A Genetic Algorithms-Based Approach for
Optimized Self-protection in a Pervasive Service
Middleware

Weishan Zhang', Julian Schiitte?, Mads Ingstrup', and Klaus M. Hansen':2

L Aarhus University
{zhangws,ingstrup}@cs.au.dk
2 University of Iceland
kmh@hi.is
3 Fraunhofer Institute for Secure Information Technology
julian.schuette@sit.fraunhofer.de

Abstract. With increasingly complex and heterogeneous systems in
pervasive service computing, it becomes more and more important to
provide self-protected services to end users. In order to achieve self-
protection, the corresponding security should be provided in an opti-
mized manner considering the constraints of heterogeneous devices and
networks. In this paper, we present a Genetic Algorithms-based approach
for obtaining optimized security configurations at run time, supported
by a set of security OWL ontologies and an event-driven framework. This
approach has been realized as a prototype for self-protection in the Hydra
middleware, and is integrated with a framework for enforcing the com-
puted solution at run time using security obligations. The experiments
with the prototype on configuring security strategies for a pervasive ser-
vice middleware show that this approach has acceptable performance,
and could be used to automatically adapt security strategies in the
middleware.

1 Introduction

Security is an important quality of service (QoS) requirement in pervasive com-
puting systems. On the one hand, the higher security, the better. On the other
hand, resource restrictions on pervasive computing devices may compromise the
security requirements, as usually the higher security, the more resources are
needed to implement and enforce them. Therefore, an interesting concern in re-
lation to system quality is not how secure or efficient a system can be made,
but rather how secure we can afford to make a system given the constraints
set by available resources and other requirements, such as memory consumption
and latency. Tradeoffs between security, performance, and resources are always
involved, especially in pervasive computing systems.

Hence, an investigation on how to obtain an optimized solution following se-
curity, resource, and performance requirements is an interesting issue. Although

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 404 20009.
© Springer-Verlag Berlin Heidelberg 2009

A Genetic Algorithms-Based Approach for Optimized Self-protection 405

several research contributions have been made towards making security mech-
anisms adaptable [I], we have found that most of this work focus on security
in isolation rather than on managing an appropriate tradeoff between several
quality attributes at runtime.

In this paper we present a way for systems to dynamically optimize the
tradeoffs between security, resources and performance as users’ preferences are
changed to reflect, at run time, the relative importance of these three quality
attributes. We have accomplished this by relying on a general architecture for
self management developed in the EU-funded Hydra projectEL in which Genetic
Algorithms (GAs) [2] are used to obtain optimized solutions at run time, from
a number of conflicting objectives.

Approaching adaptive security from the perspective of making systems self-
managing has particular merit because security is thereby managed alongside
other quality attributes. Moreover, since even security mechanisms that are ar-
guably simple to use are frequently misunderstood and applied incorrectly by
end users [3], automating their configuration may make systems more secure by
precluding their incorrect configuration by human operators, who express their
goals declaratively as policies.

The remainder of the paper is organized as follows: First we explain the self-
management architecture of Hydra and how its components interact to optimize
self-protection (section 2l). Our approach uses semantic models of resource con-
sumption and security characteristics, which are described in Section Bl Section
@l describes a scenario of self-protection and the security strategies used within it.
Next, section [l describes how genetic algorithms are used to optimize protection
in face of specific resource requirements. Section [0 presents our prototype im-
plementation, and evaluations that show our approach can perform acceptably.
Finally, we review related work (section [7) and conclude the paper (section [|]).

2 Semantic Web-Based Self-management and Work Flow
of Self-protection in Hydra

2.1 Self-management Architecture

The Hydra self-management features cover the full spectrum of self-management
functionalities, including self-configuration, self-adaptation, self-protection, and
self-optimization. The self-management of Hydra follows a three layer model
proposed by Kramer and Magee [4] as detailed in Figure [l where the interac-
tion between different layers are through events via the Hydra Event Manager,
following a publish-subscribe [5] communication style.

Besides the Event Manager, the Self-management component also needs to
collaborate with other Hydra components, including the EventProcessingEngine
component for Complex Event Processing (CEP), which is used to monitor dy-
namic resources and other context changes, and a QoS manager, which is used
to retrieve the QoS properties for services/devices and monitor QoS changes.

