reliable
Messaging TC, WS-Reliability 1.1. (2004),
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/

11. Tecnomatix, eM-Plant 7.0 Manual. Tecnomatix GmbH (2004)
12. Apache JMeter, http://jakarta.apache.org/jmeter
13. Apache Tomcat, http://tomcat.apache.org
14. Apache Axis2, http://ws.apache.org/axis2/

	Intelligent Overload Control for Composite Web Services
	Introduction
	Mathematical Foundation for Admission Control
	Dynamic Admission Control Algorithm S
	Dynamic Admission Control Algorithm D
	Simulation Setup
	Experimental Validation
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