!http://www.hydramiddleware.eu

http://www.hydramiddleware.eu

406 W. Zhang et al.

IPP-Planner QosProfile

TTTTTTA

| _

) GAOptimizer "

| ServiceProfile SecurityProtocol

) —J

I

1

Goal
Management

i
! I

| self.

| self-management

!] Ontology! 9
| management

|

|

|

I
I
i
I
|
Rules :'
|
1
I
I
|

Change
Management

| EventManager Request/Reply Events RequestiReply Events
! State Change Events (e.9. Component adaption commands for Actuator)
statomachine [__ C ene
ASL script tateMachine ctuator
L — —

Component
Control

e e

Fig. 1. Architecture of the Self-Management component in Hydra

Also, as we are adopting a Semantic Web-based self-management approach [6],
the management of OWIH Web Ontology Language)/ SWRI[(Semantic Web
Rule Language) ontologies is handled by the Ontology Manager. The diagnosis
results are stored via the Storage Manager for future analysis.

Component Control Layer. The component control layer has two respon-
sibilities: to enable higher layers to monitor low-level events, and to actuate
changes to the underlying system.

For detecting situations which require changes of the system’s configuration,
three components are available: device run time state monitoring via state ma-
chines, service invocations monitoring using message probes and detecting spe-
cific patterns of events through an event processing engine. Event patterns can
be ordered in an increasingly abstract hierarchy, ranging from low-level events
(e.g., raw sensor data) to high-level events (e.g., more complex situations like
“fire in the hall”). In the Component Control layer, the EventProcessingEngine
based on Complex Event Processing (CEP) is used to detect situations requir-
ing changes of the system’s security configuration, such as additional services or
devices joining a network.

For the second purpose of the Component Control layer, the ability to actuate
changes to a system’s configuration by obligation policies triggering the execution

2 http://www.w3.org/ TR /swbp-n-aryRelations,/
3 http://www.w3.org/Submission/SWRL/

A Genetic Algorithms-Based Approach for Optimized Self-protection 407

of ASL (architectural scripting language) [7] scripts is provided by its interpreter.
This is shown as an ASL-Actuator component in Figure [

Change Management Layer. The Change Management layer is responsible
for executing predefined schemes of self-management, i.e., this layer will respond
to detected deficiencies in a system and execute strategies defined in advance or
dynamically generated for a specific change event. A primary approach in Hydra
is the usage of SWRL [0] to define these self-management capabilities. Further,
QoS is considered if necessary for all self-management activities.

Goal Management Layer. Two complementary approaches are adopted in the
Goal Management layer to achieve planning. First GAs are used for obtaining
optimal solutions given some QoS goals and restrictions. Second, once a desired
target solution has been chosen, it becomes input to the IPP planner [8] which
generates an actuation plan.

A GA based approach [09] is used for optimization. Here, optimization (for
example choosing the most suitable services for self-configuration) is one impor-
tant task in self-management for pervasive service computing. These optimiza-
tion tasks can be considered as problems of multi-objective services selection
with constraints, where GAs are effective.

Non-trivial plans are generated with the IPP planner. Given a domain de-
scription, a start configuration and a condition describing the goal state, IPP
planner can generate a sequence of actions available in the domain (architectural
configurations in our case) that lead to a goal state.

2.2 Self-protection Work Flow

Figure [2 illustrates how the work flow of automatically re-configuring security
settings in the middleware based on the components introduced above.

In the first step, situations are detected which might require a reconfiguration
of security parameters and mechanism. For this purpose, events broadcasted
on the event bus are being monitored and fed into the FventProcessingEngine,
which then detects specific patterns of events. Once an event pattern has been
detected (e.g. a new device with some additional managers joining the network),
the EventProcessingEngine initiates the GAs to find the optimal configuration
for the new situation.

In general, a number of steps is required to come from the current to the op-
timal solution identified by the GAs. Therefore, the optimal solution is at first
sent to an IPP planning engine which calculates an enforceable plan leading to
this solution. This execution plan is passed to an obligation distribution point
(ODP) which is responsible for applying the individual steps of the plan to the
system by sending appropriate obligations [I0] to enforcement points (OEP).
Obligations are signed by the Obligation Distribution Point (ODP) to prevent
manipulation and to ensure authenticity of the obligation. When receiving an
obligation, OEPs validate the attached signature and invoke appropriate enforce-
ment plugins which are able to execute the actions stated within the obligation.

408 W. Zhang et al.

13: Solution Vector
Genetic Algorithm Engine[——>
2: Optimization goal, Current state

EventProcessingEngine Obligation Distribution Point
Y

5: Obligations
1: Raw events

IPP Planning Engine

4: ASL Scripts

EventMonitors 111 [

Event Bus

6: Ob/igationsﬁ]}]

0ogd
Enforcement Points

Fig. 2. Workflow of Self-Protection (components as boxes, communication as arrows)

After the enforcement process, OEPs can send back status report events indicat-
ing success or failure which can again be monitored by the component control
layer.

From Figure 2l we can see that the proposed approach relies on two aspects:
the underlying security contexts (implemented as ontologies) and an eventing
mechanism for context provision. Therefore our approach is generic and is appli-
cable to situations other than the Hydra middleware where the self-protection
approach originated.

3 Security Ontologies

The Goal Management layer in Figure [Il requires information about security
mechanisms that can be applied to the system to make proper decisions. This
information is modeled in a set of security ontologies, which need to describe not
only security mechanisms and their targeted protection goals, but also quality
of those mechanisms which differentiate our security ontologies to the existing
ones, such as the one from FIPA TC [II] and NRL ontology [12]. The ontology
used in our approach is application-agnostic and provided as part of the middle-
ware. Developers can add application-specific information by inserting additional
instances into the predefined ontologies.

3.1 Modeling Protection Goals

For self-protection, the security ontology mainly serves two purposes: at first,
it assigns each configuration to the protection goals it supports. Secondly, the
ontology should provide information about the quality of a mechanism, i.e.,
describe how well it is suited to achieve the protection goals and how high the
costs in terms of memory and CPU consumption will be. We will now describe
the most important concepts of the ontology as depicted in Figure[3 and explain
how they address those two purposes.

We model protecion goals as instances of the SecurityObjective class in or-
der to describe which configuration of the system is suited to achieve a certain
protection goal. This concept is modeled similarily to what is done in the NRL

A Genetic Algorithms-Based Approach for Optimized Self-protection 409

@ Securityobjective
1
asSecurity Objective

) OhjectiveStrengthRelation
|8 hiassecuriby Objective | SecurityObjective
| hasstrength : float

sUpportsSecalyobieitive upportsSecurityObjective

[@ SecurityMechanism | @ Securitylssurance
‘_ supportsSecurityChjective : ObjectiveStrengthRelation ‘ | byOrganisation

[el : string
ortsSecorityMechanismigy 1) sting
ﬁhasAssumnne

@ Securityalgorithm
[Wm hashssurance | Securicyssurance
| supportsSecurityMecharism | SecurityMechanism

usesmgunthm‘-ﬁ%sﬁlgnnthm

@ SecurityDataFormat N

I usesAlgorithm @ SecurityAlgarithm \\
!

v Fay WeesDataFormat %,

[@ keyromat | [® messageFormat | @ SecurityPratocol

L 1L | M supportssecurityCbjective | ObjectiveSt engthRelation
I requiresComputingPower float

. requirestemory : float

B usesigorithm | Securityalgorithm

B usesDataFormat | SecuribyDataFormat

Fig. 3. Main concepts and properties of the Security Ontology

ontology, i.e. it comprises instances such as Confidentiality, Messagelntegrity, Re-
playPrevention, etc.. Further, the concept SecurityProtocol represents the actual
configuration that could be applied to the system. This concept is the only one
whose instances refer to specific software modules or settings (e.g., 0SGH bun-
dles or sets of preferences). As not all instances of SecurityProtocol are equally
suited to fulfil a certain protection goal, we modeled an n-ary relation between
SecurityProtocol and SecurityObjective using the ObjectiveStrengthRelation con-
cept to overcome the lack of n-ary relations in OWL. In this way, we are able
to express qualified relations using security levels like “RSA-512 serves low con-
fidentiality”. By querying the ontology given protection goals it is thus possible
to retrieve a set of applicable implementations and configurations, ranked by the
degree to which they address protection goals.

3.2 Modeling Resource Consumption

In most cases, security is not for free and so the second purpose of the secu-
rity ontology is to provide information about the trade-off between the security
level and the required performance costs for each instance of the SecurityProto-
cols. The resource consumption of each instance is represented by the properties
requiresComputingPower and requiresMemory. Obviously, both properties vary
depending on the platform and various other factors, so the values in the on-
tology may only be taken as a rough estimation. However, for our optimization
approach the absolute values are not of interest but rather the relation of mod-
ules according to their resource consumption. Hence, we argue that in this case
it is feasible to represent such platform-specific information in a system-wide

* http://www.osgi.org/

410 W. Zhang et al.

security ontology. The requiresComputingPower property describes the addi-
tional processing time that is required by adding a certain security module or
configuration. That is, the values refer not only to cryptographic operations
but to the overall processing time required by the module. The requiresMemory
property describes the additional memory overhead that is added by applying
a security module. It refers to the sum of memory allocated by all objects and
methods of the module.

3.3 Usage of Security Ontologies

In Hydra, we are using SWRL rules to retrieve information from the security
ontology. For example, the following rule is used to retrieve the security protocols
and their corresponding memory consumption, computing time consumption,
authenticity level and its value. This information is then used in the fitness
evaluation functions described in Section GBI

Rule: SecurityResource

Security Protocol(?protocol) A
requiresComputing Power (?protocol, Tpower) A
requiresMemory(?protocol, Tmemory) A
authenticityObj(?protocol, Tauth) A

hasStrength(?auth, Tvalue)

— squwrl : select(?protocol, Tmemory, Tpower, Tauth, Tvalue)

Further, the security ontology is needed to automatically replace security mech-
anisms once they are considered to be insecure. From time to time, new at-
tacks on cryptographic algorithms become feasible and their level of security
decreases. Reflecting such changes in the security ontology by modifying the Ob-
jectiveStrengthRelation (c.f. the following section) will trigger a re-configuration
of the middleware, replacing outdated mechanisms by more secure equivalents.
This work is still under investigation and will be reported in the near future.

4 Security Strategies and a Scenario for Self-protection
in Hydra

In this section, we will describe how different security strategies described by the
security ontology have been combined with the self-management architecture in
order to realize self-protection in the Hydra middleware.

4.1 Security Strategies

A Hydra device is basically a set of managers (i.e. web services) which can
either be hosted locally on a single platform or be distributed across devices.
To protect communication between those managers (which we refer to as Core
Hydra) a number of security modules with different properties are available.
Besides the Core Hydra configuration, further security settings can be made in

A Genetic Algorithms-Based Approach for Optimized Self-protection 411

the middleware: the communication between Hydra devices can be protected in
different ways, different trust models (e.g. OpenPGP, PKI-Common, etc.) can
be used, and message formats such as XMLSecurity or S/Mime can be chosen.
In this paper, however, we will focus on the Core Hydra configuration only,
i.e. the selection of different security strategies for the communication between
managers (the procedure for other configurations is analogous).

The protection of Core Hydra communication is realized by soAPH security
handlers implementing the following security strategies: Null, XMLEnc, XM-
LEncSig and XMLEncSigSproadic each representing a different protection level.
These security handlers are hooked into the web service handler chain, a series
of Java classes that is called immediately before a SOAP call is routed into the
actual web service and immediately after the response leaves it. Thus, these
Core Hydra handlers are supposed to be completely invisible for users of the
middleware.

Null. This strategy switches off all message protection mechanisms and the
Core Hydra security handler simply passes all messages on to the receiving
manager. This strategy is obviously the most insecure but also the fastest
way of sending messages in Core Hydra.

XMLEnc. This strategy applies XMLEncryptiorH to messages in Core Hydra.
The message payload is encrypted using a 192 bit TripleDES key. This sym-
metric key is then attached to the message, encrypted by RSA 1.5 using the
1024 bit public key of the receiving manager. This strategy ensures confi-
dentiality but does not fully prevent message modification or replay attacks.

XMLEncSigSporadic. For this strategy, nonces (“number used once”) are
added to messages in order to prevent replay attacks and XMLSignatureEl
using RSA is applied in addition to XMLEncryption. Receivers will however
only randomly verify a certain percentage of the arriving messages to save
resources. While this strategy may allow attackers to send some individual
forged messages, it is not possible to inject a whole sequence of faked mes-
sages. It depends on the messages content and the application whether this
strategy adds any additional security — in the worst case it is equivalent to
XMLEnc, in the best case it is equivalent to XMLEncSig.

XMLEncSig. For this strategy, messages are created in the same way as in the
previous strategy. In addition, all signatures are verified by the receiver. So,
the XMLFEncSig strategy ensures confidentiality and authenticity as well as
it prevents attackers from re-playing previously recorded messages.

Table [lists the security strategies with the degree of support for confidential-
ity and authenticity as well as their resource consumption, which are encoded
in the security ontologies and will be used at run time as security contexts.
For XMLEncSigSporadic, 50% of the arriving messages are verified in our case.
The CPU processing time and memory consumption values have been obtained

® http://www.w3.org/TR /soap/
5 http://www.w3.org/TR/xmlenc-core/
" http://www.w3.org/TR/xmldsig-core/

412 W. Zhang et al.

Table 1. Protection levels (0 to 10) and resource consumptions of security strategies

Level of protection Resource consumption
Strategy Confidentiality Authenticity CPU (ms) Memory (KB)
Null 0 0 16.3 0.32
XMLEnc 4 4 21.4 28.96
XMLEncSigSporadic 4 7 102.4 54.97
XMLEncSig 4 9 114.3 57.52

by measuring the Hydra middleware with different security configurations on a
VMWare Windows XP with 512 MB memory and an Intel Core2 Duo processor.

4.2 A Self-protection Scenario in Hydra

The Hydra middleware has been developed to interconnect heterogeneous embed-
ded devices. In such scenarios developers have to deal with resource-constrained
platforms and the performance versus security trade-off. Usually this requires de-
sign decisions to be made at development time and knowledgeable developers who
know the benefits and deficits of different security mechanisms. The aim of self-
protection is to relieve developers from this task as much as possible by automat-
ically adapting security mechanisms to the current situation. As an example, we
look at how the middleware automatically selects the security strategies that best
fit the resource and security requirements of the application.

Suppose Hydra is the supporting middleware for an airport management sys-
tem, a public area that needs high security. All of 10 different Hydra components
are deployed on different devices: PDAs, PCs, and security checking machines,
connected via the Internet. All data sent between the managers should be con-
fidential, and — if possible — protected against modification and replay attacks.
At the same time, resource constraints must be considered, i.e., the latency and
memory consumption should not exceed limits. As there are 10 managers, there
are (120) = 45 bi-directional connections/channels to consider. For each connec-
tion, three different security strategies are available (omitting the Null strategy
as it does not provide any confidentiality). The problem space for finding the
optimal solution is 3%°, a scale that works well for GAs. Therefore, the following
goals for the overall system’s security configuration (referring to all 45 channels)
are passed as input to the Hydra Goal Management layer:

— Authenticity should be maximized (highest value is 10 for a channel)
— Latency must not exceed 2000 ms
— Memory should be minimized, not more than 2 Mbytes should be used

In the following section we will describe how the self-protection architecture finds
an optimal solution to this problem, plans its execution and finally enforces all
necessary steps.

5 Obtaining Optimized Protection Using GAs

First, we will formulate the abstract requirements as an optimization problem
that can be solved using a GA engine.

A Genetic Algorithms-Based Approach for Optimized Self-protection 413

5.1 Optimization Objectives and Constraints Formulation

The memory consumption of a Hydra device’s security mechanisms (the M ob-
jective) is calculated by the sum of each channel’s memory consumption as:

n m
M = ZZMZ - E(i,7), where E(i,j) = 1 if for a channel 7 (with a scope of
i=1 j=1
[1,n]) a security strategy that has memory consumption M; is selected, other-
wise E(i,j) = 0. j represents the sequence number of a concrete security strategy
with a scope of [1,m]. In the scenario under consideration, n = 45 and m = 3.
As we choose exactly one security strategy for each channel, there is exactly one
E(i,7) = 1 and all other E(i,75) =0 for all j € [1,m].

Similarly, we can formulate the CPU consumption (the P objective) to calcu-
n m

late the total processing time required by security mechanisms as: P = Z Z P;-
i=1 j=1
E(i,j), where E(i,j) = 1 if a component i (with a scope of [1,n]) that has power
consumption P; is selected, otherwise E (i, j) = 0. j represents the sequence num-
ber of a concrete component implementation with a scope of [1,m].
Authenticity, as said, should be maximized. We instead minimize the un-

authenticity to formulate all objectives in a similar way. The un-authenticity
n m

(the Ua objective) is calculated as: Ua = n - 10 — ZZAZ- - E(i,7), where
i=1 j=1

E(i,j) = 1 if a channel ¢ (with a scope of [1,n]) that has authenticity A; is

selected, otherwise E(i,j) = 0. j represents the sequence number of a concrete

security strategy with a scope of [1,m].

5.2 Chromosome Encoding and Fitness Evaluations

A chromosome corresponds to a unique solution in the solution space. GAs can
typically make use of booleans, real numbers and integers to encode a chromo-
some. The representation of chromosome in our case is using integers (starting
from 0). That is to say, we are using an integer vector V' = [V, V3, ...V}, ..., V)]
(where n is the number of decision variables — in our case 45) to represent a
solution. V; is a natural number, acts as a pointer to the index of the security
strategy of the ith strategy. For example, a chromosome [0,1,2,1,2,0,1,1,2,1...]
represents that a solution chooses the first security strategy for channel 1, the
second security strategy for channel 2, the third security strategy for channel
3, and so on. In our case, this relates to XMLEnc, XMLEncSigSporadic, XM-
LEncSig (cf. Table [Il). Based on the chosen security strategies, the GAs then
decide fitness using the objective equations as introduced in Section 1] and
will at the same time evaluate whether the constraints mentioned in Section [B.]
are met.

414 W. Zhang et al.
6 Prototype Implementation

In order to test the self-protection approach, we developed a prototype that has
been integrated into the Hydra middleware. In this section we will discuss the
architecture of the prototype implementation and the achieved performance.

6.1 Implementing GA-Based Optimization for Self-protection

As in our former evaluation of GAs for self-management [9], we used the JMetal
GA frameworkd for the implementation of the self-protection optimization prob-
lem. As shown in Figure @, we model a SelfProtectionProblem as a SelfMan-
agementProblem. Evaluations of solution fitness using the formulas introduced
in Section Bl are implemented in the SelfProtectionProblem class as usual
when a developer is to implement self-management optimization problems. The
GAEngine is the core class for the GA-based self-management planning, and
defines the common methods for getting the solutions.

The package evaluations defines utility classes for obtaining the Pareto front/
sett], and the evaluation of the solution quality uses the Hyper volume (HV) qual-
ity indicator [I3], which is a quality indicator that calculates the volume (in the
objective space) covered by members of a non-dominated set of solutions for prob-
lems where all objectives are to be minimized.

Problem L4 sulivrovectioniroblem i 1
= = Cperations 1 Cparat
= Operations wcrpat A SRRt b= Classes.
TRt s 4 +Salffrotectonfroblam % sgeiCrosstverProbabilty doub |6 Rsad_MOCH
@ +SeiManagementProtiern -1 N HATR R Moy double &+ ity o g PeadProblem
~+evalusteivod ~ +satCbiective CPU:double * #itiatEGA vald - SalfCanfigration_MoCall
A HovalustnConstrants ok Ak ol A SgENRCUtionTime long o Bk oRront
~ sevaksstiamory float * *getSoltionSat:SolACnSEt - ReacFerformanca_NSGAT
& Hivakatnaythontc sy fioat B Propartis o SelffrotectionEvaluaton
 vevaksstePower Consurmption: float T -objectives sdoubile()] 4 SelfConfigration_NSGAII
- . i d Tj~decisionvars St -0 SolfConfroblem
- & Oper ations: o ReacPerformance_MOCell
-+ o o RnadH_NSGAL
 +evalusteConst aints okl -0 GAEngneCyakation
- 0. 1 o BuskFarstofront MOCsl

Lo GASelProtection
o InitiakreSelfProtection.
[= Operations.
wtroatn
% “InitialireTe Protection
& Hnitalensecur iEroeOnia gy

 atribuies:
& chEctivesidotialI[]

OCEONYars Sirng|

o rersull: Hashidan <5ty ing, Sring
GaGAErgnD

% toetSeour ibDats Vet Sec Ti-meriery Float & zeifp SeProtectionProblem
Ti-power Flaat E Cperations

T -dntherticsy Fiost & +man:voil

Fig. 4. GAs based Self-management optimization

6.2 Enforcement of Obligations

The enforcement architecture (c.f. Section 22 allows adding support for ar-
bitrary obligations at runtime by loading appropriate enforcement plugins. We
implemented one enforcement plugin that supports operations on the OSGi plat-
form (such as starting and stopping bundles or setting preferences) and one that

8 http://sourceforge.net/projects/jmetal/
9 http://www-new.mcs.anl.gov /otc/Guide/Opt Web /multiobj/

A Genetic Algorithms-Based Approach for Optimized Self-protection 415

supports the execution of ASL scripts. While for simple obligations such as used
in our prototype example, the OSGi plugin provides a fast and direct access
to OSGi management, platform-independent ASL scripts are better suited for
heterogeneous platforms and more complex architectural restructurings [7]. The
sequences of actions that constitute an obligation policy (and an ASL script) is
generated by the IPP planner based on the target security configuration found
by the GA optimization.

6.3 Performance Measurements and Quality Evaluation

Performance of Genetic Algorithms. For the measurement of performance
of obtaining optimal solutions, the following software platform was used: JMetal
2.1, JVM 1.6.02-b06, Heap memory size is 256 Mbytes, Windows XP SP3. The
hardware platform was: Thinkpad T61P T7500 2.2G CPU, 7200rpm 100G hard
disk, 2G DDR2 RAM. The performance time measurements are in milliseconds.

We have done evaluations of two generic algorithms, NSGA-IT and MOCell for
their usage in pervasive computing [9]. In this paper, we want to validate whether
our recommendations for these two algorithms are valid for different problem
(where the problem space is much bigger and fitness evaluation algorithms are
different). This time, the parameter settings for GAs are the same as in [9], and
we are following the same steps as in [J] for evaluations.

The analysis for this evaluation (procedures as detailed in [d]) shows that
our recommendations for parameter settings as in [J] are valid and NSGA-II
is recommended for our self-management problems. Table [shows randomly
chosen runs (from one of 100 runs for every parameter combination) for some
of the parameter combinations (as detailed in the legend of Figure (). We can
see that for NSGA-II, which is recommended (and was recommended in [9]) in
this case, the population size 64 to 100 with max evaluations of 5000 will have
acceptable performance for getting optimized solutions within 342ms to 449ms,
and has acceptable quality of solutions as shown in TableRland Figure[5 MOcell
is not recommended as it has worse HV. We can see this in a direct way in Figure
MOCell solutions has many more points far from the Pareto front. We can also
see that the diversity and convergence are satisfactory of NSGA-II, the solutions
are spread uniformly along the true Pareto front, and the majority of the points
in NSGA-II results are located at the Pareto front.

Table 2. Performance and quality of solutions

GA name Population size Max evaluations cross over probability (CVP) Avg. HV Avg. Running Time

NSGA-II 64 5000 0.8 0.566524 342 ms

NSGA-II 81 5000 0.9 0.566524 419 ms
NSGA-II 100 5000 0.9 0.566524 449 ms
MOCell 1444 5000 0.8 0.459411 235 ms
MOCell 1600 10000 0.8 0.494775 576 ms

416 W. Zhang et al.

N
a
3

° oy
%
| %-’\,\“\\
\

NSGA-II population 64-evaluation 5000-CVP 0.8 - run number 66
NSGA-II population 81-evaluation 5000-CVP 0.9 - run number 88
NSGA-II population 100-evaluation 5000-CVP 0.9 - run number 96
MOCell population 1444-evaluation 5000-CVP 0.8 - run number 12
True Pareto front

I
S

@
S

2000

Un-Authenticity

S 0O+ ok

1600

Fig. 5. Visualizing the solution quality

Performance of IPP Planner. We measured the performance of the ITPP
planner for the plans required in our implementation. With just one security
strategy to be set, the planner generates the correct solution in just 10ms (aver-
age of 5 measurements, standard deviation 2 ms). In our case, at most four kinds
of planning problems can occur, because the steps required to change a strategy
depends only on the strategy being activated. Thus in practise the planner can
be invoked once for each of these problems to produce a template plan/scheme
which is stored in the Change Management layer and available for immediate ex-
ecution once needed. Thus the test showing an execution time of just 10 ms is the
worst case time for planning in our implementation. Other implementations of
our approach may require more complex plans to activate a strategy. However,
our previous experience with using the IPP planner for general architectural
reconfiguration shows that it generates a plan within 100 ms [7].

Performance of Obligation Enforcement. Finally, we measured the per-
formance of the enforcement process, i.e. the process of distributing a single
obligation to the OEPs and executing the contained actions. The overall time
(omitting network latency) amounts to 70.9 ms (standard deviation 14.21 ms)
whereas the plain execution time is almost negligible (0.6%) due to the simple
operation we use in our prototype example (changing the configuration of the
Core Hydra module). The main computing costs come from signing and verifying
the obligation, accounting to over 73% of the overall enforcement time. Another
21.7% is required by Axis 1.4 web service calls.

6.4 Discussion

The critical part of our self-management approach is obtaining the optimized solu-
tions for all the communication channels. The search for the best solutions should
be finished in a reasonable time. As we can see from Section[6.3, GAs can accom-
plish this within acceptable time and satisfactory quality. Combining the perfor-
mance testing with IPP Planner for generating enforcement plans, and the
performance of actual enforcement of security protocols from Section [6.3] in the

A Genetic Algorithms-Based Approach for Optimized Self-protection 417

best case we can get the self-protection ready within 520ms, which is acceptable for
enabling the self-protection for the whole Hydra middleware. Even in the “worst”
case, where the IPP planner needs to be invoked and the enactment of a strategy
change is more complex than in Hydra, this would add less than 100ms or 20% to
the execution time.

7 Related Work

In the Willow architecture [I4] for comprehensive survivability, security threats
are treated as one source of faults that the architecture provides mechanisms to
avoid, eliminate, or tolerate. In contrast with our prototype, there is no dynamic
adaptation or explicit modeling of the trade-offs involved in providing the protec-
tion. The ATNAC framework described by Ryutov et al. [I5] detects malicious
activity by analyzing failures and behavior patterns of the access control and
trust negotiation process. Thus rather than trying to prevent an ongoing attack
as such, a detected malicious activity is input to the access control and authoriza-
tion process which thereby becomes more dynamic. The functionality is at the
specific level orthogonal to our work, in that it is concerned with authentication.
Further, the adaptation which is provided is focused on improving the accuracy
of authentication, rather than on balancing multiple concerns against each other
as in our approach. Another approach to multi-objective optimization is followed
by the middleware CARISMA. In [16], the authors propose utility functions and
auction-based negotiations to agree on an optimized trade-off between security
and efficiency. Their decentralized approach however assumes each instance of
the middleware acts honestly.

Event-condition-action policies as used in our obligation framework have been
used for many policy-based management approaches before, where Ponder2 [I7]
is one of the most prominent examples. However, self-protection is scarcely con-
sidered in such approaches. Finally, a conceptually different approach to self-
protection is used in artificial immune systems [I8]. This approach is interesting
but it is unclear yet how it can be combined with other self-* approaches in
order to make acceptable tradeoffs between several different qualitative con-
cerns. In our approach, multi-objective optimization can be used for other self-
management features, as we have done for self-configuration [9].

8 Conclusion and Future Work

Self-protection is one of the important self-management capabilities of per-
vasive service computing. There is scarce reported work providing optimized
self-protection, i.e. considering the characteristics of pervasive systems where
resources are usually restricted. In this paper, we proposed a Genetic Algorithms-
based approach for obtaining optimized security configurations. The optimized
solutions can be used to enable corresponding security strategies, based on obli-
gations generated from the IPP planner, and finally the obligation framework
will execute these plans and make use of the chosen security protocols. The

418 W. Zhang et al.

whole process is evaluated and it was show that our approach is feasible with
acceptable performance and satisfactory quality. We will explore auction-based
multi-attribute optimization [16], and investigate the replacement of outdated
security mechanisms at run time using security ontologies.

Acknowledgments. The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891).

References

1. Elkhodary, A., Whittle, J.: A survey of approaches to adaptive application security.
In: Proc. of the 2007 International Workshop on Software Engineering for Adap-
tive and Self-Managing Systems, Washington, DC, USA. IEEE C.S, Los Alamitos
(2007)

2. Mitchell, M.: An Introduction to Genetic Algorithms. Bradford Books (1996)

3. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: A usability evaluation of pgp
5.0. In: Proceedings of the 8th USENIX Security Symposium (August 1999)

4. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: In-
ternational Conference on Software Engineering, pp. 259-268 (2007)

5. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114-131 (2003)

6. Zhang, W., Hansen, K.M.: Semantic web based self-management for a pervasive
service middleware. In: Second IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO 2008), Venice, Italy, October 2008, pp. 245
254 (2008)

7. Ingstrup, M., Hansen, K.M.: Modeling architectural change - architectural script-
ing and its applications to reconfiguration. In: WICSA /ECSA 2009, Cambridge,
England, September 2009. IEEE, Los Alamitos (2009)

8. Koehler, J., Nebel, B., Hoffmann, J., Dimopoulos, Y.: Extending planning graphs
to an adl subset. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 273-285.
Springer, Heidelberg (1997)

9. Zhang, W., Hansen, K.: An Evaluation of the NSGA-II and MOCell Genetic Al-
gorithms for Self-management Planning in a Pervasive Service Middleware. In:
14th IEEE International Conference on Engineering Complex Computer Systems
(ICECCS 2009), pp. 192-201. IEEE Computer Society, Washington (2009)

10. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9), 39-44 (2006)

11. FIPA Security: Harmonising heterogeneous security models using an ontological
approach. Part of deliverable Agentcities. RTD, Deliverable D3.4 (2003)

12. Naval Research Lab: NRL Security Ontology (2007),
http://chacs.nrl.navy.mil/projects/4SEA/ontology.html

13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE transactions on Evolutionary Com-
putation 3(4), 257-271 (1999)

14. Knight, J., Heimbigner, D., Wolf, A.L., Carzaniga, A., et al.: The Willow Ar-
chitecture: Comprehensive Survivability for Large-Scale Distributed Applications,
Technical Report CU-CS-926-01, University of Colorado

http://chacs.nrl.navy.mil/projects/4SEA/ontology.html

15.

16.

17.

18.

A Genetic Algorithms-Based Approach for Optimized Self-protection 419

Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K.E.: Adaptive trust
negotiation and access control. In: SACMAT 2005: Proceedings of the tenth ACM
symposium on Access control models and technologies, pp. 139-146. ACM, New
York (2005)

Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective mId-
dleware System for Mobile Applications. IEEE Transactions on Software Engineer-
ing, 929-945 (2003)

Twidle, K., Dulay, N., Lupu, E., Sloman, M.: Ponder2: A policy system for au-
tonomous pervasive environments. In: The Fifth International Conference on Au-
tonomic and Autonomous Systems (ICAS) (April 2009)

Dasgupta, D.: Advances in artificial immune systems. IEEE Computational Intel-
ligence Magazine 1(4), 40-49 (2006)

	A Genetic Algorithms-Based Approach for Optimized Self-protection in a Pervasive Service Middleware
	Introduction
	Semantic Web-Based Self-management and Work Flow of Self-protection in Hydra
	Self-management Architecture
	Self-protection Work Flow

	Security Ontologies
	Modeling Protection Goals
	Modeling Resource Consumption
	Usage of Security Ontologies

	Security Strategies and a Scenario for Self-protection in Hydra
	Security Strategies
	A Self-protection Scenario in Hydra

	Obtaining Optimized Protection Using GAs
	Optimization Objectives and Constraints Formulation
	Chromosome Encoding and Fitness Evaluations

	Prototype Implementation
	Implementing GA-Based Optimization for Self-protection
	Enforcement of Obligations
	Performance Measurements and Quality Evaluation
	Discussion

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

